1
|
Lee M, Lee M, Song Y, Kim S, Park N. Recent Advances and Prospects of Nucleic Acid Therapeutics for Anti-Cancer Therapy. Molecules 2024; 29:4737. [PMID: 39407665 PMCID: PMC11477775 DOI: 10.3390/molecules29194737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Nucleic acid therapeutics are promising alternatives to conventional anti-cancer therapy, such as chemotherapy and radiation therapy. While conventional therapies have limitations, such as high side effects, low specificity, and drug resistance, nucleic acid therapeutics work at the gene level to eliminate the cause of the disease. Nucleic acid therapeutics treat diseases in various forms and using different mechanisms, including plasmid DNA (pDNA), small interfering RNA (siRNA), anti-microRNA (anti-miR), microRNA mimics (miRNA mimic), messenger RNA (mRNA), aptamer, catalytic nucleic acid (CNA), and CRISPR cas9 guide RNA (gRNA). In addition, nucleic acids have many advantages as nanomaterials, such as high biocompatibility, design flexibility, low immunogenicity, small size, relatively low price, and easy functionalization. Nucleic acid therapeutics can have a high therapeutic effect by being used in combination with various nucleic acid nanostructures, inorganic nanoparticles, lipid nanoparticles (LNPs), etc. to overcome low physiological stability and cell internalization efficiency. The field of nucleic acid therapeutics has advanced remarkably in recent decades, and as more and more nucleic acid therapeutics have been approved, they have already demonstrated their potential to treat diseases, including cancer. This review paper introduces the current status and recent advances in nucleic acid therapy for anti-cancer treatment and discusses the tasks and prospects ahead.
Collapse
Affiliation(s)
- Minhyuk Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Minjae Lee
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Youngseo Song
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Nokyoung Park
- Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea
| |
Collapse
|
2
|
Ebrahimnia M, Alavi S, Vaezi H, Karamat Iradmousa M, Haeri A. Exploring the vast potentials and probable limitations of novel and nanostructured implantable drug delivery systems for cancer treatment. EXCLI JOURNAL 2024; 23:143-179. [PMID: 38487087 PMCID: PMC10938236 DOI: 10.17179/excli2023-6747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/08/2024] [Indexed: 03/17/2024]
Abstract
Conventional cancer chemotherapy regimens, albeit successful to some extent, suffer from some significant drawbacks, such as high-dose requirements, limited bioavailability, low therapeutic indices, emergence of multiple drug resistance, off-target distribution, and adverse effects. The main goal of developing implantable drug delivery systems (IDDS) is to address these challenges and maintain anti-cancer drugs directly at the intended sites of therapeutic action while minimizing inevitable side effects. IDDS possess numerous advantages over conventional drug delivery, including controlled drug release patterns, one-time drug administration, as well as loading and stabilizing poorly water-soluble chemotherapy drugs. Here, we summarized conventional and novel (three-dimensional (3D) printing and microfluidic) preparation techniques of different IDDS, including nanofibers, films, hydrogels, wafers, sponges, and osmotic pumps. These systems could be designed with high biocompatibility and biodegradability features using a wide variety of natural and synthetic polymers. We also reviewed the published data on these systems in cancer therapy with a particular focus on their release behavior. Various release profiles could be attained in IDDS, which enable predictable, adjustable, and sustained drug releases. Furthermore, multi-step or stimuli-responsive drug release could be obtained in these systems. The studies mentioned in this article have proven the effectiveness of IDDS for treating different cancer types with high prevalence, including breast cancer, and aggressive cancer types, such as glioblastoma and liver cancer. Additionally, the challenges in applying IDDS for efficacious cancer therapy and their potential future developments are also discussed. Considering the high potential of IDDS for further advancements, such as programmable release and degradation features, further clinical trials are needed to ensure their efficiency. The overall goal of this review is to expand our understanding of the behavior of commonly investigated IDDS and to identify the barriers that should be addressed in the pursuit of more efficient therapies for cancer. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Maryam Ebrahimnia
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sonia Alavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Hamed Vaezi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Karamat Iradmousa
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Yu Z, Guo J, Meng T, Ge L, Liu L, Wang H, Yang X. Bcl-xL DNAzymes promote radiosensitivity and chemosensitivity in colorectal cancer cells via enhancing apoptosis. BMC Pharmacol Toxicol 2022; 23:13. [PMID: 35123593 PMCID: PMC8817578 DOI: 10.1186/s40360-022-00553-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background RNA-cleaving deoxyribozymes (DNAzymes) are catalytic deoxyribonucleic acid molecules that have become a promising new class of gene suppressors by binding and cleaving target mRNA. This study investigated whether DNAzymes targeting Bcl-xL enhanced the effectiveness of radiotherapy and chemotherapy in colorectal cancer (CRC) cells. Methods Two types of CRC cells, SW480 and SW837, were transfected with five DNAzymes. Cell viability, Bcl-xL expression and apoptosis were examined. SW480 xenograft model was used to examine the combined effects of Bcl-xL DNAzymes and 5-FU (or X-rays) on tumor growth. Results Three Bcl-xL DNAzymes, DT882, DT883, and DT884 were identified to be effective in suppressing Bcl-xL expression and causing cell apoptosis. Furthermore, DT882 combined with 5-FU or radiotherapy addictively promoted cell apoptosis and significantly inhibited the growth of SW480 xenografts in vivo. Conclusions These results suggest that Bcl-xL DNAzymes can enhance the radiosensitivity and chemosensitivity in CRC cells via inducing apoptosis. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00553-x.
Collapse
|
4
|
Arifuzzaman M, Hartmann AK, Rouge JL. Tracking nucleic acid nanocapsule assembly, cellular uptake and disassembly using a novel fluorescently labeled surfactant. RSC Adv 2020; 10:42349-42353. [PMID: 35516765 PMCID: PMC9057995 DOI: 10.1039/d0ra09472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/04/2022] Open
Abstract
Intracellular trafficking and delivery of nucleic acids is an area of growing interest, particularly as it relates to therapeutic applications. Spectroscopic methods have been used to observe and quantitatively measure the delivery of oligonucleotides both in vitro and in vivo. Herein we demonstrate the use of a new fluorophore labeled surfactant presenting a solvatochromatic chromophore for tracking the assembly and degradation of a hybrid biomaterial we refer to as a nucleic acid nanocapsule (NAN). We show that the surfactant enables critical micelle concentration determination, monitoring of NAN disassembly in vitro, and the ability to track the cellular movement and activity of surfactant-oligonucleotide conjugates in cells when coupled with quantitative PCR analysis.
Collapse
Affiliation(s)
- Md Arifuzzaman
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| | - Alyssa K Hartmann
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| |
Collapse
|
5
|
Natural polyphenol assisted delivery of single-strand oligonucleotides by cationic polymers. Gene Ther 2020; 27:383-391. [PMID: 32366887 PMCID: PMC7445782 DOI: 10.1038/s41434-020-0151-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/24/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Single-strand oligonucleotides provide promising potential as new therapeutics towards various diseases. However, the efficient delivery of oligonucleotide therapeutics is still challenging due to their susceptibility to nuclease degradation and the lack of effective carriers for condensation. In this study, we reported the use of natural polyphenol to facilitate the condensation of single-strand oligonucleotides by cationic polymers. Green tea catechin complexed with single-strand oligonucleotides to form anionic nanoparticles, which were further coated by low molecular weight cationic polymers to increase their cell internalization. The resulting core-shell structured nanoparticles, so-called green nanoparticles (GNPs), showed improved cargo stability, and achieved high efficiency in the delivery of several types of single-strand oligonucleotides including antisense oligonucleotides, anti-miRNA, and DNAzyme. This study provides a facile strategy for the efficient delivery of single-strand oligonucleotides.
Collapse
|
6
|
Khachigian LM. Deoxyribozymes as Catalytic Nanotherapeutic Agents. Cancer Res 2019; 79:879-888. [DOI: 10.1158/0008-5472.can-18-2474] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
7
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Shi C, Ma Q, Ren M, Liang D, Yu Q, Luo J. Antitumorpharmacological mechanism of the oral liquid of Poriacocos polysaccharide. JOURNAL OF ETHNOPHARMACOLOGY 2017; 209:24-31. [PMID: 28684300 DOI: 10.1016/j.jep.2017.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/14/2017] [Accepted: 07/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The liquid oral formulation of Poria cocos polysaccharides is composed of polysaccharides of Lentinusedodes, Ganodermalucidum and Poria cocos(1:1:2), which are all fungi used in traditional Chinese medicine. Polysaccharides extracted from these fungi have been reported to exhibit an antitumor effect by modulating the immune system. AIM OF THE STUDY The present study aimed to clarify the antitumor mechanism of an orally administered liquid containing Poriacocos and to further provide clinical guidance. MATERIALS AND METHODS In this study, the effects of an orally administered liquid containing Poriacocos polysaccharides on the solid tumors formed from sarcoma 180 cells in mice were evaluated. The protein expression of Bcl-2, caspase-3, and caspase-9in the thymus, spleen and liver tissues in the mice was determined by Western blot analysis. In addition, hematoxylin-eosin(H&E)staining and immunohistochemistry were performed on thymus, spleen and liver tissue and the positive staining rate was calculated for the three protein expression. RESULTS The liquid oral formulation of Poriacocos polysaccharides reduced Bcl-2 protein levels and increased caspase-3 and -9 protein levels in sarcoma 180 cells. CONCLUSION The mechanism underlying the antitumor effects of the oral liquid formulation of Poriacocos polysaccharides involved inhibition of Bcl-2 expression and activation of caspase-9 expression in sarcoma 180 cells. Furthermore, the downstream caspase-3 promoter cascade was activated and cell apoptosis was activated in sarcoma 180 cells.
Collapse
Affiliation(s)
- Chunyu Shi
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Qinhai Ma
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Mengyue Ren
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Dedong Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Qingtian Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Jiabo Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|