1
|
Lombardi Z, Gardini L, Kashchuk AV, Menconi A, Lulli M, Tusa I, Tubita A, Maresca L, Stecca B, Capitanio M, Rovida E. Importin subunit beta-1 mediates ERK5 nuclear translocation, and its inhibition synergizes with ERK5 kinase inhibitors in reducing cancer cell proliferation. Mol Oncol 2025; 19:99-113. [PMID: 38965815 PMCID: PMC11705758 DOI: 10.1002/1878-0261.13674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 04/30/2024] [Accepted: 05/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5) is emerging as a promising target in cancer. Indeed, alterations of the MEK5/ERK5 pathway are present in many types of cancer, including melanoma. One of the key events in MAPK signalling is MAPK nuclear translocation and its subsequent regulation of gene expression. Likewise, the effects of ERK5 in supporting cancer cell proliferation have been linked to its nuclear localization. Despite many processes regulating ERK5 nuclear translocation having been determined, the nuclear transporters involved have not yet been identified. Here, we investigated the role of importin subunit alpha (α importin) and importin subunit beta-1 (importin β1) in ERK5 nuclear shuttling to identify additional targets for cancer treatment. Either importin β1 knockdown or the α/β1 importin inhibitor ivermectin reduced the nuclear amount of overexpressed and endogenous ERK5 in HEK293T and A375 melanoma cells, respectively. These results were confirmed in single-molecule microscopy in HeLa cells. Moreover, immunofluorescence analysis showed that ivermectin impairs epidermal growth factor (EGF)-induced ERK5 nuclear shuttling in HeLa cells. Both co-immunoprecipitation experiments and proximity ligation assay provided evidence that ERK5 and importin β1 interact and that this interaction is further induced by EGF administration and prevented by ivermectin treatment. The combination of ivermectin and the ERK5 inhibitor AX15836 synergistically reduced cell viability and colony formation ability in A375 and HeLa cells and was more effective than single treatments in preventing the growth of A375 and HeLa spheroids. The increased reduction of cell viability upon the same combination was also observed in patient-derived metastatic melanoma cells. The combination of ivermectin and ERK5 inhibitors other than AX15836 provided similar effects on cell viability. The identification of importin β1 as the nuclear transporter of ERK5 may be exploited for additional ERK5-inhibiting strategies for cancer therapy.
Collapse
Affiliation(s)
- Zoe Lombardi
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Lucia Gardini
- National Institute of Optics, National Research CouncilFlorenceItaly
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
| | - Anatolii V. Kashchuk
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
- Department of Physics and AstronomyUniversity of FlorenceItaly
| | - Alessio Menconi
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Matteo Lulli
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Ignazia Tusa
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| | - Luisa Maresca
- Core Research Laboratory – Institute for Cancer Research and Prevention (ISPRO)FlorenceItaly
| | - Barbara Stecca
- Core Research Laboratory – Institute for Cancer Research and Prevention (ISPRO)FlorenceItaly
| | - Marco Capitanio
- European Laboratory of Non‐Linear Spectroscopy (LENS)FlorenceItaly
- Department of Physics and AstronomyUniversity of FlorenceItaly
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical SciencesUniversity of FlorenceItaly
| |
Collapse
|
2
|
Fang H, Shi X, Gao J, Yan Z, Wang Y, Chen Y, Zhang J, Guo W. TMEM209 promotes hepatocellular carcinoma progression by activating the Wnt/β-catenin signaling pathway through KPNB1 stabilization. Cell Death Discov 2024; 10:438. [PMID: 39414762 PMCID: PMC11484822 DOI: 10.1038/s41420-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignancy in the liver, with a poor prognosis. Transmembrane protein 209 (TMEM209) involves multiple biological processes, such as substance transportation and signal transduction, and is abundantly expressed in tumor tissues. However, the relationship between TMEM209 and HCC has not been comprehensively elucidated. In this study, we aimed to illustrate this issue by in vitro and in vivo experiments. Bioinformatic analysis and clinical sample validation revealed that TMEM209 was upregulated in HCC and correlated with reduced survival duration. Functionally, TMEM209 promoted the proliferation, migration, invasion, and EMT of HCC cells in vitro and facilitated tumor growth and metastasis in xenograft models. Mechanistically, TMEM209 promoted the proliferation and metastasis of HCC in a KPNB1-dependent manner. Specifically, TMEM209 could bind to KPNB1, thereby competitively blocking the interaction between KPNB1 and the E3 ubiquitin ligase RING finger and CHY zinc finger domain-containing protein 1 (RCHY1) and preventing K48-associated ubiquitination degradation of KPNB1. Ultimately, the Wnt/β-catenin signaling pathway was activated, contributing to the progression of the malignant phenotype of HCC. In conclusion, the molecular mechanism underlying the TMEM209/KPNB1/Wnt/β-catenin axis in HCC progression was elucidated. TMEM209 is a potential biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Haoran Fang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Yun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, Henan, China.
| |
Collapse
|
3
|
Ma Q, Lu X, Tian W, Chen Y, He X. Astragaloside Ⅳ mediates the effect and mechanism of KPNB1 on biological behavior and tumor growth in prostate cancer. Heliyon 2024; 10:e33904. [PMID: 39027542 PMCID: PMC11255569 DOI: 10.1016/j.heliyon.2024.e33904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Background and purpose Prostate cancer is an comparatively prevalent clinical malignant tumor in men, impacting the lives of millions of men globally. This study measured the expression of Karyopherin Subunit Beta 1 (KPNB1) in prostate cancer cells, and made an effort to investigate how astragaloside IV affects the biological behavior, tumor growth, and mechanism of action of prostate cancer through KPNB1. Methods Human prostate cancer and normal cells were obtained and KPNB1 expression levels in the two cells were determined using qPCR and WB. Prostate cancer cells were grouped according to the addition of astragaloside IV, KPNB1 inhibitor (importazole) alone and in combination. KPNB1, NF-κB, and cycle-related proteins were detected to be expressed at different levels in each group's cells by WB. MTT to assess the viability of the cells. To identify the cell cycle, use flow cytometry, and sphere formation experiment to observe sphere formation ability. Nude mice were purchased and subcutaneously inoculated with prostate cancer cells to establish a prostate cancer model, and grouped by tail vein injection of astragaloside IV and importazole. Tumor size was measured. KPNB1 and NF-κB expression in tumor tissues were detected by WB. The expression of proteins relevant to the cycle is observed by immunohistochemical methods. TUNEL was used to detect apoptosis of tissue cells. Results KPNB1 expression was upregulated in prostate cancer cells (P < 0.05). KPNB1, NF-κB, and cycle-related protein levels were decreased by astragaloside IV and importazole both separately and together. Decreased viability of the cells and a higher percentage of cell cycle arrest in the G0 phase, apoptosis was increased, and sphere formation was decreased (P < 0.05). In vitro implantation experiments found that the application of astragaloside IV and importazole resulted in tumor growth inhibition, decreased KPNBI, NF-κB, and cyclin expression in tumor tissues, and promoted apoptosis in tumor tissues (P < 0.05). Conclusion Prostate cancer cells' expression of KPNB1 is downregulated by astragaloside IV, which also prevents the cells from proliferating. It offers a conceptual framework for the use of astragaloside IV in the management of prostate cancer.
Collapse
Affiliation(s)
- Quan Ma
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| | - Xiaojun Lu
- Department of Urology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200000, China
| | - Wei Tian
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Yongliang Chen
- Department of Urology, Shaoxing Central Hospital, Shaoxing, 312000, Zhejiang, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China
| |
Collapse
|
4
|
Zuo C, Fan P, Yang Y, Hu C. MiR-488-3p facilitates wound healing through CYP1B1-mediated Wnt/β-catenin signaling pathway by targeting MeCP2. J Diabetes Investig 2024; 15:145-158. [PMID: 37961023 PMCID: PMC10804895 DOI: 10.1111/jdi.14099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/15/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
INTRODUCTION Diabetic wounds are difficult to heal, but the pathogenesis is unknown. MicroRNAs (miRNAs) are thought to play important roles in wound healing. The effect of miR-488-3p in wound healing was studied in this article. MATERIALS AND METHODS The gene methylation was measured by methylation specific PCR (MSP) assay. A dual-luciferase reporter assay was adopted to analyze the interaction between miR-488-3p and MeCP2. RESULTS Cytochrome P450 1B1 (CYP1B1) is a monooxygenase belonging to the cytochrome P450 family that aids in wound healing. Our findings showed that the miR-488-3p and CYP1B1 expression levels were much lower in wound tissues of diabetics with skin defects, but the methyl-CpG-binding protein 2 (MeCP2) level was significantly higher than that in control skin tissues. MiR-488-3p overexpression increased cell proliferation and migration, as well as HUVEC angiogenesis, while inhibiting apoptosis, according to function experiments. In vitro, MeCP2 inhibited wound healing by acting as a target of miR-488-3p. We later discovered that MeCP2 inhibited CYP1B1 expression by enhancing its methylation state. In addition, CYP1B1 knockdown inhibited wound healing. Furthermore, MeCP2 overexpression abolished the promoting effect of miR-488-3p on wound healing. It also turned out that CYP1B1 promoted wound healing by activating the Wnt4/β-catenin pathway. Animal experiments also showed that miR-488-3p overexpression could accelerate wound healing in diabetic male SD rats. CONCLUSIONS MiR-488-3p is a potential therapeutic target for diabetic wound healing since it improved wound healing by activating the CYP1B1-mediated Wnt4/-catenin signaling cascade via MeCP2.
Collapse
Affiliation(s)
- Chenchen Zuo
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Pengju Fan
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ying Yang
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Chengjun Hu
- Department of Plastic Surgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Li J, Zhang B, Feng Z, An D, Zhou Z, Wan C, Hu Y, Sun Y, Wang Y, Liu X, Wei W, Yang X, Meng J, Che M, Sheng Y, Wu B, Wen L, Huang F, Li Y, Yang K. Stabilization of KPNB1 by deubiquitinase USP7 promotes glioblastoma progression through the YBX1-NLGN3 axis. J Exp Clin Cancer Res 2024; 43:28. [PMID: 38254206 DOI: 10.1186/s13046-024-02954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common malignant tumor of the central nervous system. It is an aggressive tumor characterized by rapid proliferation, diffuse tumor morphology, and poor prognosis. Unfortunately, current treatments, such as surgery, radiotherapy, and chemotherapy, are unable to achieve good outcomes. Therefore, there is an urgent need to explore new treatment targets. A detailed mechanistic exploration of the role of the nuclear pore transporter KPNB1 in GBM is lacking. This study demonstrated that KPNB1 regulated GBM progression through a transcription factor YBX1 to promote the expression of post-protrusion membrane protein NLGN3. This regulation was mediated by the deubiquitinating enzyme USP7. METHODS A tissue microarray was used to measure the expression of KPNB1 and USP7 in glioma tissues. The effects of KPNB1 knockdown on the tumorigenic properties of glioma cells were characterized by colony formation assays, Transwell migration assay, EdU proliferation assays, CCK-8 viability assays, and apoptosis analysis using flow cytometry. Transcriptome sequencing identified NLGN3 as a downstream molecule that is regulated by KPNB1. Mass spectrometry and immunoprecipitation were performed to analyze the potential interaction between KPNB1 and YBX1. Moreover, the nuclear translocation of YBX1 was determined with nuclear-cytoplasmic fractionation and immunofluorescence staining, and chromatin immunoprecipitation assays were conducted to study DNA binding with YBX1. Ubiquitination assays were performed to determine the effects of USP7 on KPNB1 stability. The intracranial orthotopic tumor model was used to detect the efficacy in vivo. RESULTS In this study, we found that the nuclear receptor KPNB1 was highly expressed in GBM and could mediate the nuclear translocation of macromolecules to promote GBM progression. Knockdown of KPNB1 inhibited the progression of GBM, both in vitro and in vivo. In addition, we found that KPNB1 could regulate the downstream expression of Neuroligin-3 (NLGN3) by mediating the nuclear import of transcription factor YBX1, which could bind to the NLGN3 promoter. NLGN3 was necessary and sufficient to promote glioma cell growth. Furthermore, we found that deubiquitinase USP7 played a critical role in stabilizing KPNB1 through deubiquitination. Knockdown of USP7 expression or inhibition of its activity could effectively impair GBM progression. In vivo experiments also demonstrated the promoting effects of USP7, KPNB1, and NLGN3 on GBM progression. Overall, our results suggested that KPNB1 stability was enhanced by USP7-mediated deubiquitination, and the overexpression of KPNB1 could promote GBM progression via the nuclear translocation of YBX1 and the subsequent increase in NLGN3 expression. CONCLUSION This study identified a novel and targetable USP7/KPNB1/YBX1/NLGN3 signaling axis in GBM cells.
Collapse
Affiliation(s)
- Jie Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bin Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zishan Feng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dandan An
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Wan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenwen Wei
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiao Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingshu Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengjie Che
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhan Sheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lu Wen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
6
|
Shi Q, Lin M, Cheng X, Zhang Z, Deng S, Lang K, Yang Z, Sun X. KPNB1-mediated nuclear import in cancer. Eur J Pharmacol 2023; 955:175925. [PMID: 37473981 DOI: 10.1016/j.ejphar.2023.175925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Dysregulation of nucleocytoplasmic shuttling impairs cellular homeostasis and promotes cancer development. KPNB1 is a member of karyopherin β family, mediating the transportation of proteins from the cytoplasm to the nucleus. In a variety of cancers, the expression of KPNB1 is upregulated to facilitate tumor growth and progression. Both downregulation of KPNB1 level and inhibition of KPNB1 activity prevent the entry of cancer-related transcription factors into the nucleus, subsequently suppressing the proliferation and metastasis of cancer cells. Currently, five KPNB1 inhibitors have been reported and exhibited good efficacy against cancer. This paper provides an overview of the role and mechanism of KPNB1 in different cancers and KPNB1-targeted anticancer compounds which hold promise for the future.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Mengxia Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xiang Cheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ziyuan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ke Lang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Zhikun Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
7
|
Okpara MO, Hermann C, van der Watt PJ, Garnett S, Blackburn JM, Leaner VD. A mass spectrometry-based approach for the identification of Kpnβ1 binding partners in cancer cells. Sci Rep 2022; 12:20171. [PMID: 36418423 PMCID: PMC9684564 DOI: 10.1038/s41598-022-24194-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
Karyopherin beta 1 (Kpnβ1) is the principal nuclear importer of cargo proteins and plays a role in many cellular processes. Its expression is upregulated in cancer and essential for cancer cell viability, thus the identification of its binding partners might help in the discovery of anti-cancer therapeutic targets and cancer biomarkers. Herein, we applied immunoprecipitation coupled to mass spectrometry (IP-MS) to identify Kpnβ1 binding partners in normal and cancer cells. IP-MS identified 100 potential Kpnβ1 binding partners in non-cancer hTERT-RPE1, 179 in HeLa cervical cancer, 147 in WHCO5 oesophageal cancer and 176 in KYSE30 oesophageal cancer cells, including expected and novel interaction partners. 38 binding proteins were identified in all cell lines, with the majority involved in RNA metabolism. 18 binding proteins were unique to the cancer cells, with many involved in protein translation. Western blot analysis validated the interaction of known and novel binding partners with Kpnβ1 and revealed enriched interactions between Kpnβ1 and select proteins in cancer cells, including proteins involved in cancer development, such as Kpnα2, Ran, CRM1, CCAR1 and FUBP1. Together, this study shows that Kpnβ1 interacts with numerous proteins, and its enhanced interaction with certain proteins in cancer cells likely contributes to the cancer state.
Collapse
Affiliation(s)
- Michael O. Okpara
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa
| | - Clemens Hermann
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J. van der Watt
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Shaun Garnett
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M. Blackburn
- grid.7836.a0000 0004 1937 1151Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Virna D. Leaner
- grid.7836.a0000 0004 1937 1151Division of Medical Biochemistry and Structural Biology, University of Cape Town, Cape Town, South Africa ,grid.7836.a0000 0004 1937 1151SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
Luo Z, Liu L, Li X, Chen W, Lu Z. Tat-NTS Suppresses the Proliferation, Migration and Invasion of Glioblastoma Cells by Inhibiting Annexin-A1 Nuclear Translocation. Cell Mol Neurobiol 2022; 42:2715-2725. [PMID: 34345995 PMCID: PMC11421625 DOI: 10.1007/s10571-021-01134-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
Prevention of the nuclear translocation of ANXA1 with Tat-NTS was recently reported to alleviate neuronal injury and protect against cerebral stroke. However, the role that Tat-NTS plays in the occurrence and development of gliomas still needs to be elucidated. Therefore, human glioblastoma (GB) cells were treated with various concentrations of Tat-NTS for 24 h, and cell proliferation, migration and invasion were assessed with CCK-8 and Transwell assays. The nuclear translocation of ANXA1 was evaluated by subcellular extraction and immunofluorescence, and protein expression levels were detected by Western blot analysis. In addition, the activity of MMP-2/9 was measured by gelatin zymography. The results revealed that Tat-NTS significantly inhibited the nuclear translocation of ANXA1 in U87 cells and inhibited the proliferation, migration and invasion of GB cells. Tat-NTS also suppressed cell cycle regulatory proteins and MMP-2/-9 activity and expression. Moreover, Tat-NTS reduced the level of p-p65 NF-κB in U87 cells. These results suggest that the Tat-NTS-induced inhibition of GB cell proliferation, migration and invasion is closely associated with the induction of cell cycle arrest, downregulation of MMP-2/-9 expression and activity and suppression of the NF-κB signaling pathway. Thus, Tat-NTS may be a potential chemotherapeutic agent for the treatment of GB.
Collapse
Affiliation(s)
- Zhenzhao Luo
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China
| | - Li Liu
- Department of Respiration, The Children's Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430015, China
| | - Xing Li
- Department of Neurobiology, The School of Basic Medical Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiqun Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhongxin Lu
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, 26 Shengli St., Jiangan District, Wuhan, 430014, China.
| |
Collapse
|
9
|
Kong Y, Zhang Y, Wang H, Kan W, Guo H, Liu Y, Zang Y, Li J. Inner nuclear membrane protein TMEM201 promotes breast cancer metastasis by positive regulating TGFβ signaling. Oncogene 2022; 41:647-656. [PMID: 34799661 DOI: 10.1038/s41388-021-02098-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 12/31/2022]
Abstract
Emerging evidence shows the association between nuclear envelope and tumor progression, however, the functional contributions of specific constituents of the nuclear envelope remain largely unclear. We found that the expression level of transmembrane protein 201 (TMEM201), an integral inner nuclear membrane protein of unknown function, was significantly elevated in invasive breast cancer and predicted poor breast cancer prognosis. We showed that TMEM201, as a positive modulator, was both necessary and sufficient to regulate the migration and invasion of breast cancer cells in vitro and in vivo. Mechanistically, RNA-sequencing analysis and validation showed that TMEM201 deficiency inhibited epithelial-to-mesenchymal transition and transforming growth factor-β signaling. Finally, we showed that TMEM201 physically interacted with SMAD2/3 and was required for the phosphorylation of SMAD2/3, nuclear translocation and transcriptional activation of the TGFβ. Thus, we demonstrated that specific inner nuclear membrane component mediated signal-dependent transcriptional effects to control breast cancer metastasis.
Collapse
Affiliation(s)
- Ya Kong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yutian Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hanlin Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmacology, Fudan University, Shanghai, 201203, China
| | - Weijuan Kan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haoran Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, #24 Tong Jia Xiang Street, Nanjing, 210009, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China.
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, China.
| |
Collapse
|
10
|
Yang F, Li L, Mu Z, Liu P, Wang Y, Zhang Y, Han X. Tumor-promoting properties of karyopherin β1 in melanoma by stabilizing Ras-GTPase-activating protein SH3 domain-binding protein 1. Cancer Gene Ther 2022; 29:1939-1950. [PMID: 35902727 PMCID: PMC9750864 DOI: 10.1038/s41417-022-00508-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
The nuclear import receptor karyopherin β1 (KPNB1), a member of the Karyopherin protein family, is reported to be overexpressed in various cancers and promote carcinogenesis. By analyzing the correlation between the expression of KPNB1 and the overall survival rate of melanoma patients, we found that melanoma patients with higher expression of KPNB1 had worse survival. Furthermore, the database analyzed that the KPNB1 mRNA level was higher in melanoma samples than that in skin nevus tissues. We thus proposed that KPNB1 played a role in promoting melanoma development, and conducted gain-of- and loss-of-function experiments to test our hypothesis. We found that KPNB1 knockdown significantly retarded the growth and metastasis of melanoma cells in vitro and in vivo, and increased their sensitivity towards the anti-tumor drug cisplatin. KPNB1 overexpression had opposite effects. Notably, in melanoma cells, KPNB1 overexpression significantly decreased Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) protein level, which was also overexpressed in melanoma samples and enhanced malignant behaviors of melanoma cells. We further demonstrated that KPNB1 overexpression induced deubiquitination of G3BP1, and prevented its degradation. However, KPNB1 overexpression hardly affected the nuclear translocation of G3BP1. Additionally, alterations induced by KPNB1 overexpression were partly reversed by G3BP1 inhibition. Therefore, the results suggest that KPNB1 may promote melanoma progression by stabilizing the G3BP1 protein. KPNB1-G3BP1 axis represents a potential therapeutic targetable node for melanoma.
Collapse
Affiliation(s)
- Fan Yang
- grid.412467.20000 0004 1806 3501Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning PR China
| | - Lin Li
- grid.412467.20000 0004 1806 3501Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning PR China
| | - Zhenzhen Mu
- grid.412467.20000 0004 1806 3501Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning PR China
| | - Pengyue Liu
- grid.412467.20000 0004 1806 3501Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning PR China
| | - Ying Wang
- grid.412467.20000 0004 1806 3501Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning PR China
| | - Yue Zhang
- grid.412467.20000 0004 1806 3501Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning PR China
| | - Xiuping Han
- grid.412467.20000 0004 1806 3501Department of Dermatology, Shengjing Hospital of China Medical University, Shenyang, 110004 Liaoning PR China
| |
Collapse
|
11
|
van der Watt PJ, Okpara MO, Wishart A, Parker MI, Soares NC, Blackburn JM, Leaner VD. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers. Int J Cancer 2021; 150:347-361. [PMID: 34591985 DOI: 10.1002/ijc.33832] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNβ1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNβ1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael O Okpara
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew Wishart
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Iqbal Parker
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Du W, Zhu J, Zeng Y, Liu T, Zhang Y, Cai T, Fu Y, Zhang W, Zhang R, Liu Z, Huang JA. KPNB1-mediated nuclear translocation of PD-L1 promotes non-small cell lung cancer cell proliferation via the Gas6/MerTK signaling pathway. Cell Death Differ 2021; 28:1284-1300. [PMID: 33139930 PMCID: PMC8027631 DOI: 10.1038/s41418-020-00651-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 01/30/2023] Open
Abstract
In addition to the role of programmed cell death ligand 1 (PD-L1) in facilitating tumour cells escape from immune surveillance, it is considered as a crucial effector in transducing intrinsic signals to promote tumour development. Our previous study has pointed out that PD-L1 promotes non-small cell lung cancer (NSCLC) cell proliferation, but the mechanism remains elusive. Here we first demonstrated that PD-L1 expression levels were positively correlated with p-MerTK levels in patient samples and NSCLC cell lines. In addition, PD-L1 knockdown led to the reduced phosphorylation level of MerTK in vitro. We next showed that PD-L1 regulated NSCLC cell proliferation via Gas6/MerTK signaling pathway in vitro and in vivo. To investigate the underlying mechanism, we unexpectedly found that PD-L1 translocated into the nucleus of cancer cells which was facilitated through the binding of Karyopherin β1 (KPNB1). Nuclear PD-L1 (nPD-L1), coupled with transcription factor Sp1, regulated the synthesis of Gas6 mRNA and promoted Gas6 secretion to activate MerTK signaling pathway. Taken together, our results shed light on the novel role of nPD-L1 in NSCLC cell proliferation and reveal a new molecular mechanism underlying nPD-L1-mediated Gas6/MerTK signaling activation. All above findings provide the possible combinational implications for PD-L1 targeted immunotherapy in the clinic.
Collapse
Affiliation(s)
- Wenwen Du
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China
| | - Jianjie Zhu
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Institute of Respiratory Diseases, Soochow University, 215006 Suzhou, China
| | - Yuanyuan Zeng
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Institute of Respiratory Diseases, Soochow University, 215006 Suzhou, China
| | - Ting Liu
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China
| | - Yang Zhang
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China
| | - Tingting Cai
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China
| | - Yulong Fu
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China
| | - Weijie Zhang
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China
| | - Ruochen Zhang
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China
| | - Zeyi Liu
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Institute of Respiratory Diseases, Soochow University, 215006 Suzhou, China
| | - Jian-an Huang
- grid.429222.d0000 0004 1798 0228Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, 215006 Suzhou, China ,Suzhou Key Laboratory for Respiratory Diseases, 215006 Suzhou, China ,grid.263761.70000 0001 0198 0694Institute of Respiratory Diseases, Soochow University, 215006 Suzhou, China
| |
Collapse
|
13
|
Cao Y, Wang F, Chen Y, Wang Y, Song H, Long J. CircPITX1 Regulates Proliferation, Angiogenesis, Migration, Invasion, and Cell Cycle of Human Glioblastoma Cells by Targeting miR-584-5p/KPNB1 Axis. J Mol Neurosci 2021; 71:1683-1695. [PMID: 33763840 DOI: 10.1007/s12031-021-01820-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022]
Abstract
Recent researches reported that several circular RNAs (circRNAs) were associated with the glioblastoma (GBM) progression, while the regulatory role of circPITX1 remains unknown in GBM. The real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify circPITX1, miR-584-5p, and karyopherin b1 (KPNB1) expression in GBM tissues and cells. The proliferation capability of cells was analyzed by Cell Counting Kit-8 (CCK-8) and colony-forming assays. The matrigel angiogenesis assay was used to assess tube formation in GBM cells. Flow cytometry assays were conducted to evaluate the cell cycle distribution of GBM cells. The migration and invasion assays were assessed by transwell assay. The Western blot assay was employed to quantify the protein expression level in GBM tissues and cells. The targets of circPITX1 and miR-584-5p were confirmed by dual-luciferase reporter and RNA pull-down assays. A xenograft experiment in nude mice was used to assess the functional role of circPITX1 in vivo. CircPITX1 was obviously overexpressed in GBM tissues and cells when compared with negative groups. The functional experiment implied that knockdown of circPITX1 suppressed proliferation, angiogenesis, migration, invasion, and tumor growth in vivo along with induced cell cycle arrest of GBM cells. Furthermore, miR-584-5p was a target gene of circPITX1, and knockdown of miR-584-5p could abolish circPITX1 silencing-induced effects on GBM cells. KPNB1 was a target gene of miR-584-5p, and functional experiments revealed that overexpression of miR-584-5p repressed proliferation, angiogenesis, migration, invasion, and cell cycle process in GBM cells by targeting KPNB1. Mechanistically, circPITX1/miR-584-5p/KPNB1 axis regulated GBM process via mediating proliferation, angiogenesis, migration, invasion, and cell cycle process of GBM cells.
Collapse
Affiliation(s)
- Yiqiang Cao
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Yu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yonggang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Hai Song
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jiang Long
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
14
|
Wang CL, Tang Y, Li M, Xiao M, Li QS, Yang L, Li X, Yin L, Wang YL. Analysis of Mono-ADP-Ribosylation Levels in Human Colorectal Cancer. Cancer Manag Res 2021; 13:2401-2409. [PMID: 33737837 PMCID: PMC7965690 DOI: 10.2147/cmar.s303064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Colorectal cancer remains a major public health problem with high morbidity and mortality rates. In the search for the mechanisms of colorectal cancer occurrence and development, increasing attention has been focused on epigenetics. The overall level of Mono-ADP-ribosylation, an epigenetic, has not been investigated now. The aim of our study was to analysis of the overall level of mono-ADP-ribosylation in colorectal cancer. METHODS Immunohistochemistry was used to investigate the level of mono-ADP-ribosylation in colorectal cancer and normal colorectal adjacent tissue from 64 CRC patients. The data of patient demographic, clinical and pathological characteristics were acquired and analyzed. RESULTS Mono-ADP-ribosylation was present in both colorectal adenocarcinoma and normal colorectal tissue. The overall level of mono-ADP-ribosylation in colorectal cancer was significantly higher than that in normal colorectal adjacent tissue. In the nucleus, the majority of samples in the high-level group were colorectal adenocarcinoma (55/64), but the opposite was true for normal colorectal tissues (7/32). In particular, increases in the level of mono-ADP-ribosylation in the cytoplasm of colorectal cancer cells was associated with a greater invasion depth of the tumor. CONCLUSION The increased level of mono-ADP-ribosylation in colorectal cancer enhances tumor invasion, which suggests that mono-ADP-ribosylation is involved in the development of colorectal cancer and may become a new direction to solve the problem of colorectal cancer.
Collapse
Affiliation(s)
- Chuan-Ling Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Qing-Shu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ling Yin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, People’s Republic of China
| |
Collapse
|
15
|
Targeting nuclear import and export in hematological malignancies. Leukemia 2020; 34:2875-2886. [PMID: 32624581 PMCID: PMC7584478 DOI: 10.1038/s41375-020-0958-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
The transport of proteins across the nuclear membrane is a highly regulated process, essential for the cell function. This transport is actively mediated by members of the karyopherin family, termed importins, or exportins, depending on the direction of transport. These proteins play an active part in tumorigenesis, through aberrant localization of their cargoes, which include oncogenes, tumor-suppressor genes and mediators of key signal transduction pathways. Overexpression of importins and exportins is reported in many malignancies, with implications in cell growth and viability, differentiation, drug resistance, and tumor microenvironment. Given their broad significance across tumors and pathways, much effort is being put to develop specific inhibitors as a novel anticancer therapeutics. Already, selinexor, a specific inhibitor of exportin-1 (XPO1), is approved for clinical use. This review will focus on the role of importins and exportins in hematological malignancies. We will discuss current preclinical and clinical data on importins and exportins, and demonstrate how our growing understanding of their functions has identified new therapeutic targets.
Collapse
|
16
|
He L, Zhu C, Jia J, Hao XY, Yu XY, Liu XY, Shu MG. ADSC-Exos containing MALAT1 promotes wound healing by targeting miR-124 through activating Wnt/β-catenin pathway. Biosci Rep 2020; 40:BSR20192549. [PMID: 32342982 PMCID: PMC7214401 DOI: 10.1042/bsr20192549] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022] Open
Abstract
Cutaneous wound is a soft tissue injury that is difficult to heal during aging. It has been demonstrated that adipose-derived stem cells (ADSCs) and its secreted exosomes exert crucial functions in cutaneous wound healing. The present study aimed to elucidate the mechanism of exosomes derived from ADSCs (ADSC-Exos) containing MALAT1 in wound healing. ADSCs were isolated from human normal subcutaneous adipose tissues and identified by flow cytometry analysis. Exosomes were extracted from ADSC supernatants and MALAT1 expression was determined using qRT-PCR analysis. HaCaT and HDF cells were exposed to hydrogen peroxide (H2O2) for simulating the skin lesion model. Subsequently, CCK-8, flow cytometry, wound healing and transwell assays were employed to validate the role of ADSC-Exos containing MALAT1 in the skin lesion model. Besides, cells were transfected with sh-MALAT1 to verify the protective role of MALAT1 in wound healing. The binding relationship between MALAT1 and miR-124 were measured by dual-luciferase reporter assay. ADSC-Exos promoted cell proliferation, migration, and inhibited cell apoptosis of HaCaT and HDF cells impaired by H2O2. However, the depletion of MALAT1 in ADSC-Exos lose these protective effects on HaCaT and HDF cells. Moreover, miR-124 was identified to be a target of MALAT1. Furthermore, ADSC-Exos containing MALAT1 could mediate H2O2-induced wound healing by targeting miR-124 and activating Wnt/β-catenin pathway. ADSC-Exos containing MALAT1 play a positive role in cutaneous wound healing possibly via targeting miR-124 through activating the Wnt/β-catenin pathway, which may provide novel insights into the therapeutic target for cutaneous wound healing.
Collapse
Affiliation(s)
- Lin He
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Chan Zhu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, The Fourth Military Medical University, Xi’an 710032, P.R. China
| | - Jing Jia
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiao-Yan Hao
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xue-Yuan Yu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Xiang-Yu Liu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| | - Mao-Guo Shu
- Department of Plastic, Aesthetic and Maxillofacial Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, P.R. China
| |
Collapse
|
17
|
Wang T, Huang Z, Huang N, Peng Y, Gao M, Wang X, Feng W. Inhibition of KPNB1 Inhibits Proliferation and Promotes Apoptosis of Chronic Myeloid Leukemia Cells Through Regulation of E2F1. Onco Targets Ther 2019; 12:10455-10467. [PMID: 31819526 PMCID: PMC6896920 DOI: 10.2147/ott.s210048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/14/2019] [Indexed: 01/07/2023] Open
Abstract
Background Karyopherin-β1 (KPNB1) belongs to the karyopherin superfamily, which functions as shuttling proteins from the cytoplasm to nuclear. A high level of KPNB1 has been reported in various cancers which promotes cell proliferation and inhibits apoptosis. However, the role of KPNB1 in chronic myeloid leukemia (CML) remains uncertain. Methods Expression level of KPNB1 in CML patient samples and cell lines was analyzed by Western blotting. The proliferation assays and colony formation assay were used to study the CML cell proliferation when KPNB1 knockdown in vitro. Next, Western blotting was used to evaluate the effects of KPNB1 on E2F1 and other cell cycle regulators. Then, the location of E2F1 was detected by immunofluorescence. Finally, flow cytometry was used to detect the effect of KPNB1 inhibitor importazole (IPZ) on CML cells. Results In this study, we firstly showed that KPNB1 is over-expressed in CML cells. Targeting KPNB1 with small interfering RNA (siRNA) and IPZ reduced proliferation and induced apoptosis of CML cells. The underlying mechanisms were also investigated that E2F1 nuclear transport was blocked after inhibiting KPNB1 with siRNA, suggesting KPNB1 over-expression mediates the excessive nuclear transport of E2F1 in CML cells. Moreover, the expression of the E2F1 targeted molecule such as c-Myc and KPNA2 was markedly reduced. The IPZ arrested CML cells at G2/M phase and induced cell apoptosis. Conclusion In summary, our results clearly showed that KPNB1 is over-expressed in CML cells and mediates the translocation of E2F1 into the nucleus of CML cells, thereby inhibition of KPNB1 reduced proliferation and induced apoptosis of CML cells which provides new insights for targeted CML therapies.
Collapse
Affiliation(s)
- Teng Wang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ningshu Huang
- Department of Clinical Laboratory, The Children's Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yuhang Peng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
18
|
Roy A, Narayan G. Oncogenic potential of nucleoporins in non-hematological cancers: recent update beyond chromosome translocation and gene fusion. J Cancer Res Clin Oncol 2019; 145:2901-2910. [PMID: 31654122 DOI: 10.1007/s00432-019-03063-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The nuclear pore complex is comprised of approximately 30 proteins named nucleoporins (Nups) and tightly regulates nucleocytoplasmic transport of macromolecules across the nuclear membrane. Genetic alterations in many NUP genes are associated with many human maladies, such as neurological disease, autoimmune disorders and cancer. METHODS We reviewed the status quo of recent advancement of the knowledge of oncogenic role of nucleoporins in human carcinogenesis, focusing on major non-hematological malignancies in the recent literature. Both clinical study-derived and experiment-based reports were critically reviewed. We have also discussed the potential of nucleoporins as novel cancer biomarkers and promising therapeutic target against human malignancies. RESULTS Several Nups such as Nup53, Nup88, Nup98, Nup160 and Nup214 modulated a plethora of cellular and physiological pathways involved in tumorigenesis such as GSK3β-Snail, Wnt/β-Catenin and RanGap1/RanBP2 signaling axes, DNA damage response, resistance to apoptosis and chemotherapy. CONCLUSION Although classically, majority of studies have shown oncogenic roles of nucleoporins as genetic fusion partners in several types of leukemia, emerging evidence suggests that nucleoporins also modulate many cellular signaling pathways that are associated with several major non-hematological malignancies, such as carcinomas of skin, breast, lung, prostate and colon. Hence, nucleoporins are emerging as novel therapeutic targets in human tumors.
Collapse
Affiliation(s)
- Adhiraj Roy
- Interdisciplinary School of Life Sciences, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Gopeshwar Narayan
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
19
|
Verrico A, Rovella P, Di Francesco L, Damizia M, Staid DS, Le Pera L, Schininà ME, Lavia P. Importin-β/karyopherin-β1 modulates mitotic microtubule function and taxane sensitivity in cancer cells via its nucleoporin-binding region. Oncogene 2019; 39:454-468. [PMID: 31492900 DOI: 10.1038/s41388-019-0989-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 02/27/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022]
Abstract
The nuclear transport receptor importin-β/karyopherin-β1 is overexpressed in cancers that display genomic instability. It is regarded as a promising cancer target and inhibitors are being developed. In addition to its role in nucleo-cytoplasmic transport, importin-β regulates mitosis, but the programmes and pathways in which it operates are defined only in part. To unravel importin-β's mitotic functions we have developed cell lines expressing either wild-type or a mutant importin-β form in characterised residues required for nucleoporin binding. Both forms similarly disrupted spindle pole organisation, while only wild-type importin-β affected microtubule plus-end function and microtubule stability. A proteome-wide search for differential interactors identified a set of spindle regulators sensitive to mutations in the nucleoporin-binding region. Among those, HURP (hepatoma up-regulated protein) is an importin-β interactor and a microtubule-stabilising factor. We found that induction of wild type, but not mutant importin-β, under the same conditions that destabilise mitotic microtubules, delocalised HURP, indicating that the spatial distribution of HURP along the spindle requires importin-β's nucleoporin-binding residues. Concomitantly, importin-β overexpression sensitises cells to taxanes and synergistically increases mitotic cell death. Thus, the nucleoporin-binding domain is dispensable for importin-β function in spindle pole organisation, but regulates microtubule stability, at least in part via HURP, and renders cells vulnerable to certain microtubule-targeting drugs.
Collapse
Affiliation(s)
- Annalisa Verrico
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, F-75205, Paris, France
| | - Paola Rovella
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy
| | - Laura Di Francesco
- Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Michela Damizia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy
| | - David Sasah Staid
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Loredana Le Pera
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), CNR Consiglio Nazionale delle Ricerche, 70126, Bari, Italy
| | - M Eugenia Schininà
- Department of Biochemical Sciences "Alessandro Rossi-Fanelli", Sapienza University of Rome, 00185, Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology (IBPM), CNR Consiglio Nazionale delle Ricerche, 00185, Rome, Italy. .,Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185, Rome, Italy.
| |
Collapse
|
20
|
Bánová Vulić R, Zdurienčíková M, Tyčiaková S, Benada O, Dubrovčáková M, Lakota J, Škultéty Ľ. Silencing of carbonic anhydrase I enhances the malignant potential of exosomes secreted by prostatic tumour cells. J Cell Mol Med 2019; 23:3641-3655. [PMID: 30916466 PMCID: PMC6484292 DOI: 10.1111/jcmm.14265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/14/2019] [Accepted: 02/26/2019] [Indexed: 12/17/2022] Open
Abstract
We report results showing that the silencing of carbonic anhydrase I (siCA1) in prostatic (PC3) tumour cells has a significant impact on exosome formation. An increased diameter, concentration and diversity of the produced exosomes were noticed as a consequence of this knock‐down. The protein composition of the exosomes' cargo was also altered. Liquid chromatography and mass spectrometry analyses identified 42 proteins significantly altered in PC3 siCA1 exosomes compared with controls. The affected proteins are mainly involved in metabolic processes, biogenesis, cell component organization and defense/immunity. Interestingly, almost all of them have been described as ‘enhancers' of tumour development through the promotion of cell proliferation, migration and invasion. Thus, our results indicate that the reduced expression of the CA1 protein enhances the malignant potential of PC3 cells.
Collapse
Affiliation(s)
| | | | | | - Oldřich Benada
- Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| | | | - Ján Lakota
- Biomedical Research Center SAS, Bratislava, Slovak Republic.,St. Elizabeth Cancer Institute, Bratislava, Slovak Republic.,Center of Experimental Medicine SAS, Bratislava, Slovak Republic
| | - Ľudovít Škultéty
- Biomedical Research Center SAS, Bratislava, Slovak Republic.,Institute of Microbiology of the CAS, v.v.i., Prague, Czech Republic
| |
Collapse
|
21
|
Yang J, Guo Y, Lu C, Zhang R, Wang Y, Luo L, Zhang Y, Chu CH, Wang KJ, Obbad S, Yan W, Li X. Inhibition of Karyopherin beta 1 suppresses prostate cancer growth. Oncogene 2019; 38:4700-4714. [PMID: 30742095 PMCID: PMC6565446 DOI: 10.1038/s41388-019-0745-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 12/10/2018] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
Abstract
Prostate cancer (PCa) initiation and progression requires activation of numerous oncogenic signaling pathways. Nuclear-cytoplasmic transport of oncogenic factors is mediated by Karyopherin proteins during cell transformation. However, the role of nuclear transporter proteins in PCa progression has not been well defined. Here, we report that the KPNB1, a key member of Karyopherin beta subunits, is highly expressed in advanced prostate cancers. Further study showed that targeting KPNB1 suppressed the proliferation of prostate cancer cells. The knockdown of KPNB1 reduced nuclear translocation of c-Myc, the expression of downstream cell cycle modulators, and phosphorylation of regulator of chromatin condensation 1 (RCC1), a key protein for spindle assembly during mitosis. Meanwhile, CHIP assay demonstrated the binding of c-Myc to KPNB1 promoter region, which indicated a positive feedback regulation of KPNB1 expression mediated by the c-Myc. In addition, NF-κB subunit p50 translocation to nuclei was blocked by KPNB1 inhibition, which led to an increase in apoptosis and a decrease in tumor sphere formation of PCa cells. Furthermore, subcutaneous xenograft tumor models with a stable knockdown of KPNB1 in C42B PCa cells validated that the inhibition of KPNB1 could suppress the growth of prostate tumor in vivo. Moreover, the intravenously administration of importazole, a specific inhibitor for KPNB1, effectively reduced PCa tumor size and weight in mice inoculated with PC3 PCa cells. In summary, our data established the functional link between KPNB1 and PCa prone c-Myc, NF-kB, and cell cycle modulators. More importantly, inhibition of KPNB1 could be a new therapeutic target for PCa treatment.
Collapse
Affiliation(s)
- Jian Yang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yuqi Guo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Cuijie Lu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Ruohan Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yaoyu Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Liang Luo
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yanli Zhang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Catherine H Chu
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Katherine J Wang
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Sabrine Obbad
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Wenbo Yan
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Xin Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA. .,Department of Urology, New York University Langone Medical Center, New York, NY, 10016, USA. .,Perlmutter Cancer Institute, New York University Langone Medical Center, New York, NY, 10016, USA.
| |
Collapse
|
22
|
Zhu A, Li X, Wu H, Miao Z, Yuan F, Zhang F, Wang B, Zhou Y. Molecular mechanism of SSFA2 deletion inhibiting cell proliferation and promoting cell apoptosis in glioma. Pathol Res Pract 2018; 215:600-606. [PMID: 30712887 DOI: 10.1016/j.prp.2018.12.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/09/2018] [Accepted: 12/30/2018] [Indexed: 10/27/2022]
Abstract
Gliomas are the most common primary brain malignant tumors in humans. Glioblastoma multiforme(GBM) is the most malignant intracranial tumor with a relatively poor prognosis. There promote us to find effective anti-cancer therapies to reduce cancer mortality. By using bioinformatic analysis, we found SSFA2 as a gene with elevated expression in the glioma tissues. We detected the expression of SSFA2 in glioma tissues and in the glioma cell lines, as well as in normal brain tissues. SSFA2 expression was higher in glioma tissues, especially in glioblastoma multiforme than normal brain tissues. Subsequently, we found that down-regulate SSFA2 in glioma cell lines can regulate the cell cycle to reduce the proliferation ability and induce the early apoptosis rate in shSSFA2 cells relative to control cells. Moreover, we found that down-regulate SSFA2 in glioma cell line U87(shSSFA2-U87) inhibited the growth effectiveness compared to the control cell line U87. These result reveals us that SSFA2 may act as oncogene to promote the progression of glioma. For further research specific mechanisms of SSFA2 in gliomas, we used the gene chip to detect the downstream gene in U87. We found that 30 genes also may be as target gene of SSFA2, and we testify the protein expression by western-blot. The result reveal that IL1A, IL1B and CDK6 as target gene of SSFA2 to regulate the progression of glioma. These finding suggest that SSFA2 could be a new therapeutic target for gliomas.
Collapse
Affiliation(s)
- Aihua Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China; Department of Neurosurgery of Wuxi Third People's Hospital Research, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Xuetao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China
| | - Haibin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China
| | - Zongning Miao
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Fenglai Yuan
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Feng Zhang
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Bei Wang
- The Research Institute of Wuxi Third People's Hospital, The Third Affiliated Hospital of Nantong University, 585 Xingyuan North Road, Wuxi, 214041, Jiangsu, China
| | - Youxin Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 899 Pinghai Street, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
23
|
Chen LL, Gao GX, Shen FX, Chen X, Gong XH, Wu WJ. SDC4 Gene Silencing Favors Human Papillary Thyroid Carcinoma Cell Apoptosis and Inhibits Epithelial Mesenchymal Transition via Wnt/β-Catenin Pathway. Mol Cells 2018; 41:853-867. [PMID: 30165731 PMCID: PMC6182223 DOI: 10.14348/molcells.2018.0103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/10/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023] Open
Abstract
As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85-90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis via the Wnt/β-catenin signaling pathway in human PTC cells. Bioinformatics methods were employed to screen the determined differential expression levels of SDC4 in PTC and adjacent normal samples. PTC tissues and adjacent normal tissues were prepared and their respective levels of SDC4 protein positive expression, in addition to the mRNA and protein levels of SDC4, Wnt/β-catenin signaling pathway, EMT and apoptosis related genes were all detected accordingly. Flow cytometry was applied in order to detect cell cycle entry and apoptosis. Finally, analyses of PTC migration and invasion abilities were assessed by using a Transwell assay and scratch test. In PTC tissues, activated Wnt/β-catenin signaling pathway, increased EMT and repressed cell apoptosis were determined. Moreover, the PTC K1 and TPC-1 cell lines exhibiting the highest SDC4 expression were selected for further experiments. In vitro experiments revealed that SDC4 gene silencing could suppress cell migration, invasion and EMT, while acting to promote the apoptosis of PTC cells by inhibiting the activation of the Wnt/β-catenin signaling pathway. Besides, si-β-catenin was observed to inhibit the promotion of PTC cell migration and invasion caused by SDC4 overexpression. Our study revealed that SDC4 gene silencing represses EMT, and enhances cell apoptosis by suppressing the activation of the Wnt/β-catenin signaling pathway in human PTC.
Collapse
Affiliation(s)
- Liang-Liang Chen
- Department of Surgical Oncology, Ningbo No.2 Hospital, Ningbo 315010,
P.R. China
| | - Ge-Xin Gao
- School of Nursing, Wenzhou Medical University, Wenzhou 325000,
P.R. China
| | - Fei-Xia Shen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiong Chen
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Xiao-Hua Gong
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| | - Wen-Jun Wu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015,
P.R. China
| |
Collapse
|
24
|
He L, Zhou H, Zeng Z, Yao H, Jiang W, Qu H. Wnt/β‐catenin signaling cascade: A promising target for glioma therapy. J Cell Physiol 2018; 234:2217-2228. [PMID: 30277583 DOI: 10.1002/jcp.27186] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Lu He
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hong Zhou
- Department of RadiologyFirst Affiliated Hospital, University of South ChinaHengyang China
- Learning Key Laboratory for PharmacoproteomicsInstitute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South ChinaHengyang China
| | - Zhiqing Zeng
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hailun Yao
- Department of Medical College, Hunan Polytechnic of Environment and BiologyHengyang China
| | - Weiping Jiang
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| | - Hongtao Qu
- Department of NeurosurgeryFirst Affiliated Hospital, University of South ChinaHengyang China
| |
Collapse
|
25
|
Wu X, Xiao J, Zhao C, Zhao C, Han Z, Wang F, Yang Y, Jiang Y, Fang F. Claudin1 promotes the proliferation, invasion and migration of nasopharyngeal carcinoma cells by upregulating the expression and nuclear entry of β-catenin. Exp Ther Med 2018; 16:3445-3451. [PMID: 30233694 PMCID: PMC6143911 DOI: 10.3892/etm.2018.6619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 01/26/2018] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to measure the expression of Claudin (CLDN) 1 in nasopharyngeal carcinoma (NPC) and to determine its biological function and mechanism of action. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to measure the expression of CLDN1 mRNA and protein, respectively, in the immortalized human nasopharyngeal epithelial cell line NP69 and NPC-TW01 cells. Subsequently, small interfering RNA against CLDN1 and the LV-GFP-PURO-CLDN1 lentivirus were transfected into NPC-TW01 cells. Western blotting was used to determine the effects of CLDN1 down- and upregulation on the expression of the epithelial mesenchymal transition (EMT) markers E-cadherin and vimentin. In addition, the effect of CLDN1 on the expression of β-Catenin was determined. The results demonstrated that levels of CLDN1 mRNA and protein in NPC cells were significantly higher than in NP69 cells. Furthermore, the downregulation of CLDN1 inhibited the proliferation, invasion and migration of NPC-TW01 cells. The results of western blotting demonstrated that the downregulation of CLDN1 resulted in the upregulation of E-cadherin and inhibition of vimentin in NPC-TW01 cells. By contrast, the overexpression of CLDN1 resulted in the downregulation of E-cadherin and upregulation of vimentin in NPC-TW01 cells. The downregulation of β-catenin attenuated the cancer-promoting effect of CLDN1 on NPC-TW01 cells, whereas the upregulation of β-catenin reversed the tumor-suppressing effect of CLDN1 downregulation on NPC-TW01 cells. The results of the present study therefore demonstrate that CLDN1 expression is elevated in NPC cells. As an oncogene, CLDN1 promotes the proliferation, invasion and migration of NPC cells by upregulating the expression and nuclear entry of β-catenin.
Collapse
Affiliation(s)
- Xin Wu
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jianghong Xiao
- Department of Radiation Physics, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chong Zhao
- Department of Radiotherapy, Tumor Hospital of Chengdu, The Seventh People's Hospital of Chengdu, Chengdu, Sichuan 610041, P.R. China
| | - Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Medical School, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhongcheng Han
- Department of Oncology, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang 830001, P.R. China
| | - Feng Wang
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuqiong Yang
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Jiang
- Department of Head and Neck Cancer, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Fang Fang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
26
|
Rivero-Hinojosa S, Lau LS, Stampar M, Staal J, Zhang H, Gordish-Dressman H, Northcott PA, Pfister SM, Taylor MD, Brown KJ, Rood BR. Proteomic analysis of Medulloblastoma reveals functional biology with translational potential. Acta Neuropathol Commun 2018; 6:48. [PMID: 29880060 PMCID: PMC5992829 DOI: 10.1186/s40478-018-0548-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/17/2018] [Indexed: 12/14/2022] Open
Abstract
Genomic characterization has begun to redefine diagnostic classifications of cancers. However, it remains a challenge to infer disease phenotypes from genomic alterations alone. To help realize the promise of genomics, we have performed a quantitative proteomics investigation using Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) and 41 tissue samples spanning the 4 genomically based subgroups of medulloblastoma and control cerebellum. We have identified and quantitated thousands of proteins across these groups and find that we are able to recapitulate the genomic subgroups based upon subgroup restricted and differentially abundant proteins while also identifying subgroup specific protein isoforms. Integrating our proteomic measurements with genomic data, we calculate a poor correlation between mRNA and protein abundance. Using EPIC 850 k methylation array data on the same tissues, we also investigate the influence of copy number alterations and DNA methylation on the proteome in an attempt to characterize the impact of these genetic features on the proteome. Reciprocally, we are able to use the proteome to identify which genomic alterations result in altered protein abundance and thus are most likely to impact biology. Finally, we are able to assemble protein-based pathways yielding potential avenues for clinical intervention. From these, we validate the EIF4F cap-dependent translation pathway as a novel druggable pathway in medulloblastoma. Thus, quantitative proteomics complements genomic platforms to yield a more complete understanding of functional tumor biology and identify novel therapeutic targets for medulloblastoma.
Collapse
|
27
|
A novel cell-penetrating peptide protects against neuron apoptosis after cerebral ischemia by inhibiting the nuclear translocation of annexin A1. Cell Death Differ 2018; 26:260-275. [PMID: 29769639 DOI: 10.1038/s41418-018-0116-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
Nuclear translocation of annexin A1 (ANXA1) has recently been reported to participate in neuronal apoptosis after cerebral ischemia. Prevention of the nuclear translocation of ANXA1 should therefore inhibit neuronal apoptosis and protect against cerebral stroke. Here, we found that, in the repeat III domain of ANXA1, the amino-acid residues from R228 to F237 function as a unique nuclear translocation signal (NTS) and are required for nuclear translocation of ANXA1. Intriguingly, we synthesized a cell-penetrating peptide derived by conjugating the trans-activator of transcription (Tat) domain to the NTS sequence. This Tat-NTS peptide specifically blocked the interaction of ANXA1 with importin β and, consequently, the nuclear translocation of ANXA1 without affecting the nucleocytoplasmic shuttling of other proteins. The Tat-NTS peptide inhibited the transcriptional activity of p53, decreased Bid expression, suppressed activation of the caspase-3 apoptosis pathway and improved the survival of hippocampal neurons subjected to oxygen-glucose deprivation and reperfusion in vitro. Moreover, using a focal brain ischemia animal model, we showed that the Tat-NTS peptide could be efficiently infused into the ischemic hippocampus and cortex by unilateral intracerebroventricular injection. Injection of the Tat-NTS peptide alleviated neuronal apoptosis in the ischemic zone. Importantly, further work revealed that administration of the Tat-NTS peptide resulted in a dramatic reduction in infarct volume and that this was correlated with a parallel improvement in neurological function after reperfusion. Interestingly, the effects of Tat-NTS were injury specific, with little impact on neuronal apoptosis or cognitive function in sham-treated nonischemic animals. In conclusion, based on its profound neuroprotective and cognitive-preserving effects, it is suggested that the Tat-NTS peptide represents a novel and potentially promising new therapeutic candidate for the treatment of ischemic stroke.
Collapse
|
28
|
Wang H, Wang D, Li C, Zhang X, Zhou X, Huang J. High Kpnβ1 expression promotes non-small cell lung cancer proliferation and chemoresistance via the PI3-kinase/AKT pathway. Tissue Cell 2018; 51:39-48. [PMID: 29622086 DOI: 10.1016/j.tice.2018.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/26/2018] [Accepted: 02/14/2018] [Indexed: 01/11/2023]
Abstract
Karyopherin β1 (Kpnβ1), also known as importin-β, is part of the karyopherin superfamily of nuclear transport proteins. Kpnβ1 is an oncogene that is overexpressed in various human cancers. Recent studies have showed that Kpnβ1 is one of the leading causes of cancer-related deaths in the world. However, the role of Kpnβ1 in non-small cell lung cancer (NSCLC) remains uncertain. In this study, we used western blotting to show that Kpnβ1 expression is higher in lung-cancer tissues and cells, and immunohistochemistry analysis revealed that Kpnβ1 was significantly associated with the clinicopathological features of NSCLC. Kaplan-Meier analysis showed that elevated Kpnβ1 expression correlated with a poor prognosis in NSCLC patients. Serum starvation-refeeding experiments and Kpnβ1-shRNA transfection assays revealed that elevated Kpnβ1 expression promoted cell proliferation and reduced sensitivity to cis-diamminedichloroplatinum. Immunoprecipitation assays showed that Kpnβ1 interacts with PI3 K to activate the PI3-kinase/AKT pathway, leading to enhanced cell survival and drug resistance in NSCLC cells. Collectively, our findings suggest that Kpnβ1 plays a significant role in NSCLC progression and chemoresistance. Our study provides new insights for targeted therapy to treat NSCLC.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Respiratory, Affiliated Hospital of Nantong University, Nantong, China
| | - Danping Wang
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chunsun Li
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Xingsong Zhang
- Department of Pathology, Affiliated Cancer Hospital of Nantong University, Nantong, China
| | - Xiaolin Zhou
- Department of Respiratory, The Second People's Hospital of NanTong, Nantong, China
| | - Jianan Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
29
|
Sheng C, Qiu J, He Z, Wang H, Wang Q, Guo Z, Zhu L, Ni Q. Suppression of Kpnβ1 expression inhibits human breast cancer cell proliferation by abrogating nuclear transport of Her2. Oncol Rep 2017; 39:554-564. [PMID: 29251332 PMCID: PMC5783623 DOI: 10.3892/or.2017.6151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/23/2017] [Indexed: 01/12/2023] Open
Abstract
Breast cancer (BC) is one of the most fatal diseases and poses critical health problems worldwide. However, its mechanisms remain unclear. Consequently, there is an urgency to investigate the mechanisms involved in BC initiation and progression and identify novel therapeutics for its prevention and treatment. In this study, we identified karyopherin β-1 (Kpnβ1) as a possible novel therapeutic target for BC. Western blotting was used to evaluate the expression of Kpnβ1 in four pairs of tumorous and adjacent non-tumorous tissues. The results revealed that the protein level of Kpnβ1 was higher in the cancer samples compared with those in the corresponding normal samples. Immunohistochemistry was performed on 140 BC cases and indicated that Kpnβ1 was significantly associated with clinical pathological variables. Kaplan-Meier curve revealed that high expression of Kpnβ1 was related to poor BC patient prognosis. A starvation and re-feeding assay was used to imitate the cell cycle using the SKBR-3 cell line, indicating that Kpnβ1 plays a critical role in cell proliferation. The Cell Counting Kit-8 assay revealed that SKBR-3 cells treated with Kpnβ1-siRNA (siKpnβ1) grew more slowly than the control cells, while flow cytometry revealed that low-Kpnβ1 expressing SKBR-3 cells exhibited increased BC cell apoptosis. Furthermore, the interaction between Kpnβ1 and Her2 was clearly observed by immunoprecipitation, indicating that Kpnβ1-knockdown abrogated nuclear transport of Her2. In summary, our findings revealed that Kpnβ1 is involved in the progression of BC and may be a useful therapeutic target.
Collapse
Affiliation(s)
- Chenyi Sheng
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jian Qiu
- Medical School of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhixian He
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hua Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zengya Guo
- Department of General Surgery, Tongzhou People's Hospital, Nantong, Jiangsu 226300, P.R. China
| | - Lianxin Zhu
- Department of Surgical Oncology, Lu'an People's Hospital Tumor Center, The Lu'an Affiliated Hospital of Anhui Medical University, Lu'an, Anhui 237000, P.R. China
| | - Qichao Ni
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
30
|
In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A 2017; 114:E7301-E7310. [PMID: 28811376 DOI: 10.1073/pnas.1705441114] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a deadly cancer, and its prognosis has not been changed significantly during several decades. To seek new therapeutic targets for EOC, we performed an in vivo dropout screen in human tumor xenografts using a pooled shRNA library targeting thousands of druggable genes. Then, in follow-up studies, we performed a second screen using a genome-wide CRISPR/Cas9 library. These screens identified 10 high-confidence drug targets that included well-known oncogenes such as ERBB2 and RAF1, and novel oncogenes, notably KPNB1, which we investigated further. Genetic and pharmacological inhibition showed that KPNB1 exerts its antitumor effects through multiphase cell cycle arrest and apoptosis induction. Mechanistically, proteomic studies revealed that KPNB1 acts as a master regulator of cell cycle-related proteins, including p21, p27, and APC/C. Clinically, EOC patients with higher expression levels of KPNB1 showed earlier recurrence and worse prognosis than those with lower expression levels of KPNB1. Interestingly, ivermectin, a Food and Drug Administration-approved antiparasitic drug, showed KPNB1-dependent antitumor effects on EOC, serving as an alternative therapeutic toward EOC patients through drug repositioning. Last, we found that the combination of ivermectin and paclitaxel produces a stronger antitumor effect on EOC both in vitro and in vivo than either drug alone. Our studies have thus identified a combinatorial therapy for EOC, in addition to a plethora of potential drug targets.
Collapse
|
31
|
Wang X, Lu X, Geng Z, Yang G, Shi Y. LncRNA PTCSC3/miR‐574‐5p Governs Cell Proliferation and Migration of Papillary Thyroid Carcinoma via Wnt/β‐Catenin Signaling. J Cell Biochem 2017; 118:4745-4752. [DOI: 10.1002/jcb.26142] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/16/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Xiaoming Wang
- Thyroid SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZheng ZhouChina
- Key Laboratory on Thyroid Tumor of ZhengzhouZhengzhouChina
| | - Xiubo Lu
- Thyroid SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZheng ZhouChina
- Key Laboratory on Thyroid Tumor of ZhengzhouZhengzhouChina
| | - Zushi Geng
- Thyroid SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZheng ZhouChina
- Key Laboratory on Thyroid Tumor of ZhengzhouZhengzhouChina
| | - Guoyu Yang
- Thyroid SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZheng ZhouChina
- Key Laboratory on Thyroid Tumor of ZhengzhouZhengzhouChina
| | - Yang Shi
- Thyroid SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZheng ZhouChina
- Key Laboratory on Thyroid Tumor of ZhengzhouZhengzhouChina
| |
Collapse
|
32
|
Lilley M, Farassati F. The role of KPNβ 1 in neuro-oncology. Onco Targets Ther 2017; 10:2067-2068. [PMID: 28435297 PMCID: PMC5391822 DOI: 10.2147/ott.s136247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Megan Lilley
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center.,School of Medicine, University of Missouri
| | - Faris Farassati
- Midwest Biomedical Research Foundation, Kansas City Veterans Affairs Medical Center.,Saint Luke's Cancer Institute-Saint Luke's Marion Bloch Neuroscience Institute, Kansas City, MO, USA
| |
Collapse
|
33
|
Song H, Zhang Y, Liu N, Zhao S, Kong Y, Yuan L. miR-92a-3p Exerts Various Effects in Glioma and Glioma Stem-Like Cells Specifically Targeting CDH1/β-Catenin and Notch-1/Akt Signaling Pathways. Int J Mol Sci 2016; 17:ijms17111799. [PMID: 27801803 PMCID: PMC5133800 DOI: 10.3390/ijms17111799] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in the regulation of tumor progression and stemness of cancer stem-like cells. Recently, miR-92a-3p was reported to be up-regulated in human glioma samples. Nevertheless, the precise role of miR-92a-3p in glioma cells and glioma stem-like cells (GSCs) has not been fully elucidated. It is necessary to clarify the function of miR-92a-3p in glioma and GSCs to develop novel therapeutic approaches for glioma patients. In the present study, we applied methyl-thiazolyl-tetrazolium (MTT) assay and Transwell assay to measure the proliferation rate and metastatic potential of glioma cells. Meanwhile, the self-renewal ability of GSCs was detected by tumor sphere formation assay. The results revealed that down-regulation of miR-92a-3p suppressed the glioma cell malignancy in vitro. Moreover, knockdown of miR-92a-3p led to a reduction of tumorgenesis in vivo. Interestingly, we also observed that up-regulation of miR-92a-3p could inhibit the stemness of GSCs. Subsequent mechanistic investigation indicated that cadherin 1 (CDH1)/β-catenin signaling and Notch-1/Akt signaling were the downstream pathways of miR-92a-3p in glioma cells and GSCs, respectively. These results suggest that miR-92a-3p plays different roles in glioma cells and GSCs through regulating different signaling pathways.
Collapse
Affiliation(s)
- Hang Song
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
| | - Yao Zhang
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
| | - Na Liu
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
| | - Sheng Zhao
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China.
| | - Yan Kong
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China.
| | - Liudi Yuan
- State Education Ministry's Key Laboratory of Developmental Genes and Human Diseases, Southeast University, No. 2 Sipailou Road, Nanjing 210096, China.
- Department of Biochemistry and Molecular Biology, Medical School of Southeast University, No. 87 Dingjiaqiao Road, Nanjing 210009, China.
| |
Collapse
|