1
|
Tse MCL, Pang BPS, Bi X, Ooi TX, Chan WS, Zhang J, Chan CB. Estrogen Regulates Mitochondrial Activity Through Inducing Brain-Derived Neurotrophic Factor Expression in Skeletal Muscle. J Cell Physiol 2025; 240:e31483. [PMID: 39530291 DOI: 10.1002/jcp.31483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Estrogen is an essential hormone for the development and functional activities of reproductive organs. Recent studies showed that estrogen signaling is also an important regulator of lipid and glucose metabolism in a number of tissues, but the molecular mechanism is not fully understood. We report here that estrogen is a stimulator of brain-derived neurotrophic factor (BDNF) synthesis in the skeletal muscle. Estradiol (E2), but not testosterone, induces a dose- and time-dependent BDNF production in cultured myotubes. Estrogen depletion in ovariectomized mice significantly reduced Bdnf expression in the glycolytic myofibers, which could be rescued after E2 administration. Mechanistically, E2 stimulation triggered the tethering of estrogen receptor (ER) α, but not ERβ, to the estrogen-responsive element on promoter VI of the Bdnf gene in skeletal muscle. When Bdnf production was inhibited by shRNA in C2C12 myotubes, E2-induced mitochondria activation and pyruvate dehydrogenase kinase 4 expressions were jeopardized. Collectively, our results demonstrate that BDNF is an underrecognized effector of estrogen in regulating mitochondrial activity and fuel metabolism in the skeletal muscle.
Collapse
Affiliation(s)
- Margaret Chui Ling Tse
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Teresa Xinci Ooi
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jiangwen Zhang
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
Kleis-Olsen AS, Farlov JE, Petersen EA, Schmücker M, Flensted-Jensen M, Blom I, Ingersen A, Hansen M, Helge JW, Dela F, Larsen S. Metabolic flexibility in postmenopausal women: Hormone replacement therapy is associated with higher mitochondrial content, respiratory capacity, and lower total fat mass. Acta Physiol (Oxf) 2024; 240:e14117. [PMID: 38404156 DOI: 10.1111/apha.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
AIM To investigate effects of hormone replacement therapy in postmenopausal women on factors associated with metabolic flexibility related to whole-body parameters including fat oxidation, resting energy expenditure, body composition and plasma concentrations of fatty acids, glucose, insulin, cortisol, and lipids, and for the mitochondrial level, including mitochondrial content, respiratory capacity, efficiency, and hydrogen peroxide emission. METHODS 22 postmenopausal women were included. 11 were undergoing estradiol and progestin treatment (HT), and 11 were matched non-treated controls (CONT). Peak oxygen consumption, maximal fat oxidation, glycated hemoglobin, body composition, and resting energy expenditure were measured. Blood samples were collected at rest and during 45 min of ergometer exercise (65% VO2peak). Muscle biopsies were obtained at rest and immediately post-exercise. Mitochondrial respiratory capacity, efficiency, and hydrogen peroxide emission in permeabilized fibers and isolated mitochondria were measured, and citrate synthase (CS) and 3-hydroxyacyl-CoA dehydrogenase (HAD) activity were assessed. RESULTS HT showed higher absolute mitochondrial respiratory capacity and post-exercise hydrogen peroxide emission in permeabilized fibers and higher CS and HAD activities. All respiration normalized to CS activity showed no significant group differences in permeabilized fibers or isolated mitochondria. There were no differences in resting energy expenditure, maximal, and resting fat oxidation or plasma markers. HT had significantly lower visceral and total fat mass compared to CONT. CONCLUSION Use of hormone therapy is associated with higher mitochondrial content and respiratory capacity and a lower visceral and total fat mass. Resting energy expenditure and fat oxidation did not differ between HT and CONT.
Collapse
Affiliation(s)
- A S Kleis-Olsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J E Farlov
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - E A Petersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Schmücker
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Flensted-Jensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - I Blom
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A Ingersen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M Hansen
- Department of Public Health, Section of Sport Science, Aarhus University, Aarhus N, Denmark
| | - J W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - F Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Geriatrics, Bispebjerg-Frederiksberg University Hospital, Copenhagen, Denmark
- Department of Human Physiology and Biochemistry, Riga Stradiņš University, Riga, Latvia
| | - S Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
3
|
Azuma K, Ikeda K, Shiba S, Sato W, Horie K, Hasegawa T, Amizuka N, Tanaka S, Inoue S. EBAG9-deficient mice display decreased bone mineral density with suppressed autophagy. iScience 2024; 27:108871. [PMID: 38313054 PMCID: PMC10835455 DOI: 10.1016/j.isci.2024.108871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 11/22/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Estrogen receptor-binding fragment associated antigen 9 (EBAG9) exerts tumor-promoting effects by inducing immune escape. We focused on the physiological functions of EBAG9 by investigating the bone phenotypes of Ebag9-knockout mice. Female Ebag9-knockout mice have fragile bones with lower bone mineral density (BMD) compared with wild-type mice. Histomorphometric analyses demonstrated that lower BMD was mainly caused by decreased bone formation. Serum bone turnover markers showed that enhanced bone resorption also contributed to this phenotype. We revealed that EBAG9 promoted autophagy in both osteoblastic and osteoclastic lineages. In addition, the knockdown of Tm9sf1, a gene encoding a protein that functionally interacts with EBAG9, suppressed autophagy and osteoblastic differentiation of the murine preosteoblastic cell line MC3T3-E1. Finally, overexpression of TM9SF1 rescued the suppression of autophagy caused by the silencing of Ebag9. These results suggest that EBAG9 plays a physiological role in bone maintenance by promoting autophagy together with its interactor TM9SF1.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Sachiko Shiba
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Wataru Sato
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Kuniko Horie
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586, Japan
| | - Shinya Tanaka
- Department of Orthopedic Surgery, Saitama Medical University, Moroyama, Saitama 350-0495, Japan
- Department of Orthopedic Surgery, Japan Community Health Care Organization Saitama Northern Medical Center, Saitama, Saitama 331-8625, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo 173-0015, Japan
- Division of Systems Medicine and Gene Therapy, Saitama Medical University, Hidaka, Saitama 350-1241, Japan
| |
Collapse
|
4
|
Hu Y, Fang B, Tian X, Wang H, Tian X, Yu F, Li T, Yang Z, Shi R. Passive exercise is an effective alternative to HRT for restoring OVX induced mitochondrial dysfunction in skeletal muscle. Front Endocrinol (Lausanne) 2024; 15:1356312. [PMID: 38356957 PMCID: PMC10864566 DOI: 10.3389/fendo.2024.1356312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Background Postmenopausal women are more prone to develop muscle weakness, which is strongly associated with impairment of mitochondrial function in skeletal muscle. This study aimed to examine the impact of a passive exercise modality, whole-body vibration training (WBVT), on muscle mitochondrial function in ovariectomized (OVX) mice, in comparison with 17β-estradiol (E2) replacement. Methods Female C57BL/6J mice were assigned to four groups: sham operation control group (Sham), ovariectomized group (OVX), OVX with E2 supplement group (OVX+E), and OVX with WBVT group (OVX+W). The estrous cycle, body weight, body composition, and muscle strength of the mice were monitored after the operation. Serum E2 level was assessed by enzyme-linked immunosorbent assay (ELISA). The ATP levels were determined using a luciferase-catalyzed bioluminescence assay. The activity of mitochondrial respiration chain complexes was evaluated using high-resolution respirometry (O2K). Expression levels of oxidative phosphorylation (OXPHOS), peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), and mitochondrial transcription factor A (TFAM) were detected using western blotting. Results We observed decreased muscle strength and impaired mitochondrial function in the skeletal muscle of OVX mice. The vibration training alleviated these impairments as much as the E2 supplement. In addition, the vibration training was superior to the ovariectomy and the estradiol replacement regarding the protein expression of PGC-1α and TFAM. Conclusion WBVT improves the OVX-induced decline in muscle strength and impairment of mitochondrial function in the skeletal muscle. This passive exercise strategy may be useful as an alternative to E2 replacement for preventing menopausal muscular weakness. Further studies are needed to understand the effects of WBVT on various physiological systems, and precautions should be taken when implementing it in patient treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhijie Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Rengfei Shi
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
5
|
You Z, Wang J, Li F, Hei W, Li M, Guo X, Gao P, Cao G, Cai C, Li B. Uncoupling Protein 3 Promotes the Myogenic Differentiation of Type IIb Myotubes in C2C12 Cells. Genes (Basel) 2023; 14:2049. [PMID: 38002992 PMCID: PMC10671304 DOI: 10.3390/genes14112049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Uncoupling protein 3 (Ucp3) is an important transporter within mitochondria and is mainly expressed in skeletal muscle, brown adipose tissue and the myocardium. However, the effects of Ucp3 on myogenic differentiation are still unclear. This study evaluated the effects of Ucp3 on myogenic differentiation, myofiber type and energy metabolism in C2C12 cells. Gain- and loss-of-function studies revealed that Ucp3 could increase the number of myotubes and promote the myogenic differentiation of C2C12 cells. Furthermore, Ucp3 promoted the expression of the type IIb myofiber marker gene myosin heavy chain 4 (Myh4) and decreased the expression of the type I myofiber marker gene myosin heavy chain 7 (Myh7). In addition, energy metabolism related to the expression of PPARG coactivator 1 alpha (Pgc1-α), ATP synthase, H+ transportation, mitochondrial F1 complex, alpha subunit 1 (Atp5a1), lactate dehydrogenase A (Ldha) and lactate dehydrogenase B (Ldhb) increased with Ucp3 overexpression. Ucp3 could promote the myogenic differentiation of type IIb myotubes and accelerate energy metabolism in C2C12 cells. This study can provide the theoretical basis for understanding the role of Ucp3 in energy metabolism.
Collapse
Affiliation(s)
- Ziwei You
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Jieyu Wang
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Faliang Li
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Wei Hei
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, 1 Mingxian Nanlu, Jinzhong 030801, China; (Z.Y.); (J.W.); (F.L.); (W.H.); (M.L.); (X.G.); (P.G.); (G.C.)
| |
Collapse
|
6
|
Liang S, Liu D, Xiao Z, Greenbaum J, Shen H, Xiao H, Deng H. Repurposing Approved Drugs for Sarcopenia Based on Transcriptomics Data in Humans. Pharmaceuticals (Basel) 2023; 16:ph16040607. [PMID: 37111364 PMCID: PMC10145476 DOI: 10.3390/ph16040607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Sarcopenia, characterized by age-related loss of muscle mass, strength, and decreased physical performance, is a growing public health challenge amid the rapidly ageing population. As there are no approved drugs that target sarcopenia, it has become increasingly urgent to identify promising pharmacological interventions. In this study, we conducted an integrative drug repurposing analysis utilizing three distinct approaches. Firstly, we analyzed skeletal muscle transcriptomic sequencing data in humans and mice using gene differential expression analysis, weighted gene co-expression analysis, and gene set enrichment analysis. Subsequently, we employed gene expression profile similarity assessment, hub gene expression reversal, and disease-related pathway enrichment to identify and repurpose candidate drugs, followed by the integration of findings with rank aggregation algorithms. Vorinostat, the top-ranking drug, was also validated in an in vitro study, which demonstrated its efficacy in promoting muscle fiber formation. Although still requiring further validation in animal models and human clinical trials, these results suggest a promising drug repurposing prospect in the treatment and prevention of sarcopenia.
Collapse
Affiliation(s)
- Shuang Liang
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Danyang Liu
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences, Hunan Normal University, Changsha 410013, China
| | - Zhengwu Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| | - Hongmei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 999039, USA
| |
Collapse
|
7
|
Roles of Estrogen, Estrogen Receptors, and Estrogen-Related Receptors in Skeletal Muscle: Regulation of Mitochondrial Function. Int J Mol Sci 2023; 24:ijms24031853. [PMID: 36768177 PMCID: PMC9916347 DOI: 10.3390/ijms24031853] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Estrogen is an essential sex steroid hormone that functions primarily in female reproductive system, as well as in a variety of tissues and organs with pleiotropic effects, such as in cardiovascular, nervous, immune, and musculoskeletal systems. Women with low estrogen, as exemplified by those in postmenopause, are therefore prone to suffer from various disorders, i.e., cardiovascular disease, dementia, metabolic syndrome, osteoporosis, sarcopenia, frailty, and so on. Estrogen regulates the expression of its target genes by binding to its cognate receptors, estrogen receptors (ERs) α and β. Notably, the estrogen-related receptors (ERRs) α, β, and γ are originally identified as orphan receptors that share substantial structural homology and common transcriptional targets with ERs. Accumulating evidence suggests that ERs and ERRs play crucial roles in skeletal muscles, such as muscle mass maintenance, muscle exercise physiology, and muscle regeneration. In this article, we review potential regulatory roles of ERs and ERRs in muscle physiology, particularly with regard to mitochondrial function and metabolism.
Collapse
|
8
|
Shu H, Huang Y, Zhang W, Ling L, Hua Y, Xiong Z. An integrated study of hormone-related sarcopenia for modeling and comparative transcriptome in rats. Front Endocrinol (Lausanne) 2023; 14:1073587. [PMID: 36817606 PMCID: PMC9929355 DOI: 10.3389/fendo.2023.1073587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
Sarcopenia is a senile disease with high morbidity, serious complications and limited clinical treatments. Menopause increases the risk of sarcopenia in females, while the exact pathogenesis remains unclear. To systematically investigate the development of hormone-related sarcopenia, we established a model of sarcopenia by ovariectomy and recorded successive characteristic changes. Furthermore, we performed the transcriptome RNA sequencing and bioinformatics analysis on this model to explore the underlying mechanism. In our study, we identified an integrated model combining obesity, osteoporosis and sarcopenia. Functional enrichment analyses showed that most of the significantly enriched pathways were down-regulated and closely correlated with endocrine and metabolism, muscle dysfunction, cognitive impairment and multiple important signaling pathways. We finally selected eight candidate genes to verify their expression levels. These findings confirmed the importance of estrogen in the maintenance of skeletal muscle function and homeostasis, and provided potential targets for further study on hormone-related sarcopenia.
Collapse
Affiliation(s)
- Han Shu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yubing Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqian Zhang
- Department of Nuclear Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Ling
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Hua
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengai Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Zhengai Xiong,
| |
Collapse
|
9
|
Guajardo-Correa E, Silva-Agüero JF, Calle X, Chiong M, Henríquez M, García-Rivas G, Latorre M, Parra V. Estrogen signaling as a bridge between the nucleus and mitochondria in cardiovascular diseases. Front Cell Dev Biol 2022; 10:968373. [PMID: 36187489 PMCID: PMC9516331 DOI: 10.3389/fcell.2022.968373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide. Epidemiological studies indicate that pre-menopausal women are more protected against the development of CVDs compared to men of the same age. This effect is attributed to the action/effects of sex steroid hormones on the cardiovascular system. In this context, estrogen modulates cardiovascular function in physiological and pathological conditions, being one of the main physiological cardioprotective agents. Here we describe the common pathways and mechanisms by which estrogens modulate the retrograde and anterograde communication between the nucleus and mitochondria, highlighting the role of genomic and non-genomic pathways mediated by estrogen receptors. Additionally, we discuss the presumable role of bromodomain-containing protein 4 (BRD4) in enhancing mitochondrial biogenesis and function in different CVD models and how this protein could act as a master regulator of estrogen protective activity. Altogether, this review focuses on estrogenic control in gene expression and molecular pathways, how this activity governs nucleus-mitochondria communication, and its projection for a future generation of strategies in CVDs treatment.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Juan Francisco Silva-Agüero
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Ximena Calle
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
- Center of Applied Nanoscience (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Mario Chiong
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| | - Gerardo García-Rivas
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
- Tecnológico de Monterrey, The Institute for Obesity Research, Hospital Zambrano Hellion, San Pedro Garza Garcia, Nuevo León, Mexico
| | - Mauricio Latorre
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua, Chile
- Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center of Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas y Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Red para el Estudio de Enfermedades Cardiopulmonares de Alta Letalidad (REECPAL), Universidad de Chile, Santiago, Chile
| |
Collapse
|
10
|
Yoh K, Ikeda K, Nagai S, Horie K, Takeda S, Inoue S. Constitutive activation of estrogen receptor α signaling in muscle prolongs exercise endurance in mice. Biochem Biophys Res Commun 2022; 628:11-17. [DOI: 10.1016/j.bbrc.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
|
11
|
Mechanisms of Estrogen Influence on Skeletal Muscle: Mass, Regeneration, and Mitochondrial Function. Sports Med 2022; 52:2853-2869. [PMID: 35907119 DOI: 10.1007/s40279-022-01733-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 10/16/2022]
Abstract
Human menopause is widely associated with impaired skeletal muscle quality and significant metabolic dysfunction. These observations pose significant challenges to the quality of life and mobility of the aging population, and are of relevance when considering the significantly greater losses in muscle mass and force-generating capacity of muscle from post-menopausal females relative to age-matched males. In this regard, the influence of estrogen on skeletal muscle has become evident across human, animal, and cell-based studies. Beneficial effects of estrogen have become apparent in mitigation of muscle injury and enhanced post-damage repair via various mechanisms, including prophylactic effects on muscle satellite cell number and function, as well as membrane stability and potential antioxidant influences following injury, exercise, and/or mitochondrial stress. In addition to estrogen replacement in otherwise deficient states, exercise has been found to serve as a means of augmenting and/or mimicking the effects of estrogen on skeletal muscle function in recent literature. Detailed mechanisms behind the estrogenic effect on muscle mass, strength, as well as the injury response are beginning to be elucidated and point to estrogen-mediated molecular cross talk amongst signalling pathways, such as apoptotic signaling, contractile protein modifications, including myosin regulatory light chain phosphorylation, and the maintenance of muscle satellite cells. This review discusses current understandings and highlights new insights regarding the role of estrogen in skeletal muscle, with particular regard to muscle mass, mitochondrial function, the response to muscle damage, and the potential implications for human physiology and mobility.
Collapse
|
12
|
Giersch G, Garcia C, Stachenfeld N, Charkoudian N. Are there sex differences in risk for exertional heat stroke? A translational approach. Exp Physiol 2022; 107:1136-1143. [PMID: 35598159 DOI: 10.1113/ep090402] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/11/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review discusses the current status of the literature in sex differences in exertional heat stroke. What advances does this review highlight? We utilize a translational model to explore possible physical and physiological differences with respect risk and treatment of exertional heat stroke. ABSTRACT Exertional heat stroke (EHS) is a potentially fatal condition brought about by a combination of physical activity and heat stress and resulting in central nervous system dysfunction and organ damage. EHS impacts several hundred individuals each year ranging from military personnel, athletes, to occupational workers. Understanding the pathophysiology and risk factors can aid in reducing EHS across the globe. While we know there are differences between sexes in mechanisms of thermoregulation, there is currently not a clear understanding if/how those differences impact EHS risk. The purpose of this review is to assess the current status of the literature surrounding EHS from risk factors to treatment using both animal and human models. We use a translational approach, considering both animal and human research to elucidate the possible influence of female sex hormones on temperature regulation and performance in the heat and highlight the specific areas with limited research. While more work is necessary to comprehensively understand these differences, the current research presented provides a good framework for future investigations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gabrielle Giersch
- Thermal and Mountain Medicine Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA.,Oak Ridge Institute for Science and Education, Belcamp, MD, USA
| | - Christian Garcia
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Nina Stachenfeld
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, U.S. Army Research Institute for Environmental Medicine, Natick, MA, USA
| |
Collapse
|
13
|
Cho EJ, Choi Y, Jung SJ, Kwak HB. Role of exercise in estrogen deficiency-induced sarcopenia. J Exerc Rehabil 2022; 18:2-9. [PMID: 35356136 PMCID: PMC8934617 DOI: 10.12965/jer.2244004.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 11/22/2022] Open
Abstract
A decline in estrogen levels during menopause is associated with the loss of muscle mass and function, and it can accelerate sarcopenia. However, with the growing number of postmenopausal women due to the increase in life expectancy, the effects of estrogen on skeletal muscle are not completely understood. This article reviews the relationship between estrogen deficiency and skeletal muscle, its potential mechanisms, including those involving mitochondria, and the effects of exercise on estrogen deficiency-induced skeletal muscle impairment. In particular, mitochondrial dysfunction induced by estrogen deficiency accelerates sarcopenia via mitochondrial dynamics, mitophagy, and mitochondrial-mediated apoptosis. It is well known that exercise training is essential for health, including for the improvement of sarcopenia. This review highlights the importance of exercise training (aerobic and resistance exercise) as a therapeutic intervention against estrogen deficiency-induced sarcopenia.
Collapse
Affiliation(s)
- Eun-Jeong Cho
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon,
Korea
| | - Youngju Choi
- Institute of Sports & Arts Convergence, Inha University, Incheon,
Korea
| | - Su-Jeen Jung
- Department of Leisure Sports, Seoil University, Seoul,
Korea
| | - Hyo-Bum Kwak
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Inha University, Incheon,
Korea
- Institute of Sports & Arts Convergence, Inha University, Incheon,
Korea
- Corresponding author: Hyo-Bum Kwak, Department of Biomedical Science, Program in Biomedical Science and Engineering Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea,
| |
Collapse
|
14
|
Aburahma A, Pachhain S, Choudhury SR, Rana S, Phuntumart V, Larsen R, Sprague JE. Potential Contribution of the Intestinal Microbiome to Phenethylamine-Induced Hyperthermia. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:256-271. [PMID: 33472193 DOI: 10.1159/000512098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
Phenethylamines (e.g., methamphetamine) are a common source of drug toxicity. Phenethylamine-induced hyperthermia (PIH) can activate a cascade of events that may result in rhabdomyolysis, coagulopathy, and even death. Here, we review recent evidence that suggests a potential link between the gut-brain axis and PIH. Within the preoptic area of the hypothalamus, phenethylamines lead to changes in catecholamine levels, that activate the sympathetic nervous system (SNS) and increase the peripheral levels of norepinephrine (NE), resulting in: (1) the loss of heat dissipation through α1 adrenergic receptor (α1-AR)-mediated vasoconstriction, (2) heat generation through β-AR activation and subsequent free fatty acid (FFA) activation of uncoupling proteins (UCPs) in brown and white adipose tissue, and (3) alteration of the gut microbiome and its link to the gut-brain axis. Recent studies have shown that phenethylamine derivatives can influence the composition of the gut microbiome and thus its metabolic potential. Phenethylamines increase the relative level of Proteuswhich has been linked to enhanced NE turnover. Bidirectional fecal microbial transplants (FMT) between PIH-tolerant and PIH-naïve rats demonstrated that the transplantation of gut microbiome can confer phenotypic hyperthermic and tolerant responses to phenethylamines. These phenethylamine-mediated changes in the gut microbiome were also associated with epigenetic changes in the mediators of thermogenesis. Given the significant role that the microbiome has been shown to play in the maintenance of body temperature, we outline current studies demonstrating the effects of phenethylamines on the gut microbiome and how these microbiome changes may mechanistically contribute to alterations in body temperature.
Collapse
Affiliation(s)
- Amal Aburahma
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sudhan Pachhain
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Sayantan Roy Choudhury
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Srishti Rana
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Vipa Phuntumart
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Ray Larsen
- The Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, USA
| | - Jon E Sprague
- The Ohio Attorney General's Center for the Future of Forensic Science, Bowling Green State University, Bowling Green, Ohio, USA,
| |
Collapse
|
15
|
Chaiyasing R, Sugiura A, Ishikawa T, Ojima K, Warita K, Hosaka YZ. Estrogen modulates the skeletal muscle regeneration process and myotube morphogenesis: morphological analysis in mice with a low estrogen status. J Vet Med Sci 2021; 83:1812-1819. [PMID: 34670921 PMCID: PMC8762410 DOI: 10.1292/jvms.21-0495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to elucidate the functions of estrogen and two estrogen receptors (ERs; ERα and ERβ) in the myoregeneration process and morphogenesis. Cardiotoxin (CTX) was injected into the tibialis anterior (TA) muscles of ovariectomized (OVX) mice to induce muscle injury, and subsequent myoregeneration was morphologically assessed. The diameter of regenerated myotubes in OVX mice was significantly smaller than that in intact mice at all time points of measurement. OVX mice also showed lower muscle recovery rates and slower speeds than did intact mice. ER protein levels showed a predominance of ERβ over ERα in both intact and OVX states. The ERβ level was increased significantly at 7 days after CTX injection in OVX mice and remained at a high level until 14 days. In addition, continuous administration of E2 to OVX mice in which muscle injury was induced resulted in a significantly larger diameter of regenerated myotubes than that in mice that did not receive estrogen. The results indicate that estrogen is an essential factor in the myoregeneration process since estrogen depletion delayed myoregeneration in injured muscles and administration of estrogen under the condition of a low estrogen status rescued delayed myoregeneration. The results strongly suggested that ERβ may be a factor that promotes myoregeneration more than does ERα.
Collapse
Affiliation(s)
- Rattanatrai Chaiyasing
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University.,Faculty of Veterinary Sciences, Maha Sarakham University
| | - Akihiro Sugiura
- Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| | - Takuro Ishikawa
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University
| | - Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, Institute of Livestock and Grassland Science, NARO
| | - Katsuhiko Warita
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| | - Yoshinao Z Hosaka
- Laboratory of Basic Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University.,Department of Veterinary Anatomy, Faculty of Agriculture, Tottori University
| |
Collapse
|
16
|
Jodeiri Farshbaf M, Alviña K. Multiple Roles in Neuroprotection for the Exercise Derived Myokine Irisin. Front Aging Neurosci 2021; 13:649929. [PMID: 33935687 PMCID: PMC8086837 DOI: 10.3389/fnagi.2021.649929] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Exercise has multiple beneficial effects on health including decreasing the risk of neurodegenerative diseases. Such effects are thought to be mediated (at least in part) by myokines, a collection of cytokines and other small proteins released from skeletal muscles. As an endocrine organ, skeletal muscle synthesizes and secretes a wide range of myokines which contribute to different functions in different organs, including the brain. One such myokine is the recently discovered protein Irisin, which is secreted into circulation from skeletal muscle during exercise from its membrane bound precursor Fibronectin type III domain-containing protein 5 (FNDC5). Irisin contributes to metabolic processes such as glucose homeostasis and browning of white adipose tissue. Irisin also crosses the blood brain barrier and initiates a neuroprotective genetic program in the hippocampus that culminates with increased expression of brain derived neurotrophic factor (BDNF). Furthermore, exercise and FNDC5/Irisin have been shown to have several neuroprotective effects against injuries in ischemia and neurodegenerative disease models, including Alzheimer's disease. In addition, Irisin has anxiolytic and antidepressant effects. In this review we present and summarize recent findings on the multiple effects of Irisin on neural function, including signaling pathways and mechanisms involved. We also discuss how exercise can positively influence brain function and mental health via the "skeletal muscle-brain axis." While there are still many unanswered questions, we put forward the idea that Irisin is a potentially essential mediator of the skeletal muscle-brain crosstalk.
Collapse
Affiliation(s)
| | - Karina Alviña
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.,Department of Neuroscience, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Chen YM, Wang IL, Zhu XY, Chiu WC, Chiu YS. Red Clover Isoflavones Influence Estradiol Concentration, Exercise Performance, and Gut Microbiota in Female Mice. Front Nutr 2021; 8:623698. [PMID: 33937304 PMCID: PMC8079722 DOI: 10.3389/fnut.2021.623698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
In red clover (Trifolium pratense L.; RC) the main compound is isoflavones, which are selective estrogen receptor modulators for maintaining female health. Isoflavones exert antifatigue effects during exercise in high-temperature environments. This study aimed to investigate the effect of RC supplementation on gut microbiota composition to determine whether it improves intestinal barrier function and exercise performance. Female ICR mice were divided into four groups (n = 8 per group) and orally administered RC once daily for 6 weeks at 0 (vehicle), 308 (RC-1X), 615 (RC-2X), and 1,538 (RC-5X) mg/kg. RC supplementation decreased the fat mass and increased exhaustive swimming time, grip strength, and muscle glycogen in female mice. In the RC supplementation group, serum levels of lactate, ammonia, and creatine kinase decreased after swimming. The estradiol and progesterone levels were higher in the RC group than in the vehicle group. Regarding gut microbiota composition, the RC-2X group may increase intestinal health related to the microorganisms Pseudobutyrivibrio and Parabacteroide. Thus, the use of RC supplements as nutraceuticals could have positive effects on athletes' gut and overall health.
Collapse
Affiliation(s)
- Yi-Ming Chen
- The College of Physical Education, Hubei Normal University, Huangshi, China
| | - I-Lin Wang
- The College of Physical Education, Hubei Normal University, Huangshi, China
| | - Xin-Yi Zhu
- Graduate Institute, Jilin Sport University, Changchun, China
| | - Wan-Chun Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Yen-Shuo Chiu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
18
|
Abstract
Sarcopenia describes low muscle mass and strength associated with ageing, whilst reduced physical performance indicates the severity of the condition. It can happen independently of other medical conditions and can be a key feature of the frailty phenotype. Frailty is a syndrome of increased vulnerability to incomplete resolution of homeostasis, following a stressor event. Researchers have described the implications of hypothalamic pituitary dysregulation in the pathogenesis of both entities. This review summarizes the recent evidence in this area as well as other endocrine factors such as insulin resistance and vitamin D status and outlines current research priorities. We conducted searches to PubMed and Embase databases for articles, reviews and studies reporting new data on the interaction between hormones of the endocrine system and frailty and/ or sarcopenia in the last 5 years. Interventional studies, cohort studies, case-control studies and animal studies were included. Clinical trials register was also searched to identify ongoing relevant studies. Studies have given us insights into the complex relationships between factors such as anabolic hormones, glucocorticoids and vitamin D on muscle strength and performance and their involvement in ageing phenotypes. However, robust randomized controlled trials are needed to consolidate existing evidence in humans and inform clinical practice. Current evidence supports hormone replacement in patients with confirmed deficiencies, to optimize health and prevent complications. Hormone replacement has limited use for age-related conditions. Current interest is focused on muscle/bone/fat interactions and health outcomes in "sarcopenic obesity." A life-course approach to improving 'health-span' is advocated. Lifestyle factors such as nutrition and physical activity have important interactions with body composition, physical function and metabolic outcomes. Large-scale clinical trials will determine the efficacy and long-term safety of hormone supplementation in the management of sarcopenia and frailty.
Collapse
Affiliation(s)
- Vicky Kamwa
- Musculoskeletal Endocrinology Research Group, Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK - .,Academic Metabolic Bone Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK - .,Institute of Inflammation and Ageing, The University of Birmingham, Birmingham, UK -
| | - Carly Welch
- Institute of Inflammation and Ageing, The University of Birmingham, Birmingham, UK
| | - Zaki K Hassan-Smith
- Musculoskeletal Endocrinology Research Group, Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,Academic Metabolic Bone Unit, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
19
|
Mechanisms Underlying the Regulation of Mitochondrial Respiratory Chain Complexes by Nuclear Steroid Receptors. Int J Mol Sci 2020; 21:ijms21186683. [PMID: 32932692 PMCID: PMC7555717 DOI: 10.3390/ijms21186683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial respiratory chain complexes play important roles in energy production via oxidative phosphorylation (OXPHOS) to drive various biochemical processes in eukaryotic cells. These processes require coordination with other cell organelles, especially the nucleus. Factors encoded by both nuclear and mitochondrial DNA are involved in the formation of active respiratory chain complexes and 'supercomplexes', the higher-order structures comprising several respiratory chain complexes. Various nuclear hormone receptors are involved in the regulation of OXPHOS-related genes. In this article, we review the roles of nuclear steroid receptors (NR3 class nuclear receptors), including estrogen receptors (ERs), estrogen-related receptors (ERRs), glucocorticoid receptors (GRs), mineralocorticoid receptors (MRs), progesterone receptors (PRs), and androgen receptors (ARs), in the regulatory mechanisms of mitochondrial respiratory chain complex and supercomplex formation.
Collapse
|
20
|
Tobiansky DJ, Fuxjager MJ. Sex Steroids as Regulators of Gestural Communication. Endocrinology 2020; 161:5822602. [PMID: 32307535 PMCID: PMC7316366 DOI: 10.1210/endocr/bqaa064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022]
Abstract
Gestural communication is ubiquitous throughout the animal kingdom, occurring in species that range from humans to arthropods. Individuals produce gestural signals when their nervous system triggers the production of limb and body movement, which in turn functions to help mediate communication between or among individuals. Like many stereotyped motor patterns, the probability of a gestural display in a given social context can be modulated by sex steroid hormones. Here, we review how steroid hormones mediate the neural mechanisms that underly gestural communication in humans and nonhumans alike. This is a growing area of research, and thus we explore how sex steroids mediate brain areas involved in language production, social behavior, and motor performance. We also examine the way that sex steroids can regulate behavioral output by acting in the periphery via skeletal muscle. Altogether, we outline a new avenue of behavioral endocrinology research that aims to uncover the hormonal basis for one of the most common modes of communication among animals on Earth.
Collapse
Affiliation(s)
- Daniel J Tobiansky
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
- Correspondence: Daniel J. Tobiansky, Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912.
| | - Matthew J Fuxjager
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island
| |
Collapse
|
21
|
A proprotein convertase subtilisin/kexin type 9 inhibitor provides comparable efficacy with lower detriment than statins on mitochondria of oxidative muscle of obese estrogen-deprived rats. ACTA ACUST UNITED AC 2020; 27:1155-1166. [PMID: 32576799 DOI: 10.1097/gme.0000000000001586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of the study was to compare the effects of atorvastatin, a proprotein convertase subtilisin/kexin type 9 inhibitor (PCSK9i), and 17β-estradiol on oxidative muscle mitochondria in a model of menopause with obesity. METHODS Female Wistar rats consumed either a standard diet (n = 12) or a high-fat/calorie diet (HFCD: n = 60). At week 13, standard diet-fed rats underwent a sham operation, whereas HFCD-fed rats underwent either a sham operation (n = 12) or an ovariectomy (n = 48). At week 19, all sham-operated rats received vehicle, and ovariectomized HFCD-fed rats received either vehicle, 40 mg/kg/d of atorvastatin, 4 mg/kg/d of PCSK9i (SBC-115076), or 50 μg/kg/d of 17β-estradiol for 3 weeks (n = 12/group). Metabolic parameters and soleus muscle physiology were investigated at the end of week 21. RESULTS Sham-operated and ovariectomized HFCD-fed rats developed obesity, hyperlipidemia, and insulin resistance, also showing increased oxidative phosphorylation (OXPHOS) proteins, ratio of p-Drp1-to-total Drp1 protein, malondialdehyde level, mitochondrial reactive oxygen species, and mitochondrial membrane depolarization in soleus muscle. All drugs equally decreased insulin resistance, OXPHOS proteins, ratio of p-Drp1-to-total Drp1 protein, and malondialdehyde level in soleus muscle. Only atorvastatin and PCSK9i attenuated hypertriglyceridemia, whereas 17β-estradiol had greater efficacy in preventing weight gain than the other two drugs. In addition, 17β-estradiol decreased mitochondrial reactive oxygen species and mitochondrial membrane depolarization. Atorvastatin increased ratio of cleaved caspase 3,8-to-procaspase 3,8, and cytochrome C. CONCLUSIONS 17β-Estradiol exhibits the greatest efficacy on the attenuation of obesity with the least harmful effect on skeletal muscle in a model of menopause with obesity, yet its effect on the treatment of hyperlipidemia is inferior to those of standard lipid-lowering agents.
Collapse
|
22
|
Gevaert AB, Adams V, Bahls M, Bowen TS, Cornelissen V, Dörr M, Hansen D, Kemps HM, Leeson P, Van Craenenbroeck EM, Kränkel N. Towards a personalised approach in exercise-based cardiovascular rehabilitation: How can translational research help? A 'call to action' from the Section on Secondary Prevention and Cardiac Rehabilitation of the European Association of Preventive Cardiology. Eur J Prev Cardiol 2019; 27:1369-1385. [PMID: 31581819 DOI: 10.1177/2047487319877716] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The benefit of regular physical activity and exercise training for the prevention of cardiovascular and metabolic diseases is undisputed. Many molecular mechanisms mediating exercise effects have been deciphered. Personalised exercise prescription can help patients in achieving their individual greatest benefit from an exercise-based cardiovascular rehabilitation programme. Yet, we still struggle to provide truly personalised exercise prescriptions to our patients. In this position paper, we address novel basic and translational research concepts that can help us understand the principles underlying the inter-individual differences in the response to exercise, and identify early on who would most likely benefit from which exercise intervention. This includes hereditary, non-hereditary and sex-specific concepts. Recent insights have helped us to take on a more holistic view, integrating exercise-mediated molecular mechanisms with those influenced by metabolism and immunity. Unfortunately, while the outline is recognisable, many details are still lacking to turn the understanding of a concept into a roadmap ready to be used in clinical routine. This position paper therefore also investigates perspectives on how the advent of 'big data' and the use of animal models could help unravel inter-individual responses to exercise parameters and thus influence hypothesis-building for translational research in exercise-based cardiovascular rehabilitation.
Collapse
Affiliation(s)
- Andreas B Gevaert
- GENCOR Department, University of Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Belgium.,Heart Centre Hasselt, Jessa Hospital, Belgium
| | - Volker Adams
- Department of Molecular and Experimental Cardiology, TU Dresden, Germany
| | - Martin Bahls
- Department of Internal Medicine B, University of Greifswald, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - T Scott Bowen
- School of Biomedical Sciences, University of Leeds, UK
| | | | - Marcus Dörr
- Department of Internal Medicine B, University of Greifswald, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Greifswald, Germany
| | - Dominique Hansen
- Heart Centre Hasselt, Jessa Hospital, Belgium.,Faculty of Rehabilitation Sciences, Hasselt University, Belgium
| | - Hareld Mc Kemps
- Fitheid, Leefstijl, Ontwikkeling en Wetenschap (FLOW), Máxima Medical Centre, The Netherlands
| | - Paul Leeson
- Oxford Cardiovascular Clinical Research Facility, University of Oxford, UK
| | - Emeline M Van Craenenbroeck
- GENCOR Department, University of Antwerp, Belgium.,Department of Cardiology, Antwerp University Hospital (UZA), Belgium
| | - Nicolle Kränkel
- Department of Cardiology, Charité Universitätsmedizin, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Berlin, Germany
| |
Collapse
|
23
|
Li X, Fan L, Zhu M, Jiang H, Bai W, Kang J. Combined intervention of 17β-estradiol and treadmill training ameliorates energy metabolism in skeletal muscle of female ovariectomized mice. Climacteric 2019; 23:192-200. [DOI: 10.1080/13697137.2019.1660639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- X. Li
- Department of Obstetrics and Gynecology, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - L. Fan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - M. Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - H. Jiang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - W. Bai
- Department of Obstetrics and Gynecology, Peking University Ninth School of Clinical Medicine, Beijing, China
| | - J. Kang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
24
|
Ikeda K, Horie-Inoue K, Inoue S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J Steroid Biochem Mol Biol 2019; 191:105375. [PMID: 31067490 DOI: 10.1016/j.jsbmb.2019.105375] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/03/2019] [Indexed: 12/23/2022]
Abstract
Activity of estrogen, a sex steroid hormone, is not only limited to the reproductive organs but also involves other organs and tissues, including skeletal muscle. In postmenopausal women, estrogen decline causes endocrine and metabolic dysfunction, leading to a predisposition to osteoporosis, metabolic syndrome, and decreased muscle mass and strength. The decline in skeletal muscle mass often associates with sarcopenia, a popular condition observed in fragile elder people. In addition, varying estrogen levels associated with the menstrual phases may modulate exercise performance in women. Estrogen is thus considered to play a crucial role in skeletal muscle homeostasis and exercise capacity, although its precise mechanisms remain to be elucidated. In this article, we review the role of estrogen in the skeletal muscle, outlining the proposed molecular mechanisms. We especially focus on the current understanding of estrogen actions on mitochondria metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan; Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| |
Collapse
|
25
|
Azuma K, Inoue S. Multiple Modes of Vitamin K Actions in Aging-Related Musculoskeletal Disorders. Int J Mol Sci 2019; 20:E2844. [PMID: 31212662 PMCID: PMC6600274 DOI: 10.3390/ijms20112844] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/01/2019] [Accepted: 06/07/2019] [Indexed: 01/14/2023] Open
Abstract
Vitamin K is a fat-soluble vitamin that was originally found as an essential factor for blood coagulation. With the discovery of its role as a co-factor for γ-glutamyl carboxylase (GGCX), its function for blood coagulation was understood as the activation of several blood coagulation factors by their γ-carboxylation. Over the last two decades, other modes of vitamin K actions have been discovered, such as the regulation of transcription by activating the steroid and xenobiotic receptor (SXR), physical association to 17β-Hydroxysteroid dehydrogenase type 4 (17β-HSD4), covalent modification of Bcl-2 antagonist killer 1 (Bak), and the modulation of protein kinase A (PKA) activity. In addition, several epidemiological studies have revealed that vitamin K status is associated with some aging-related diseases including osteoporosis, osteoarthritis, and sarcopenia. Clinical studies on single nucleotide polymorphisms of GGCX suggested an association between higher GGCX activity and bone protective effect, while recent findings using conditional knockout mice implied that a contribution in protective effect for bone loss by GGCX in osteoblastic lineage was unclear. GGCX in other cell lineages or in other tissues might play a protective role for osteoporosis. Meanwhile, animal experiments by our groups among others revealed that SXR, a putative receptor for vitamin K, could be important in the bone metabolism. In terms of the cartilage protective effect of vitamin K, both GGCX- and SXR-dependent mechanisms have been suggested. In clinical studies on osteoarthritis, the γ-carboxylation of matrix Gla protein (MGP) and gla-rich protein (GRP) may have a protective role for the disease. It is also suggested that SXR signaling has protective role for cartilage by inducing family with sequence similarity 20a (Fam20a) expression in chondrocytes. In the case of sarcopenia, a high vitamin K status in plasma was associated with muscle strength, large muscle mass, and high physical performance in some observational studies. However, the basic studies explaining the effects of vitamin K on muscular tissue are limited. Further research on vitamin K will clarify new biological mechanisms which contribute to human longevity and health through the prevention and treatment of aging-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama 350-1241, Japan.
| |
Collapse
|
26
|
Oydanich M, Babici D, Zhang J, Rynecki N, Vatner DE, Vatner SF. Mechanisms of sex differences in exercise capacity. Am J Physiol Regul Integr Comp Physiol 2019; 316:R832-R838. [PMID: 31017810 PMCID: PMC6734069 DOI: 10.1152/ajpregu.00394.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 01/13/2023]
Abstract
Sex differences are an important component of National Institutes of Health rigor. The goal of this investigation was to test the hypothesis that female mice have greater exercise capacity than male mice, and that it is due to estrogen, nitric oxide, and myosin heavy chain expression. Female C57BL6/J wild-type mice exhibited greater (P < 0.05) maximal exercise capacity for running distance (489 ± 15 m) than age-matched male counterparts (318 ± 15 m), as well as 20% greater work to exhaustion. When matched for weight or muscle mass, females still maintained greater exercise capacity than males. Increased type I and decreased type II myosin heavy chain fibers in the soleus muscle from females are consistent with fatigue resistance and better endurance in females compared with males. After ovariectomy, female mice no longer demonstrated enhanced exercise, and treatment of male mice with estrogen resulted in exercise capacity similar to that of intact females (485 ± 37 m). Nitric oxide synthase, a downstream target of estrogen, exhibited higher activity in female mice compared with male mice, P < 0.05, whereas ovariectomized females exhibited nitric oxide synthase levels similar to males. Nitric oxide synthase activity also increased in males treated with chronic estrogen to levels of intact females. Nitric oxide synthase blockade with Nω-nitro-l-arginine methyl ester eliminated the sex differences in exercise capacity. Thus estrogen, nitric oxide, and myosin heavy chain expression are important mechanisms mediating the enhanced exercise performance in females.
Collapse
Affiliation(s)
- Marko Oydanich
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Denis Babici
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Nicole Rynecki
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School , Newark, New Jersey
| |
Collapse
|
27
|
Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Front Endocrinol (Lausanne) 2019; 10:557. [PMID: 31474941 PMCID: PMC6702264 DOI: 10.3389/fendo.2019.00557] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are unique organelles present in almost all cell types. They are involved not only in the supply of energy to the host cell, but also in multiple biochemical and biological processes like calcium homeostasis, production, and regulation of reactive oxygen species (ROS), pH control, or cell death. The importance of mitochondria in cell biology and pathology is increasingly recognized. Being maternally inherited, mitochondria exhibit a tissue-specificity, because most of the mitochondrial proteins are encoded by the nuclear genome. This renders them exquisitely well-adapted to the physiology of the host cell. It is thus not surprising that mitochondria show a sexual dimorphism and that they are also prone to the influence of sex chromosomes and sex hormones. Estrogens affect mitochondria through multiple processes involving membrane and nuclear estrogen receptors (ERs) as well as more direct effects. Moreover, estrogen receptors have been identified within mitochondria. The effects of estrogens on mitochondria comprise protein content and specific activity of mitochondrial proteins, phospholipid content of membranes, oxidant and anti-oxidant capacities, oxidative phosphorylation, and calcium retention capacities. Herein we will briefly review the life cycle and functions of mitochondria, the importance of estrogen receptors and the effects of estrogens on heart and skeletal muscle mitochondria.
Collapse
|
28
|
Nagai S, Ikeda K, Horie-Inoue K, Takeda S, Inoue S. Estrogen signaling increases nuclear receptor subfamily 4 group A member 1 expression and energy production in skeletal muscle cells. Endocr J 2018; 65:1209-1218. [PMID: 30333364 DOI: 10.1507/endocrj.ej17-0548] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Estrogen deficiency has been known to associate with musculoskeletal diseases in women, based on the clinical observations of frequent susceptibility to osteoporosis and sarcopenia among postmenopausal women. In skeletal muscles, estrogen has been assumed to play physiological roles in maintaining muscle mass and strength, although its precise molecular mechanism remains to be elucidated. We have previously shown that estrogen regulates energy metabolism through the downregulation of mitochondrial uncoupling protein 3 (UCP3) in skeletal muscles, which may contribute to the prolonged exercise endurance in female mice. In the present study, we investigated the effects of estrogen on the expression levels of all members of the nuclear receptor superfamily. Microarray analysis showed that the mRNA level of nuclear receptor subfamily 4 group A member 1 (Nr4a1) was upregulated by the transduction of a recombinant adenovirus expressing constitutively active estrogen receptor α (caERα) in differentiated myoblastic C2C12 cells. Thus we assumed that NR4A1 may be an estrogen-inducible gene in myoblastic cells. We also demonstrated that caERα increases the cellular ATP content along with an increase in mitochondrial DNA content in differentiated myoblastic C2C12 cells. In contrast, the knockdown of Nr4a1 using siRNA exhibited reduced ATP generation as well as a decrease in mitochondrial DNA content. Overall, the present study indicates a crosstalk between estrogen signaling and NR4A1 in skeletal muscle cells. We consider that estrogen-dependent NR4A1 upregulation could increase efficient ATP generation in skeletal muscle cells partly through enhancing mitochondrial functions.
Collapse
Affiliation(s)
- Saki Nagai
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
- Department of Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| |
Collapse
|
29
|
Pozdniakova S, Guitart-Mampel M, Garrabou G, Di Benedetto G, Ladilov Y, Regitz-Zagrosek V. 17β-Estradiol reduces mitochondrial cAMP content and cytochrome oxidase activity in a phosphodiesterase 2-dependent manner. Br J Pharmacol 2018; 175:3876-3890. [PMID: 30051530 DOI: 10.1111/bph.14455] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Mitochondria possess their own source of cAMP, that is, soluble adenylyl cyclase (sAC). Activation or expression of mitochondrial sAC promotes mitochondrial function. Oestrogen receptor signalling plays an essential role in the regulation of mitochondrial function. Here we aimed to determine whether 17β-estradiol may affect mitochondrial cAMP signalling. EXPERIMENTAL APPROACH Expression of the intra-mitochondrial proteins (Western blot), mitochondrial cAMP content (FRET-based live imaging and MS assay), mitochondrial membrane potential and cytochrome oxidase activity were analysed in H9C2 and C2C12 cells. KEY RESULTS A 24 h treatment with 17β-estradiol significantly reduced the basal level of mitochondrial cAMP, without affecting the intra-mitochondrial content of sAC, phosphodiesterase 2 (PDE2) or PKA and the activity of the intra-mitochondrial sAC. The effect of 17β-estradiol on mitochondrial cAMP was prevented by inhibition of a cGMP-activated PDE2 or soluble guanylyl cyclase (sGC), suggesting a role of NO signalling. Indeed, 17β-estradiol raised cellular levels of cGMP and the intra-mitochondrial expression of the catalytic subunit β of sGC was found. The 17β-estradiol-induced reduction of the mitochondrial cAMP level was accompanied by decreased cytochrome oxidase activity and mitochondrial membrane potential in a PDE2-dependent manner. CONCLUSIONS AND IMPLICATIONS 17β-estradiol reduced the basal level of mitochondrial cAMP content and cytochrome oxidase activity in a sAC-independent but in a PDE2-dependent manner. The results suggest a role of 17β-estradiol-induced activation of NO signalling in the regulation of mitochondrial cAMP content. Our study adds a new aspect to the complex action of oestrogens on mitochondrial biology, that is relevant to hormone replacement therapy.
Collapse
Affiliation(s)
- Sofya Pozdniakova
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Mariona Guitart-Mampel
- Muscle Research and Mitochondrial Function Laboratory, Cellex - IDIBAPS, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service - Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER, Madrid, Spain
| | - Gloria Garrabou
- Muscle Research and Mitochondrial Function Laboratory, Cellex - IDIBAPS, Faculty of Medicine and Health Science, University of Barcelona, Internal Medicine Service - Hospital Clínic of Barcelona, Barcelona, Spain.,CIBERER, Madrid, Spain
| | - Giulietta Di Benedetto
- Neuroscience Institute, Italian National Research Council, Venetian Institute of Molecular Medicine, Padova, Italy
| | - Yury Ladilov
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Charité - Universitätsmedizin Berlin, Institute of Gender in Medicine, Center for Cardiovascular Research, Berlin, Germany.,DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| |
Collapse
|
30
|
Ježek P, Holendová B, Garlid KD, Jabůrek M. Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling. Antioxid Redox Signal 2018; 29:667-714. [PMID: 29351723 PMCID: PMC6071544 DOI: 10.1089/ars.2017.7225] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Mitochondria are the energetic, metabolic, redox, and information signaling centers of the cell. Substrate pressure, mitochondrial network dynamics, and cristae morphology state are integrated by the protonmotive force Δp or its potential component, ΔΨ, which are attenuated by proton backflux into the matrix, termed uncoupling. The mitochondrial uncoupling proteins (UCP1-5) play an eminent role in the regulation of each of the mentioned aspects, being involved in numerous physiological events including redox signaling. Recent Advances: UCP2 structure, including purine nucleotide and fatty acid (FA) binding sites, strongly support the FA cycling mechanism: UCP2 expels FA anions, whereas uncoupling is achieved by the membrane backflux of protonated FA. Nascent FAs, cleaved by phospholipases, are preferential. The resulting Δp dissipation decreases superoxide formation dependent on Δp. UCP-mediated antioxidant protection and its impairment are expected to play a major role in cell physiology and pathology. Moreover, UCP2-mediated aspartate, oxaloacetate, and malate antiport with phosphate is expected to alter metabolism of cancer cells. CRITICAL ISSUES A wide range of UCP antioxidant effects and participations in redox signaling have been reported; however, mechanisms of UCP activation are still debated. Switching off/on the UCP2 protonophoretic function might serve as redox signaling either by employing/releasing the extra capacity of cell antioxidant systems or by directly increasing/decreasing mitochondrial superoxide sources. Rapid UCP2 degradation, FA levels, elevation of purine nucleotides, decreased Mg2+, or increased pyruvate accumulation may initiate UCP-mediated redox signaling. FUTURE DIRECTIONS Issues such as UCP2 participation in glucose sensing, neuronal (synaptic) function, and immune cell activation should be elucidated. Antioxid. Redox Signal. 29, 667-714.
Collapse
Affiliation(s)
- Petr Ježek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Blanka Holendová
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| | - Keith D Garlid
- 2 UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA , Los Angeles, California
| | - Martin Jabůrek
- 1 Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences , Prague, Czech Republic
| |
Collapse
|