1
|
Zhang J, Liu Y, Zhao Y, Zhang S, Xu F, Li F. Synergetic effect of mild hypothermia and antioxidant treatment on ROS-mediated neuron injury under oxygen-glucose deprivation investigated by scanning electrochemical microscopy. Chem Sci 2024; 15:20177-20188. [PMID: 39568945 PMCID: PMC11575619 DOI: 10.1039/d4sc05977h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Ischemic stroke and reperfusion injury result in neuronal damage and dysfunction associated with oxidative stress, leading to overproduction of cellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). In situ monitoring of the transient ROS and RNS effluxes during rapid pathologic processes is crucial for understanding the relationship between progression of cell damage and role of oxidative stress, and developing the corresponding neuroprotective strategies. Herein, we built oxygen glucose deprivation (OGD) and mild hypothermic (MH) models to mimic the in vitro conditions of ischemic stroke and MH treatment. We used scanning electrochemical microscopy (SECM) to in situ monitor H2O2 and nitric oxide (NO) effluxes from HT22 cells under the OGD and MH treatment conditions. Through quantitative analysis of the H2O2 and NO efflux results, we found that the cellular oxidative stress was primarily manifested through ROS release under OGD conditions, and the MH treatment partially suppressed the excessive H2O2 and NO production induced by reoxygenation. Moreover, the synergistic therapeutic effect of MH with antioxidant treatment significantly reduced the oxidative stress and enhanced the cell survival. Our work reveals the crucial role of oxidative stress in OGD and reperfusion processes, and the effective improvement of cell viability via combination of MH with antioxidants, proposing promising therapeutic interventions for ischemic stroke and reperfusion injury.
Collapse
Affiliation(s)
- Junjie Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yulin Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yuxiang Zhao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Siyu Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fei Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
2
|
Wu L, Cheng Y, Wang R, Sun S, Ma B, Zhang Z. NDRG2 regulates glucose metabolism and ferroptosis of OGD/R-treated astrocytes by the Wnt/β-catenin signaling. J Biochem Mol Toxicol 2024; 38:e23827. [PMID: 39193856 DOI: 10.1002/jbt.23827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 07/10/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Ischemic stroke is one main type of cerebrovascular disorders with leading cause of death and disability worldwide. Astrocytes are the only nerve cell type storing glycogen in the brain, which regulate the glucose metabolism and handle the energy supply and survive of neurons. Astrocyte ferroptosis contributes to neuron injury in brain disorders. N-myc downstream-regulated gene 2 (NDRG2) has been implicated in the progression of brain diseases, including ischemic stroke. However, whether NDRG2 could affect the glucose metabolism and ferroptosis of astrocytes during ischemic stroke remains largely unknown. Mouse astrocytes were treated with oxygen-glucose deprivation/reoxygenation (OGD/R) to establish the in vitro model. Glial fibrillary acidic protein, NDRG2, Wnt3a and β-catenin expression levels were detected by immunofluorescence staining and western blot analyses. Glucose metabolism was investigated by glucose uptake, lactate production, nicotinamide adenine dinucleotide phosphate hydrogen/nicotinamide adenine dinucleotide phosphate (NADPH/NADP+), ATP and glycolysis enzymes (HK2, PKM2 and lactate dehydrogenase A [LDHA]) levels. Ferroptosis was assessed via reactive oxygen species (ROS), glutathione (GSH), iron and ferroptosis-related markers (GPX4 and PTGS2) contents. Glycolysis enzymes and ferroptosis-related markers levels were measured via western blot. NDRG2 expression was elevated in OGD/R-induced astrocytes. NDRG2 overexpression aggravated OGD/R-induced loss of glucose metabolism through reducing glucose uptake, lactate production, NADPH/NADP+ and ATP levels. NDRG2 upregulation exacerbated OGD/R-caused reduction of glycolysis enzymes (HK2, PKM2 and LDHA) levels. NDRG2 promoted OGD/R-induced ferroptosis of astrocytes by increasing ROS, iron and PTGS2 levels and decreasing GSH and GPX4 levels. NDRG2 overexpression enhanced OGD/R-induced decrease of Wnt/β-catenin signaling activation by reducing Wnt3a and β-catenin expression. NDRG2 silencing played an opposite effect. Inhibition of Wnt/β-catenin signaling activation by IWR-1 attenuated the influences of NDRG2 knockdown on glucose metabolism, glycolysis enzymes levels and ferroptosis. These findings demonstrated that NDRG2 contributes to OGD/R-induced inhibition of glucose metabolism and promotion of ferroptosis in astrocytes through inhibiting Wnt/β-catenin signaling activation, which might be associated with ischemic stroke progression.
Collapse
Affiliation(s)
- Lin Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Yingying Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Runfeng Wang
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shukai Sun
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Ma
- Department of Neurosurgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhiguo Zhang
- Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Fukuda N, Toriuchi K, Mimoto R, Aoki H, Kakita H, Suzuki Y, Takeshita S, Tamura T, Yamamura H, Inoue Y, Hayashi H, Yamada Y, Aoyama M. Hypothermia Attenuates Neurotoxic Microglial Activation via TRPV4. Neurochem Res 2024; 49:800-813. [PMID: 38112974 DOI: 10.1007/s11064-023-04075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Therapeutic hypothermia (TH) provides neuroprotection. However, the cellular mechanisms underlying the neuroprotective effects of TH are not fully elucidated. Regulation of microglial activation has the potential to treat a variety of nervous system diseases. Transient receptor potential vanilloid 4 (TRPV4), a nonselective cation channel, is activated by temperature stimulus at 27-35 °C. Although it is speculated that TRPV4 is associated with the neuroprotective mechanisms of TH, the role of TRPV4 in the neuroprotective effects of TH is not well understood. In the present study, we investigated whether hypothermia attenuates microglial activation via TRPV4 channels. Cultured microglia were incubated under normothermic (37 °C) or hypothermic (33.5 °C) conditions following lipopolysaccharide (LPS) stimulation. Hypothermic conditions suppressed the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and the number of phagocytic microglia. AMP-activated protein kinase (AMPK)-NF-κB signaling was inhibited under hypothermic conditions. Furthermore, hypothermia reduced neuronal damage induced by LPS-treated microglial cells. Treatment with TRPV4 antagonist in normothermic culture replicated the suppressive effects of hypothermia on microglial activation and microglia-induced neuronal damage. In contrast, treatment with a TRPV4 agonist in hypothermic culture reversed the suppressive effect of hypothermia. These findings suggest that TH suppresses microglial activation and microglia-induced neuronal damage via the TRPV4-AMPK-NF-κB pathway. Although more validation is needed to consider differences according to age, sex, and specific central nervous system regions, our findings may offer a novel therapeutic approach to complement TH.
Collapse
Affiliation(s)
- Naoya Fukuda
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Kohki Toriuchi
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Rina Mimoto
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hiroki Kakita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Satoru Takeshita
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Tetsuya Tamura
- Department of Anesthesiology and Intensive Care Medicine, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-Ku, Nagoya, Aichi, 467-8601, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
- Department of Innovative Therapeutic Sciences, Cooperative Major in Nanopharmaceutical Sciences, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabe-Dori, Mizuho-Ku, Nagoya, Aichi, 467-8603, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, 3-1 Tanabedori, Mizoho-Ku, Nagoya, Aichi, 467-8603, Japan.
| |
Collapse
|
4
|
Garg A, Bandyopadhyay S. Role of an interdependent Wnt, GSK3-β/β-catenin and HB-EGF/EGFR mechanism in arsenic-induced hippocampal neurotoxicity in adult mice. CHEMOSPHERE 2024; 352:141375. [PMID: 38325618 DOI: 10.1016/j.chemosphere.2024.141375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
We previously reported the neurotoxic effects of arsenic in the hippocampus. Here, we explored the involvement of Wnt pathway, which contributes to neuronal functions. Administering environmentally relevant arsenic concentrations to postnatal day-60 (PND60) mice demonstrated a dose-dependent increase in hippocampal Wnt3a and its components, Frizzled, phospho-LRP6, Dishevelled and Axin1 at PND90 and PND120. However, p-GSK3-β(Ser9) and β-catenin levels although elevated at PND90, decreased at PND120. Additionally, treatment with Wnt-inhibitor, rDkk1, reduced p-GSK3-β(Ser9) and β-catenin at PND90, but failed to affect their levels at PND120, indicating a time-dependent link with Wnt. To explore other underlying factors, we assessed epidermal growth factor receptor (EGFR) pathway, which interacts with GSK3-β and appears relevant to neuronal functions. We primarily found that arsenic reduced hippocampal phosphorylated-EGFR and its ligand, Heparin-binding EGF-like growth factor (HB-EGF), at both PND90 and PND120. Moreover, treatment with HB-EGF rescued p-GSK3-β(Ser9) and β-catenin levels at PND120, suggesting their HB-EGF/EGFR-dependent regulation at this time point. Additionally, rDkk1, LiCl (GSK3-β-activity inhibitor), or β-catenin protein treatments induced a time-dependent recovery in HB-EGF, indicating potential inter-dependent mechanism between hippocampal Wnt/β-catenin and HB-EGF/EGFR following arsenic exposure. Fluorescence immunolabeling then validated these findings in hippocampal neurons. Further exploration of hippocampal neuronal survival and apoptosis demonstrated that treatment with rDkk1, LiCl, β-catenin and HB-EGF improved Nissl staining and NeuN levels, and reduced cleaved-caspase-3 levels in arsenic-treated mice. Supportively, we detected improved Y-Maze and Passive Avoidance performances for learning-memory functions in these mice. Overall, our study provides novel insights into Wnt/β-catenin and HB-EGF/EGFR pathway interaction in arsenic-induced hippocampal neurotoxicity.
Collapse
Affiliation(s)
- Asmita Garg
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanghamitra Bandyopadhyay
- Systems Toxicology Group, Food, Drug & Chemical, Environment and Systems Toxicology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Dong Z, Jia L, Han W, Wang Y, Sheng M, Ren Y, Weng Y, Li H, Yu W. The protective effect of lncRNA NEAT1/miR-122-5p/Wnt1 axis on hippocampal damage in hepatic ischemic reperfusion young mice. Cell Signal 2023; 107:110668. [PMID: 37004832 DOI: 10.1016/j.cellsig.2023.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Hepatic ischemic reperfusion (HIR) is a common pathophysiological process in many surgical procedures such as liver transplantation (LT) and hepatectomy. And it is also an important factor leading to perioperative distant organ damage. Children undergoing major liver surgery are more susceptible to various pathophysiological processes, including HIR, since their brains are still developing and the physiological functions are still incomplete, which can lead to brain damage and postoperative cognitive impairment, thus seriously affecting the long-term prognosis of the children. However, the present treatments of mitigating HIR-induced hippocampal damage are not proven to be effective. The important role of microRNAs (miRNAs) in the pathophysiological processes of many diseases and in the normal development of the body has been confirmed in several studies. The current study explored the role of miR-122-5p in HIR-induced hippocampal damage progression. HIR-induced hippocampal damage mouse model was induced by clamping the left and middle lobe vessels of the liver of young mice for 1 h, removing the vessel clamps and re-perfusing them for 6 h. The changes in the level of miR-122-5p in the hippocampal tissues were measured, and its influences on the activity as well as apoptotic rate of neuronal cells were investigated. Short interfering RNA modified with 2'-O-methoxy substitution targeting long-stranded non-coding RNA (lncRNA) nuclear enriched transcript 1 (NEAT1) as well as miR-122-5p antagomir were used to further clarify the role played by the corresponding molecules in hippocampal injury in young mice with HIR. The result obtained in our study was that the expression of miR-122-5p in the hippocampal tissue of young mice receiving HIR is reduced. Upregulated expression of miR-122-5p reduces the viability of neuronal cells and promotes the development of apoptosis, thereby aggravating the damage of hippocampal tissue in HIR young mice. Additionally, in the hippocampal tissue of young mice receiving HIR, lncRNA NEAT1 exerts some anti-apoptotic effects by binding to miR-122-5p, promoting the expression of Wnt1 pathway. An essential observation of this study was the binding of lncRNA NEAT1 to miR-122-5p, which upregulates Wnt1 and inhibits HIR-induced hippocampal damage in young mice.
Collapse
|
6
|
Ni B, Sun M, Zhao J, Wang J, Cao Z. The role of β-catenin in cardiac diseases. Front Pharmacol 2023; 14:1157043. [PMID: 37033656 PMCID: PMC10073558 DOI: 10.3389/fphar.2023.1157043] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a classical Wnt pathway that regulates the stability and nuclear localization of β-catenin and plays an important role in adult heart development and cardiac tissue homeostasis. In recent years, an increasing number of researchers have implicated the dysregulation of this signaling pathway in a variety of cardiac diseases, such as myocardial infarction, arrhythmias, arrhythmogenic cardiomyopathy, diabetic cardiomyopathies, and myocardial hypertrophy. The morbidity and mortality of cardiac diseases are increasing, which brings great challenges to clinical treatment and seriously affects patient health. Thus, understanding the biological roles of the Wnt/β-catenin pathway in these diseases may be essential for cardiac disease treatment and diagnosis to improve patient quality of life. In this review, we summarize current research on the roles of β-catenin in human cardiac diseases and potential inhibitors of Wnt/β-catenin, which may provide new strategies for cardiac disease therapies.
Collapse
|
7
|
Zhou T, Mo J, Xu W, Hu Q, Liu H, Fu Y, Jiang J. Mild hypothermia alleviates oxygen−glucose deprivation/reperfusion-induced apoptosis by inhibiting ROS generation, improving mitochondrial dysfunction and regulating DNA damage repair pathway in PC12 cells. Apoptosis 2022; 28:447-457. [PMID: 36520321 DOI: 10.1007/s10495-022-01799-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/23/2022]
Abstract
The brain ischemia/reperfusion (I/R) injury has a great impact on human life and property safety. As far as we know, mild hypothermia (MH) is an effective measure to reduce neuronal injury after I/R. However, the precise mechanism is not extremely clear. The purpose of this study was to investigate whether mild therapeutic hypothermia can play a protective role in nerve cells dealing with brain I/R injury and explore its specific mechanism in vitro. A flow cytometer, cell counting kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release assay were performed to detect apoptotic rate of cells, cell viability and cytotoxicity, respectively, reactive oxygen species (ROS) assay kit, JC-1 fluorescent methods, immunofluorescence and western blot were used to explore ROS, mitochondrial transmembrane potential (Δψm), mitochondrial permeability transition pore (MPTP) and protein expression, respectively. The result indicated that the cell activity was decreased, while the cytotoxicity and apoptosis rate were increased after treating with oxygen-glucose deprivation/reperfusion (OGD/R) in PC12 cells. However, MH could antagonize this phenomenon. Interestingly, treating with OGD/R increased the release of ROS and the transfer of Cytochrome C (Cyt-C) from mitochondria to cytoplasm. In addition, it up-regulated the expression of γH2AX, Bax and Clv-caspase3, down-regulated the expression of PCNA, Rad51 and Bcl-2, and inhibited the function of mitochondria in PC12 cells. Excitingly, the opposite trend was observed after MH treatment. Therefore, our results suggest that MH protects PC12 cells against OGD/R-induced injury with the mechanism of inhibiting cell apoptosis by reducing ROS production, improving mitochondrial function, reducing DNA damage, and enhancing DNA repair.
Collapse
Affiliation(s)
- Tianen Zhou
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Jierong Mo
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Weigan Xu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Qiaohua Hu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Hongfeng Liu
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yue Fu
- Department of General Medicine, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Jun Jiang
- Department of Emergency, The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| |
Collapse
|
8
|
Yin F, Li Q, Cao M, Duan Y, Zhao L, Gan L, Cai Z. Effects of microRNA-101-3p on predicting pediatric acute respiratory distress syndrome and its role in human alveolar epithelial cell. Bioengineered 2022; 13:11602-11611. [PMID: 35506305 PMCID: PMC9275879 DOI: 10.1080/21655979.2022.2070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a severe form of respiratory failure associated with high mortality among children. The objective of this study is reported to explore the clinical function and molecular roles of microRNA-101-3p (miR-101-3p) in PARDS. The levels of miR-101-3p and mRNA levels of SRY-related high-mobility group box 9 (Sox9) were measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Additionally, the diagnostic role of miR-101-3p was identified by using the Receiver operating characteristic (ROC) curve. The cell proliferation and apoptosis were examined through Cell Counting Kit-8 (CCK-8) assay and flow cytometry. To detect inflammation in cells, enzyme-linked immunosorbent assays (ELISA) were performed. The target gene of miR-101-3p was confirmed through data obtained from the luciferase activity. In patients with PARDS, miR-101-3p expression was decreased. Moderate and severe PARDS patients had lower levels of miR-101-3p than mild PARDS patients. The inflammatory progression was related to the aberrant expression of miR-101-3p in all PARDS children. MiR-101-3p was highly predictive for the detection of children with PARDS. In addition, miR-101-3p might protect A549 cells from abnormal proliferation, apoptosis, and inflammation caused by lipopolysaccharide (LPS). Sox9 might be a target gene of miR-101-3p and increased mRNA expression of Sox9 in LPS-treated A549 cells was inhibited by overexpression of miR-101-3p. Ultimately, this study suggested that reduced expression of miR-101-3p plays a role in PARDS, providing a novel angle to study the disease.
Collapse
Affiliation(s)
- Fang Yin
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| | - Qi Li
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| | - Min Cao
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| | - Yaqin Duan
- Rehabilitation Center, Hunan Children's Hospital, Changsha China
| | - Liu Zhao
- Children's Research Institute, Hunan Children's Hospital, Changsha China
| | - Lumin Gan
- Department of Infection, Hunan Children's Hospital, Changsha China
| | - Zili Cai
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| |
Collapse
|
9
|
O'Sullivan MP, Casey S, Finder M, Ahearne C, Clarke G, Hallberg B, Boylan GB, Murray DM. Up-Regulation of Nfat5 mRNA and Fzd4 mRNA as a Marker of Poor Outcome in Neonatal Hypoxic-Ischemic Encephalopathy. J Pediatr 2021; 228:74-81.e2. [PMID: 32828883 DOI: 10.1016/j.jpeds.2020.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To evaluate umbilical cord messenger RNA (mRNA) expression as biomarkers for the grade of hypoxic-ischemic encephalopathy (HIE) and long-term neurodevelopment outcome. STUDY DESIGN Infants were recruited from the BiHiVE1 study, Ireland (2009-2011), and the BiHiVE2 study, Ireland, and Sweden (2013-2015). Infants with HIE were assigned modified Sarnat scores at 24 hours and followed at 18-36 months. mRNA expression from cord blood was measured using quantitative real-time polymerase chain reaction. RESULTS We studied 124 infants (controls, n = 37; perinatal asphyxia, n = 43; and HIE, n = 44). Fzd4 mRNA increased in severe HIE (median relative quantification, 2.98; IQR, 2.23-3.68) vs mild HIE (0.88; IQR, 0.46-1.37; P = .004), and in severe HIE vs moderate HIE (1.06; IQR, 0.81-1.20; P = .003). Fzd4 mRNA also increased in infants eligible for therapeutic hypothermia (1.20; IQR, 0.92-2.37) vs those who were ineligible for therapeutic hypothermia group (0.81; IQR, 0.46-1.53; P = .017). Neurodevelopmental outcome was analyzed for 56 infants. Nfat5 mRNA increased in infants with severely abnormal (1.26; IQR, 1.17-1.39) vs normal outcomes (0.97; IQR, 0.83-1.24; P = .036), and also in infants with severely abnormal vs mildly abnormal outcomes (0.96; IQR, 0.80-1.06; P = .013). Fzd4 mRNA increased in infants with severely abnormal (2.51; IQR, 1.60-3.56) vs normal outcomes (0.74; IQR, 0.48-1.49; P = .004) and in infants with severely abnormal vs mildly abnormal outcomes (0.97; IQR, 0.75-1.34; P = .026). CONCLUSIONS Increased Fzd4 mRNA expression was observed in cord blood of infants with severe HIE; Nfat5 mRNA and Fzd4 mRNA expression were increased in infants with severely abnormal long-term outcomes. These mRNA may augment current measures as early objective markers of HIE severity at delivery.
Collapse
Affiliation(s)
- Marc Paul O'Sullivan
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland.
| | - Sophie Casey
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Mikael Finder
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden; Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ahearne
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Gerard Clarke
- INFANT Research Centre, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; APC Microbiome, Ireland, University College Cork, Cork, Ireland
| | - Boubou Hallberg
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden; Neonatal Department, Karolinska University Hospital, Stockholm, Sweden
| | - Geraldine B Boylan
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Deirdre M Murray
- INFANT Research Centre, Ireland; Department of Paediatrics and Child Health, University College Cork, Cork, Ireland; National Children's Research Centre, Crumlin, Dublin, Ireland
| |
Collapse
|
10
|
Mueller-Buehl AM, Doepper H, Grauthoff S, Kiebler T, Peters L, Hurst J, Kuehn S, Bartz-Schmidt KU, Dick HB, Joachim SC, Schnichels S. Oxidative stress-induced retinal damage is prevented by mild hypothermia in an ex vivo model of cultivated porcine retinas. Clin Exp Ophthalmol 2020; 48:666-681. [PMID: 32077190 DOI: 10.1111/ceo.13731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/15/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Hydrogen peroxide (H2 O2 ) can be used in vitro to simulate oxidative stress. In retinal organ cultures, H2 O2 induces strong neurodegeneration of the retina. It is known that oxidative stress plays a role in the development of several retinal diseases including glaucoma and ischemia. Thus, we investigated whether processes underlying oxidative stress can be prevented by hypothermia using an ex vivo organ culture model of porcine retinas. METHODS Porcine retinal explants were cultivated for 5 and 8 days. Oxidative stress was induced via 300 μM H2 O2 on day 1 for 3 hours. Hypothermia treatment at 30°C was applied simultaneously with H2 O2 , for 3 hours. Retinal ganglion cells (RGCs), apoptosis, bipolar and cholinergic amacrine cells, microglia and macroglia were evaluated immunohistologically. Apoptosis rate was additionally analysed via western blot. RESULTS Reduced apoptosis rates through hypothermia led to a preservation of RGCs (P < .001). Amacrine cells were rescued after hypothermia treatment (P = .17), whereas bipolar cells were only protected partly. Additionally, at 8 days, microglial response due to oxidative stress was completely counteracted via hypothermia (P < .001). CONCLUSIONS H2 O2 induced strong degenerative processes in porcine retinas. The role of oxidative stress in the progression of retinal diseases makes this ex vivo organ culture model suitable to investigate new therapeutic approaches. In the present study, the damaging effect of H2 O2 to several retinal cell types was counteracted or strongly alleviated through hypothermia treatment. Especially RGCs, which are affected in glaucoma disease, were protected due to a reduced apoptosis rate through hypothermia.
Collapse
Affiliation(s)
- Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Hannah Doepper
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Grauthoff
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Tobias Kiebler
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Laura Peters
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - José Hurst
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - Sandra Kuehn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Karl U Bartz-Schmidt
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| | - H Burkard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Schnichels
- Centre for Ophthalmology Tübingen, University Eye Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Li Z, Zhu H, Liu C, Wang Y, Wang D, Liu H, Cao W, Hu Y, Lin Q, Tong C, Lu M, Sachinidis A, Li L, Peng L. GSK-3β inhibition protects the rat heart from the lipopolysaccharide-induced inflammation injury via suppressing FOXO3A activity. J Cell Mol Med 2019; 23:7796-7809. [PMID: 31503410 PMCID: PMC6815822 DOI: 10.1111/jcmm.14656] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/25/2022] Open
Abstract
Sepsis-induced cardiac dysfunction represents a main cause of death in intensive care units. Previous studies have indicated that GSK-3β is involved in the modulation of sepsis. However, the signalling details of GSK-3β regulation in endotoxin lipopolysaccharide (LPS)-induced septic myocardial dysfunction are still unclear. Here, based on the rat septic myocardial injury model, we found that LPS could induce GSK-3β phosphorylation at its active site (Y216) and up-regulate FOXO3A level in primary cardiomyocytes. The FOXO3A expression was significantly reduced by GSK-3β inhibitors and further reversed through β-catenin knock-down. This pharmacological inhibition of GSK-3β attenuated the LPS-induced cell injury via mediating β-catenin signalling, which could be abolished by FOXO3A activation. In vivo, GSK-3β suppression consistently improved cardiac function and relieved heart injury induced by LPS. In addition, the increase in inflammatory cytokines in LPS-induced model was also blocked by inhibition of GSK-3β, which curbed both ERK and NF-κB pathways, and suppressed cardiomyocyte apoptosis via activating the AMP-activated protein kinase (AMPK). Our results demonstrate that GSK-3β inhibition attenuates myocardial injury induced by endotoxin that mediates the activation of FOXO3A, which suggests a potential target for the therapy of septic cardiac dysfunction.
Collapse
Affiliation(s)
- Zhigang Li
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huifang Zhu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chang Liu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yumei Wang
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Duo Wang
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Huan Liu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Wenze Cao
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yi Hu
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qin Lin
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Chang Tong
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Min Lu
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Agapios Sachinidis
- Institute of Neurophysiology and Center for Molecular Medicine, Cologne (CMMC)University of CologneCologneGermany
| | - Li Li
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Luying Peng
- Key Laboratory of ArrhythmiasMinistry of EducationShanghai East HospitalTongji University School of MedicineShanghaiChina
- Research Center for Translational MedicineShanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
12
|
Wang G, Xiao Q, Wu Y, Wei YJ, Jing Y, Cao XR, Gong ZN. Design and synthesis of novel celastrol derivative and its antitumor activity in hepatoma cells and antiangiogenic activity in zebrafish. J Cell Physiol 2019; 234:16431-16446. [PMID: 30770566 DOI: 10.1002/jcp.28312] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Two series of celastrol derivatives were designed and synthesized by modifying carboxylic acid at the 28th position with amino acid, and their intermediates with isobutyrate at the third position. All compounds were evaluated for their antiproliferation activity by four human cancer cell lines (SCG7901, HGC27, HepG2, and Bel7402) and one normal cell LO2. The most promising compound, compound 8, showed superior bioactivity and lower toxicity than others including celastrol. Further underlying tests illustrated that compound 8 induced apoptosis and cell arrest at G2/M and inhibited proliferation and mobility of human hepatoma cells by suppressing the signal transducer and activator of transcription-3 signaling pathway. Besides these, a highly accurate and reproducible high performance liquid chromatography protocol was established to determine celastrol and compound 8 absorption in zebrafish, and results demonstrated that their concentration increased rapidly within 4 hr in a time-dependent manner and the concentration of compound 8 was higher than that of celastrol. In addition, without detection at 12 hr, compound 8 was rapidly metabolized in vivo. These findings are very helpful for the structural modification of celastrol and other bioactive compounds to improve their bioactivity, toxicity, and absorption.
Collapse
Affiliation(s)
- Gang Wang
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qi Xiao
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yao Wu
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying-Jie Wei
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Media of State Administration of Tradition Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, People's Republic of China
| | - Yue Jing
- Central Laboratory of Stomatology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiang-Rong Cao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| | - Zhu-Nan Gong
- Center for New Drug Research and Development, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Zhu X, Lu X. MiR-423-5p inhibition alleviates cardiomyocyte apoptosis and mitochondrial dysfunction caused by hypoxia/reoxygenation through activation of the wnt/β-catenin signaling pathway via targeting MYBL2. J Cell Physiol 2019; 234:22034-22043. [PMID: 31074036 DOI: 10.1002/jcp.28766] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/03/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
MicroRNA (miR) plays an integral role in cardiovascular diseases. M-iR-423-5p is aberrantly expressed in patients with myocardial infarction and heart failure. The aim of the present study was to study the roles and mechanisms of miR-423-5p in hypoxia/reoxygenation (H/R) mediated cardiomyocytes injury. H9C2 cells were transfected with negative control, miR-423-5p mimic, and inhibitor for 48 hr, followed by exposed to H/R condition. Cell apoptosis rate, caspase 3/7 activities, Bax and cleaved-caspase 3 (c-caspase 3) protein levels were assayed by flow cytometry, Caspase-Glo 3/7 Assay kit, western blot analysis, respectively. Furthermore, the mitochondrial membrane potential, adenosine triphosphate (ATP) content, reactive oxygen species (ROS) production, and Drp1 expression were also investigated. Furthermore, the dual-luciferase reporter assay was used to evaluate the relationship between miR-423-5p and Myb-related protein B (MYBL2). The roles of miR-423-5p in wnt/β-catenin were assessed by western blot analysis. The results revealed that H/R triggered miR-423-5p expression. Overexpression of miR-423-5p promoted cardiomyocyte apoptosis, enhanced the activities of caspase 3/7, upregulated the expression of Bax and c-caspase 3. miR-423-5p upregulation caused the loss of mitochondrial membrane potential and the reduction of ATP content, the augment of ROS production and Drp1 expression. However, the opposite trends were observed upon suppression of miR-423-5p. In addition, miR-423-5p could target the 3' untranslated region of MYBL2. miR-423-5p depletion led to the activation of the wnt/β-catenin signaling pathway via targeting MYBL2. Knockdown of MYBL2 was obviously reversed the roles of miR-423-5p in apoptosis and mitochondrial dysfunction. Taken together, miR-423-5p suppression reduced H/R-induced cardiomyocytes injury through activation of the wnt/β-catenin signaling pathway via targeting MYBL2 in cardiomyocytes.
Collapse
Affiliation(s)
- Xin Zhu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaolan Lu
- Department of Emergency ICU, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
14
|
Zhang H, Chen X, Zong B, Yuan H, Wang Z, Wei Y, Wang X, Liu G, Zhang J, Li S, Cheng G, Wang Y, Ma Y. Gypenosides improve diabetic cardiomyopathy by inhibiting ROS-mediated NLRP3 inflammasome activation. J Cell Mol Med 2018; 22:4437-4448. [PMID: 29993180 PMCID: PMC6111804 DOI: 10.1111/jcmm.13743] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
NLRP3 inflammasome activation plays an important role in diabetic cardiomyopathy (DCM), which may relate to excessive production of reactive oxygen species (ROS). Gypenosides (Gps), the major ingredients of Gynostemma pentaphylla (Thunb.) Makino, have exerted the properties of anti-hyperglycaemia and anti-inflammation, but whether Gps improve myocardial damage and the mechanism remains unclear. Here, we found that high glucose (HG) induced myocardial damage by activating the NLRP3 inflammasome and then promoting IL-1β and IL-18 secretion in H9C2 cells and NRVMs. Meanwhile, HG elevated the production of ROS, which was vital to NLRP3 inflammasome activation. Moreover, the ROS activated the NLRP3 inflammasome mainly by cytochrome c influx into the cytoplasm and binding to NLRP3. Inhibition of ROS and cytochrome c dramatically down-regulated NLRP3 inflammasome activation and improved the cardiomyocyte damage induced by HG, which was also detected in cells treated by Gps. Furthermore, Gps also reduced the levels of the C-reactive proteins (CRPs), IL-1β and IL-18, inhibited NLRP3 inflammasome activation and consequently improved myocardial damage in vivo. These findings provide a mechanism that ROS induced by HG activates the NLRP3 inflammasome by cytochrome c binding to NLRP3 and that Gps may be potential and effective drugs for DCM via the inhibition of ROS-mediated NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Hailong Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Xi Chen
- Department of General Pathology, Huaihe Hospital, Henan University, Kaifeng, China
| | - Beibei Zong
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Hongmin Yuan
- Department of Thyroid Breast Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yinxiang Wei
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Xuance Wang
- Centre for Translational Medicine, Huaihe Hospital, Henan University, Kaifeng, China
| | - Guangchao Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Shulian Li
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Guanchang Cheng
- Department of Cardiac Surgery, Huaihe Hospital, Henan University, Kaifeng, China
| | - Yaohui Wang
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, School of Basic Medicine, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Yang HJ, Shi X, Ju F, Hao BN, Ma SP, Wang L, Cheng BF, Wang M. Cold Shock Induced Protein RBM3 but Not Mild Hypothermia Protects Human SH-SY5Y Neuroblastoma Cells From MPP +-Induced Neurotoxicity. Front Neurosci 2018; 12:298. [PMID: 29773975 PMCID: PMC5943555 DOI: 10.3389/fnins.2018.00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/17/2018] [Indexed: 01/12/2023] Open
Abstract
The cold shock protein RBM3 can mediate mild hypothermia-related protection in neurodegeneration such as Alzheimer's disease. However, it remains unclear whether RBM3 and mild hypothermia provide same protection in model of Parkinson's disease (PD), the second most common neurodegenerative disorder. In this study, human SH-SY5Y neuroblastoma cells subjected to insult by 1-methyl-4-phenylpyridinium (MPP+) served as an in-vitro model of PD. Mild hypothermia (32°C) aggravated MPP+-induced apoptosis, which was boosted when RBM3 was silenced by siRNA. In contrast, overexpression of RBM3 significantly reduced this apoptosis. MPP+ treatment downregulated the expression of RBM3 both endogenously and exogenously and suppressed its induction by mild hypothermia (32°C). In conclusion, our data suggest that cold shock protein RBM3 provides neuroprotection in a cell model of PD, suggesting that RBM3 induction may be a suitable strategy for PD therapy. However, mild hypothermia exacerbates MPP+-induced apoptosis even that RBM3 could be synthesized during mild hypothermia.
Collapse
Affiliation(s)
- Hai-Jie Yang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiang Shi
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Fei Ju
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | | | - Shuang-Ping Ma
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Lei Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Bin-Feng Cheng
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Mian Wang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|