1
|
Kawano S, Noda C, Itoh S, Urabe A, Fujii C, Ogawa I, Suzuki R, Hida S. Staphylococcal superantigen-like protein 3 triggers murine mast cell adhesion by binding to CD43 and augments mast cell activation. Genes Cells 2024; 29:397-416. [PMID: 38454012 DOI: 10.1111/gtc.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Staphylococcus aureus is a noteworthy pathogen in allergic diseases, as four staphylococcal exotoxins activate mast cells, a significant contributor to inflammation, in an IgE-independent manner. Although the adhesion of mast cells is an essential process for their immune responses, only a small number of exotoxins have been reported to affect the process. Here, we demonstrated that staphylococcal superantigen-like (SSL) 3, previously identified as a toll-like receptor 2 agonist, induced the adhesion of murine bone marrow-derived mast cells to culture substratum. SSL3-induced adhesion was mediated by fibronectin in an Arg-Gly-Asp (RGD) sequence-dependent manner, suggesting the integrins were involved in the process. Additionally, SSL3 was found to bind to an anti-adhesive surface protein CD43. SSL3 induced the adhesion of HEK293 cells expressing exogenous CD43, suggesting that CD43 is the target molecule for adhesion induced by SSL3. Evaluation of SSL3-derived mutants showed that the C-terminal region (253-326), specifically T285 and H307, are necessary to induce adhesion. SSL3 augmented the IL-13 production of mast cells in response to immunocomplex and SSL12. These findings reveal a novel function of SSL3, triggering cell adhesion and enhancing mast cell activation. This study would clarify the correlation between S. aureus and allergic diseases such as atopic dermatitis.
Collapse
Affiliation(s)
- Sae Kawano
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chisaki Noda
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ayaka Urabe
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Chifumi Fujii
- Department of Biotechnology, Institute for Biomedical Sciences, Shinshu University, Matsumoto, Nagano Prefecture, Japan
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
- Center for Medical Education and Clinical Training, Shinshu University School of Medicine, Matsumoto, Nagano Prefecture, Japan
| | - Isamu Ogawa
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| | - Ryo Suzuki
- Laboratory of Hygienic Chemistry, Faculty of Pharmaceutical Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa Prefecture, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi Prefecture, Japan
| |
Collapse
|
2
|
Alanko I, Sandberg R, Brockmann E, de Haas CJC, van Strijp JAG, Lamminmäki U, Salo‐Ahen OMH. Isolation and functional analysis of phage-displayed antibody fragments targeting the staphylococcal superantigen-like proteins. Microbiologyopen 2023; 12:e1371. [PMID: 37642487 PMCID: PMC10350561 DOI: 10.1002/mbo3.1371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023] Open
Abstract
Staphylococcus aureus produces numerous virulence factors that manipulate the immune system, helping the bacteria avoid phagocytosis. In this study, we are investigating three immune evasion molecules called the staphylococcal superantigen-like proteins 1, 5, and 10 (SSL1, SSL5, and SSL10). All three SSLs inhibit vital host immune processes and contribute to S. aureus immune evasion. This study aimed to identify single-chain variable fragment (scFvs) antibodies from synthetic antibody phage libraries, which can recognize either of the three SSLs and could block the interaction between the SSLs and their respective human targets. The antibodies were isolated after three rounds of panning against SSL1, SSL5, and SSL10, and their ability to bind to the SSLs was studied using a time-resolved fluorescence-based immunoassay. We successfully obtained altogether 44 unique clones displaying binding activity to either SSL1, SSL5, or SSL10. The capability of the SSL-recognizing scFvs to inhibit the SSLs' function was tested in an MMP9 enzymatic activity assay, a P-selectin glycoprotein ligand 1 competitive binding assay, and an IgG1-mediated phagocytosis assay. We could show that one scFv was able to inhibit SSL1 and maintain MMP9 activity in a concentration-dependent manner. Finally, the structure of this inhibiting scFv was modeled and used to create putative scFv-SSL1-complex models by protein-protein docking. The complex models were subjected to a 100-ns molecular dynamics simulation to assess the possible binding mode of the antibody.
Collapse
Affiliation(s)
- Ida Alanko
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | - Rebecca Sandberg
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| | | | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Urpo Lamminmäki
- Department of Life TechnologiesUniversity of TurkuTurkuFinland
| | - Outi M. H. Salo‐Ahen
- Faculty of Sciences and Engineering, Pharmaceutical Sciences Laboratory (Pharmacy) & Structural Bioinformatics Laboratory (Biochemistry) TurkuÅbo Akademi UniversityTurkuFinland
| |
Collapse
|
3
|
Ogata A, Hayashi K, Kitano T, Onozaki K, Itoh S, Hida S. Staphylococcal γ-hemolysins induce IL-4 production in murine basophils. Biochem Biophys Res Commun 2022; 632:107-112. [DOI: 10.1016/j.bbrc.2022.09.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/18/2022] [Indexed: 11/02/2022]
|
4
|
Jia N, Li G, Wang X, Cao Q, Chen W, Wang C, Chen L, Ma X, Zhang X, Tao Y, Zang J, Mo X, Hu J. Staphylococcal superantigen-like protein 10 induces necroptosis through TNFR1 activation of RIPK3-dependent signal pathways. Commun Biol 2022; 5:813. [PMID: 35962126 PMCID: PMC9374677 DOI: 10.1038/s42003-022-03752-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/22/2022] [Indexed: 11/11/2022] Open
Abstract
Staphylococcal aureus (S. aureus) infection can lead to a wide range of diseases such as sepsis and pneumonia. Staphylococcal superantigen-like (SSL) proteins, expressed by all known S. aureus strains, are shown to be involved in immune evasion during S. aureus infection. Here, we show that SSL10, an SSL family protein, exhibits potent cytotoxicity against human cells (HEK293T and HUVEC) by inducing necroptosis upon binding to its receptor TNFR1 on the cell membrane. After binding, two distinct signaling pathways are activated downstream of TNFR1 in a RIPK3-dependent manner, i.e., the RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore (mPTP) pathways. Knockout of ssl10 in S. aureus significantly reduces cytotoxicity of the culture supernatants of S. aureus, indicating that SSL10 is involved in extracellular cytotoxicity during infection. We determined the crystal structure of SSL10 at 1.9 Å resolution and identified a positively charged surface of SSL10 responsible for TNFR1 binding and cytotoxic activity. This study thus provides the description of cytotoxicity through induction of necroptosis by the SSL10 protein, and a potential target for clinical treatment of S. aureus-associated diseases. The Staphylococcal superantigen like protein 10 induces necroptosis in human cells through binding to TNFR1 by both the N- and C-terminal domains and activating RIPK1-RIPK3-MLKL and RIPK3-CaMKII-mitochondrial permeability transition pore pathways.
Collapse
Affiliation(s)
- Nan Jia
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.,The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xing Wang
- Department of Laboratory Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Wanbiao Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Chengliang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Ling Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaoling Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xuan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Yue Tao
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jianye Zang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China.
| | - Xi Mo
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Jinfeng Hu
- The Laboratory of Pediatric Infectious Diseases, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China. .,Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
5
|
Kim G, Itoh S, Ito Y, Ohya S, Hida S. Identification of responsible amino acid residues in Staphylococcal superantigen-like 12 for the activation of mast cells. Genes Cells 2022; 27:559-567. [PMID: 35801715 DOI: 10.1111/gtc.12973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Staphylococcal superantigen-like 12 (SSL12) is reported to evoke the degranulation in murine mast cells. The allelic variant of SSL12 in the genome of reference strain NCTC8325 induced the degranulation of murine mast cells, that of MRSA252 strain did not, nevertheless relatively high sequence similarity (82%). To identify responsible amino acid residues of SSL12 for mast cell activation, we created a series of domain swap mutants and amino acid substitution mutants between the active and inactive variants. The mutants that harbored oligonucleotide/oligosaccharide binding (OB)-fold domain of the active variant activated mast cells. The replacement at position 56 (L56F) in the OB-fold domain diminished the mast cell stimulatory activity, and the combinatorial substitutions L56F/K92E, L56F/D95S, and L56F/S100V abolished the stimulatory activities of the mutant that harbored OB-fold domain of the active variant and the intact active variant. These indicate that the responsive elements of SSL12 for mast cell activation are in the OB-fold of SSL12, and L56 would be an essential amino acid residue for the activation of mast cells. The findings would contribute to the understanding of the molecular mechanism of SSL12 for mast cell activation and the development of toxoids preventing allergic inflammations associated with S. aureus. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Gwangdong Kim
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.,Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Yuma Ito
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
6
|
Degani G, Altomare A, Digiovanni S, Arosio B, Fritz G, Raucci A, Aldini G, Popolo L. Prothrombin is a binding partner of the human receptor of advanced glycation end products. J Biol Chem 2020; 295:12498-12511. [PMID: 32665403 DOI: 10.1074/jbc.ra120.013692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Indexed: 01/02/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) plays a key role in mammal physiology and in the etiology and progression of inflammatory and oxidative stress-based diseases. In adults, RAGE expression is normally high only in the lung where the protein concentrates in the basal membrane of alveolar Type I epithelial cells. In diseases, RAGE levels increase in the affected tissues and sustain chronic inflammation. RAGE exists as a membrane glycoprotein with an ectodomain, a transmembrane helix, and a short carboxyl-terminal tail, or as a soluble ectodomain that acts as a decoy receptor (sRAGE). VC1 domain is responsible for binding to the majority of RAGE ligands including advanced glycation end products (AGEs), S100 proteins, and HMGB1. To ascertain whether other ligands exist, we analyzed by MS the material pulled down by VC1 from human plasma. Twenty of 295 identified proteins were selected and associated to coagulation and complement processes and to extracellular matrix. Four of them contained a γ-carboxyl glutamic acid (Gla) domain, a calcium-binding module, and prothrombin (PT) was the most abundant. Using MicroScale thermophoresis, we quantified the interaction of PT with VC1 and sRAGE in the absence or presence of calcium that acted as a competitor. PT devoid of the Gla domain (PT des-Gla) did not bind to sRAGE, providing further evidence that the Gla domain is critical for the interaction. Finally, the presence of VC1 delayed plasma clotting in a dose-dependent manner. We propose that RAGE is involved in modulating blood coagulation presumably in conditions of lung injury.
Collapse
Affiliation(s)
- Genny Degani
- Department of Biosciences, University of Milan, Milan, Italy
| | | | | | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico and University of Milan, Via Pace 9, Milan, Italy
| | - Guenter Fritz
- Institute of Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Angela Raucci
- Experimental Cardio-oncology and Cardiovascular Aging Unit, Centro Cardiologico Monzino-IRCCS, Via Carlo Parea, 4, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Laura Popolo
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Hayashi K, Itoh S, Morikawa A, Onozaki K, Taki S, Tsuji T, Hida S. Staphylococcal α-hemolysin does not induce cell damage in murine mast cells but it augments the degranulation induced by FcεRI cross-linking and ionomycin. Biochem Biophys Res Commun 2019; 508:263-269. [DOI: 10.1016/j.bbrc.2018.11.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
|
8
|
Kohno K, Itoh S, Hanai A, Takii T, Fujiwara T, Onozaki K, Tsuji T, Hida S. Identification of matrix metalloproteinase 9-interacting sequences in staphylococcal superantigen-like protein 5. Biochem Biophys Res Commun 2018; 497:713-718. [PMID: 29462623 DOI: 10.1016/j.bbrc.2018.02.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 11/17/2022]
Abstract
Staphylococcal superantigen like 5 (SSL5) is an exotoxin produced by S. aureus and has a strong inhibitory effect on MMP-9 enzymatic activity. However, the mechanism of inhibition remains unclear. We sought to identify the responsible regions of SSL5 for the interaction with MMP-9 by comparing a series of domain swap and deletion mutants of SSL5. Binding analyses revealed that SSL5 had two regions for binding to MMP-9 catalytic domain, β1-3 region (25SKELKNVTGY RYSKGGKHYL IFDKNRKFTR VQIFGK60) in N-terminal half and α4β9 region (138KELDFKLRQY LIQNFDLYKK FPKDSKIKVI MKD170) in C-terminal half. The collagen binding domain and zinc-chelating histidine residues of MMP-9 were not essential for the specific binding to SSL5. The domain swap mutants of SSL5 that conserved β1-3 but not α4β9 region inhibited the gelatinolysis by MMP-9, and the mutant of SSL7 that substituted β1-3 region to that of SSL5 acquired the binding and inhibitory activity. Furthermore, the polypeptide that harbored β1-3 region of SSL5 inhibited gelatinolysis by MMP-9. Taken together, SSL5 inhibits the MMP9 activity through binding to the catalytic domain, and the β1-3 region is responsible for the inhibition of proteolytic activity of MMP-9.
Collapse
Affiliation(s)
- Katsuhiro Kohno
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Saotomo Itoh
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan.
| | - Akari Hanai
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Takemasa Takii
- Bacteriology Division, Mycobacterium Reference Centre, Research Institute of Tuberculosis, 3-1-24 Matsuyama, Kiyose, Tokyo 204-8533, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Graduate School of Pharmaceutical Sciences, Kindai University, 3-4-1. Kowakae, Higashi-osaka 577-8502, Japan
| | - Kikuo Onozaki
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Tsutomu Tsuji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Shigeaki Hida
- Department of Molecular and Cellular Health Sciences, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya, 467-8603, Japan
| |
Collapse
|