1
|
da Silva IV, Lopes PA, Fonseca E, Vigia E, Paulino J, Soveral G. The Association of Aquaporins with MAPK Signaling Pathway Unveils Potential Prognostic Biomarkers for Pancreatic Cancer: A Transcriptomics Approach. Biomolecules 2025; 15:488. [PMID: 40305202 PMCID: PMC12024632 DOI: 10.3390/biom15040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Pancreatic cancer is one of the most lethal and challenging malignancies. Its severity is primarily linked to the constitutively activated mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Aquaporins (AQPs) are frequently overexpressed in pancreatic cancer, playing crucial roles in cell signaling, and consequently promoting cell migration, proliferation, and invasion. Here, we investigate the transcriptomics of key players in epithelial-mesenchymal transition (EMT) and the MAPK/ERK signaling pathway in pancreatic cancer tissues, correlating them with tumor AQP expression to highlight their potential as diagnostic or prognostic tools. The transcriptomics analysis was conducted in 24 paired pancreatic tumors and adjacent healthy tissues, and analyses were performed considering the patients' age and gender, as well as tumor invasiveness and aggressiveness. Our results revealed strong positive Pearson correlation coefficients between AQP3 and c-Jun, and between AQP5 and CDH1/EGFR in pancreatic tumors but not in healthy tissues, with posterior in vitro confirmation in pancreatic cancer BxPC3 cells, suggesting a shift in the regulatory mechanisms of gene expression that certainly affect the physiology of the tissue, influencing cancer initiation and progression. This study underscores the interplay between AQPs and cancer signaling pathways, opening new avenues for defining novel clinical biomarkers and improving the early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Paula A. Lopes
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Elisabete Fonseca
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Emanuel Vigia
- Hepatobiliopancreatic and Transplantation Center, Hospital de Curry Cabral (CHULC), 1050-099 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Jorge Paulino
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Hospital da Luz, 1500-650 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
2
|
Pimpão C, da Silva IV, Soveral G. The Expanding Role of Aquaporin-1, Aquaporin-3 and Aquaporin-5 as Transceptors: Involvement in Cancer Development and Potential Druggability. Int J Mol Sci 2025; 26:1330. [PMID: 39941100 PMCID: PMC11818598 DOI: 10.3390/ijms26031330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
Aquaporins (AQPs) are transmembrane proteins that facilitate the transport of water and small solutes, including glycerol, hydrogen peroxide and ions, across cell membranes. Beyond their established physiological roles in water regulation and metabolic processes, AQPs also exhibit receptor-like signaling activities in cancer-associated signaling pathways, integrating the dual roles of transporters and receptors, hence functioning as transceptors. This dual functionality underpins their critical involvement in cancer biology, where AQPs play key roles in promoting cell proliferation, migration, and invasion, contributing significantly to carcinogenesis. Among the AQPs, AQP1, AQP3 and AQP5 have been consistently identified as being aberrantly expressed in various tumor types. Their overexpression is strongly associated with tumor progression, metastasis, and poor patient prognosis. This review explores the pivotal roles of AQP1, AQP3 and AQP5 as transceptors in cancer biology, underscoring their importance as pharmacological targets. It highlights the urgent need for the development of effective modulators to target these AQPs, offering a promising avenue to enhance current therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
3
|
Piotrowsky A, Burkard M, Schmieder H, Venturelli S, Renner O, Marongiu L. The therapeutic potential of vitamins A, C, and D in pancreatic cancer. Heliyon 2025; 11:e41598. [PMID: 39850424 PMCID: PMC11754517 DOI: 10.1016/j.heliyon.2024.e41598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 12/05/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025] Open
Abstract
The pancreatic ductal adenocarcinoma (PDAC) is among the deadliest tumor diseases worldwide. While treatment options have generally become more diverse, little progress has been made in the treatment of PDAC and the median survival time for patients with locally advanced PDAC is between 8.7 and 13.7 months despite treatment. The aim of this review was to explore the therapeutic potential of complementing standard therapy with natural or synthetic forms of vitamins A, C, and D. The therapeutic use of vitamins A, C, and D could be a promising addition to the treatment of PDAC. For all three vitamins and their derivatives, tumor cell-specific cytotoxicity and growth inhibition against PDAC cells has been demonstrated in vitro and in preclinical animal models. While the antitumor effect of vitamin C is probably mainly due to its pro-oxidative effect in supraphysiological concentrations, vitamin A and vitamin D exert their effect by activating nuclear receptors and influencing gene transcription. In addition, there is increasing evidence that vitamin A and vitamin D influence the tumor stroma, making the tumor tissue more accessible to other therapeutic agents. Based on these promising findings, there is a high urgency to investigate vitamins A, C, and D in a clinical context as a supplement to standard therapy in PDAC. Further studies are needed to better understand the exact mechanism of action of the individual compounds and to develop the best possible treatment regimen. This could contribute to the long-awaited progress in the treatment of this highly lethal tumor entity.
Collapse
Affiliation(s)
- Alban Piotrowsky
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Hendrik Schmieder
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- Faculty of Food and Nutrition Sciences, University of Applied Sciences, Hochschule Niederrhein, 41065, Moenchengladbach, Germany
| | - Luigi Marongiu
- Department of Nutritional Biochemistry, University of Hohenheim, 70599, Stuttgart, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, 70599, Stuttgart, Germany
| |
Collapse
|
4
|
Li J, Shi D, Gong Z, Liu W, Zhang Y, Luo B. Aquaporin-3 is down-regulated by LMP1 in nasopharyngeal carcinoma cells to regulate cell migration and affect EBV latent infection. Virus Genes 2024; 60:488-500. [PMID: 39103702 DOI: 10.1007/s11262-024-02096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Epstein-Barr virus (EBV) infection has a strong correlation with the development of nasopharyngeal carcinoma (NPC). Aquaporin 3 (AQP3), a member of the aquaporin family, plays an important role in tumor development, especially in epithelial-mesenchymal transition. In this study, the expression of AQP3 in EBV-positive NPC cells was significantly lower than that in EBV-negative NPC cells. Western blot and qRT-PCR analysis showed that LMP1 down-regulated the expression of AQP3 by activating the ERK pathway. Cell biology experiments have confirmed that AQP3 affects the development of tumor by promoting cell migration and proliferation in NPC cells. In addition, AQP3 can promote the lysis of EBV in EBV-positive NPC cells. The inhibition of AQP3 expression by EBV through LMP1 may be one of the mechanisms by which EBV maintains latent infection-induced tumor progression.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhiyuan Gong
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
5
|
Dang Y, He X, Liu X, Wang Y, Geng S, Cheng Y, Ma H, Zhao X. Causal associations between constipation and pan-cancer: a bidirectional Mendelian randomization study. Front Oncol 2024; 14:1428003. [PMID: 39346734 PMCID: PMC11427234 DOI: 10.3389/fonc.2024.1428003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Objective Observational studies have suggested a potential association between constipation and several cancers. However, the causal relationship between constipation and cancer remains unclear. The purpose of this study is to explore the potential causal relationship between constipation and pan-cancer using Mendelian Randomization (MR) methods. Methods We performed a bidirectional MR analysis using publicly available summary data from Genome-Wide Association Studies (GWAS) statistics. The Inverse Variance Weighted (IVW) method was used as the main analysis method. We also used four MR methods: MR-Egger, Weighted Median, MR-PRESSO and MR.RAPS. Simultaneously, MR-Egger regression, Cochran's Q test and MR-PRESSO Global test were used to estimate the pleiotropy and heterogeneity of SNPs. In addition, we performed "leave-one-out" analyses" to avoid bias caused by horizontal pleiotropy of individual SNPs. Results MR analysis revealed a potential causal association between constipation and the risk of colorectal cancer (CRC) [IVW (OR= 1.0021 (1.0003, 1.0039), P= 0.0234)], lung cancer (LC) [IVW (OR=1.0955 (1.0134, 1.1843), P=0.0218)], Oral cavity and pharyngeal cancer (OPC) [IVW (OR=1.4068 (1.0070, 1.9652), P=0.0454)], and Pancreatic cancer (PC) [IVW (OR=1.5580 (1.0659, 2.2773), P=0.0221)]. In addition, we explored causal relationships between constipation and 12 other types of cancers, including gastric cancer, esophageal cancer, skin melanoma and so on. All five methods yielded no evidence of a causal association between constipation and the risk of these cancer types. In the reverse MR analysis, there was no evidence of a causal association between cancer and the risk of constipation for all five methods. Conclusion Our bidirectional MR study suggests a potential relationship between constipation and an increased risk of CRC, LC OPC and PC. The underlying mechanisms behind these associations will need to be explored in future experimental studies.
Collapse
Affiliation(s)
- Yongze Dang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xinyu He
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoxiao Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yuchen Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shangyi Geng
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yutong Cheng
- Department of Gastroenterology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongbing Ma
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xixi Zhao
- Department of Radiation Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Liang Y, Chen P, Wang S, Cai L, Zhu F, Jiang Y, Li L, Zhu L, Heng Y, Zhang W, Pan Y, Wei W, Jia L. SCF FBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells. Autophagy 2024; 20:1984-1999. [PMID: 38726865 PMCID: PMC11346525 DOI: 10.1080/15548627.2024.2353497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024] Open
Abstract
AQP3 (aquaporin 3 (Gill blood group)), a member of the AQP family, is an aquaglyceroporin which transports water, glycerol and small solutes across the plasma membrane. Beyond its role in fluid transport, AQP3 plays a significant role in regulating various aspects of tumor cell behavior, including cell proliferation, migration, and invasion. Nevertheless, the underlying regulatory mechanism of AQP3 in tumors remains unclear. Here, for the first time, we report that AQP3 is a direct target for ubiquitination by the SCFFBXW5 complex. In addition, we revealed that downregulation of FBXW5 significantly induced AQP3 expression to prompt macroautophagic/autophagic cell death in hepatocellular carcinoma (HCC) cells. Mechanistically, AQP3 accumulation induced by FBXW5 knockdown led to the degradation of PDPK1/PDK1 in a lysosomal-dependent manner, thus inactivating the AKT-MTOR pathway and inducing autophagic death in HCC. Taken together, our findings revealed a previously undiscovered regulatory mechanism through which FBXW5 degraded AQP3 to suppress autophagic cell death via the PDPK1-AKT-MTOR axis in HCC cells.Abbreviation: BafA1: bafilomycin A1; CQ: chloroquine; CRL: CUL-Ring E3 ubiquitin ligases; FBXW5: F-box and WD repeat domain containing 5; HCC: hepatocellular carcinoma; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; 3-MA: 3-methyladenine; PDPK1/PDK1: 3-phosphoinositide dependent protein kinase 1; RBX1/ROC1: ring-box 1; SKP1: S-phase kinase associated protein 1; SCF: SKP1-CUL1-F-box protein.
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shiwen Wang
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhu
- Department of Laboratory Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Zhu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Department of Integrative Medicine, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yongfu Pan
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Bhattacharjee A, Jana A, Bhattacharjee S, Mitra S, De S, Alghamdi BS, Alam MZ, Mahmoud AB, Al Shareef Z, Abdel-Rahman WM, Woon-Khiong C, Alexiou A, Papadakis M, Ashraf GM. The role of Aquaporins in tumorigenesis: implications for therapeutic development. Cell Commun Signal 2024; 22:106. [PMID: 38336645 PMCID: PMC10854195 DOI: 10.1186/s12964-023-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/12/2024] Open
Abstract
Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.
Collapse
Affiliation(s)
- Arkadyuti Bhattacharjee
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, USA
| | - Ankit Jana
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Swagato Bhattacharjee
- KoshKey Sciences Pvt Ltd, Canara Bank Layout, Karnataka, Bengaluru, Rajiv Gandhi Nagar, Kodigehalli, 560065, India
| | - Sankalan Mitra
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Swagata De
- Department of English, DDE Unit, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India
| | - Badrah S Alghamdi
- Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad Zubair Alam
- Pre-clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad Bakur Mahmoud
- College of Applied Medical Sciences, Taibah University, Almadinah, Almunwarah, 71491, Saudi Arabia
| | - Zainab Al Shareef
- College of Medicine, and Research Institute for Medical and Health Sciences, Department of Basic Medical Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Wael M Abdel-Rahman
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Chan Woon-Khiong
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Wien, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Ghulam Md Ashraf
- College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
8
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
9
|
Lopes PA, Fonseca E, da Silva IV, Vigia E, Paulino J, Soveral G. Aquaporins Transcripts with Potential Prognostic Value in Pancreatic Cancer. Genes (Basel) 2023; 14:1694. [PMID: 37761834 PMCID: PMC10530795 DOI: 10.3390/genes14091694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Pancreatic cancer is anticipated to be the second leading cause of cancer-related death by 2030. Aquaporins (AQPs), a family of water channel proteins, have been linked to carcinogenesis. The aim of this study was to determine AQP gene expression in pancreatic cancer tissues and to validate aquaporins as possible diagnosis and/or prognosis genes. The relative gene expression levels of AQP1, AQP3, AQP5, and AQP9 were analyzed using real-time quantitative PCR (RT-qPCR) in 24 paired pancreatic tumors and adjacent healthy tissues according to variables such as age, gender, and tumor invasiveness and aggressiveness. AQPs transcripts were detected in both healthy and tumor tissues. While AQP1 was downregulated in the tumor samples, AQP3 was particularly overexpressed in low-grade invasive tumors. Interestingly, most of the strong positive Pearson correlation coefficients found between AQPs in healthy tissues were lost when analyzing the tumor tissues, suggesting disruption of the coordinated AQP-gene expression in pancreatic cancer.
Collapse
Affiliation(s)
- Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Elisabete Fonseca
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.F.); (I.V.d.S.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.F.); (I.V.d.S.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Emanuel Vigia
- Hepatobiliopancreatic and Transplantation Center, Hospital de Curry Cabral-CHULC, 1050-099 Lisbon, Portugal;
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
| | - Jorge Paulino
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal;
- Hospital da Luz, 1500-650 Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.F.); (I.V.d.S.)
- Department of Pharmaceutical Sciences and Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| |
Collapse
|
10
|
Mlinarić M, Lučić I, Milković L, da Silva IV, Tartaro Bujak I, Musani V, Soveral G, Čipak Gašparović A. AQP3-Dependent PI3K/Akt Modulation in Breast Cancer Cells. Int J Mol Sci 2023; 24:ijms24098133. [PMID: 37175840 PMCID: PMC10179317 DOI: 10.3390/ijms24098133] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Aquaporin 3 (AQP3) is a peroxiporin, a membrane protein that channels hydrogen peroxide in addition to water and glycerol. AQP3 expression also correlates with tumor progression and malignancy and is, therefore, a potential target in breast cancer therapy. In addition, epithelial growth factor receptor (EGFR) plays an important role in breast cancer. Therefore, we investigated whether disruption of the lipid raft harboring EGFR could affect AQP3 expression, and conversely, whether AQP3 silencing would affect the EGFR/phosphoinositide-3-kinase (PI3K)/Protein kinase B (PKB or Akt) signaling pathway in breast cancer cell lines with different malignant capacities. We evaluated H2O2 uptake, cell migratory capacity, and expression of PI3K, pAkt/Akt in three breast cancer cell lines, MCF7, SkBr3, and SUM159PT, and in the nontumorigenic breast epithelial cell line MCF10A. Our results show different responses between the tested cell lines, especially when compared to the nontumorigenic cell line. Neither lipid raft disruption nor EGF stimuli had an effect on PI3K/Akt pathway in MCF10A cell line. AQP3-silencing in SkBr3 and SUM159PT showed that AQP3 can modulate PI3K/Akt activation in these cells. Interestingly, SUM159PT cells increase nuclear factor-E2-related factor 2 (NRF2) in response to lipid raft disruption and EGF stimuli, suggesting an oxidative-dependent response to these treatments. These results suggest that in breast cancer cell lines, AQP3 is not directly related to PI3K/Akt pathway but rather in a cell-line-dependent manner.
Collapse
Affiliation(s)
- Monika Mlinarić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan Lučić
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Lidija Milković
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Ivana Tartaro Bujak
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Vesna Musani
- Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | | |
Collapse
|
11
|
Aquaporin-mediated dysregulation of cell migration in disease states. Cell Mol Life Sci 2023; 80:48. [PMID: 36682037 DOI: 10.1007/s00018-022-04665-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/01/2022] [Accepted: 12/10/2022] [Indexed: 01/23/2023]
Abstract
Dysregulated cell migration and invasion are hallmarks of many disease states. This dysregulated migratory behavior is influenced by the changes in expression of aquaporins (AQPs) that occur during pathogenesis, including conditions such as cancer, endometriosis, and arthritis. The ubiquitous function of AQPs in migration of diseased cells makes them a crucial target for potential therapeutics; this possibility has led to extensive research into the specific mechanisms underlying AQP-mediated diseased cell migration. The functions of AQPs depend on a diverse set of variables including cell type, AQP isoform, disease state, cell microenvironments, and even the subcellular localization of AQPs. To consolidate the considerable work that has been conducted across these numerous variables, here we summarize and review the last decade's research covering the role of AQPs in the migration and invasion of cells in diseased states.
Collapse
|
12
|
Abulizi A, Dawuti A, Yang B. Aquaporins in Tumor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:303-315. [PMID: 36717503 DOI: 10.1007/978-981-19-7415-1_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Recent researches have demonstrated that aquaporins (AQPs), including water-selective channels, aquaglyceroporins and superaquaporins, are generally expressed in various tumors, such as lung, colorectal, liver, brain, breast tumors, etc. Therefore, it is imperative to study the accurate relationship between AQPs and tumor, which may provide innovative approaches to treat and prevent tumor development. In this chapter, we mainly reviewed the expression and pathophysiological function of AQPs in tumor, and summarize recent work on AQPs in tumor. Although, the underlying mechanism of AQP in tumor is not very clear, growing evidences suggest that cell migration, adhesion, angiogenesis, and division contribute to tumor development, in which AQPs might be involved. Therefore, it is still necessary to conduct further studies to determine the specific roles of AQPs in the tumor.
Collapse
Affiliation(s)
- Abudumijiti Abulizi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi, China.
| | - Awaguli Dawuti
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baoxue Yang
- School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
13
|
Yu C, Zhang X, Wang J, Song H, Liu W, Luo B. Molecular mechanism of aquaporin 3 (AQP3) regulating by LMP2A and its crosstalk with 4E-BP1 via ERK signaling pathway in EBV-associated gastric cancer. Virus Res 2022; 322:198947. [PMID: 36181978 DOI: 10.1016/j.virusres.2022.198947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022]
Abstract
Aquaporin 3(AQP3) is involved in epithelial-mesenchymal transformation of tumor cells and is closely related to the occurrence and development of tumors. However, the regulatory mechanism and function of AQP3 in EBV-associated gastric cancer (EBVaGC) are still poorly understood. This study aims to explore the regulatory effect of EBV on AQP3 and the cross talk of AQP3 with EIF4E-binding proteins 1(4E-BP1) in EBVaGC. The effect of LMP2A on the expression of AQP3 and 4E-BP1 was analyzed using real-time PCR and western blotting. The biological functions of AQP3 and 4E-BP1 in gastric cancer cells were detected by cell biological experiments. In addition, we examined the role of mTOR and ERK signaling pathways in the LMP2A/AQP3/4E-BP1 regulatory axis. We found that LMP2A could down-regulate AQP3 expression by inhibiting the activation of mTOR signaling pathway, and further promote autophagy and migration of gastric cancer cells. AQP3 up-regulated the expression of 4E-BP1 and its phosphorylated protein by activating ERK signaling pathway, thus promoting the autophagy and proliferation of gastric cancer cells. In conclusion, EBV-encoded LMP2A inhibits AQP3 expression, and further participates in cell proliferation, migration and autophagy through the mTOR/AQP3/ERK/4E-BP1 axis.
Collapse
Affiliation(s)
- Caixia Yu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Xing Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China
| | - Jiayi Wang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China; Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Hui Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China; Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao University, No. 6 Tongfu Road, Qingdao 266034, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
14
|
Clinical value and molecular mechanism of AQGPs in different tumors. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:174. [PMID: 35972604 PMCID: PMC9381609 DOI: 10.1007/s12032-022-01766-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022]
Abstract
Aquaglyceroporins (AQGPs), including AQP3, AQP7, AQP9, and AQP10, are transmembrane channels that allow small solutes across biological membranes, such as water, glycerol, H2O2, and so on. Increasing evidence suggests that they play critical roles in cancer. Overexpression or knockdown of AQGPs can promote or inhibit cancer cell proliferation, migration, invasion, apoptosis, epithelial-mesenchymal transition and metastasis, and the expression levels of AQGPs are closely linked to the prognosis of cancer patients. Here, we provide a comprehensive and detailed review to discuss the expression patterns of AQGPs in different cancers as well as the relationship between the expression patterns and prognosis. Then, we elaborate the relevance between AQGPs and malignant behaviors in cancer as well as the latent upstream regulators and downstream targets or signaling pathways of AQGPs. Finally, we summarize the potential clinical value in cancer treatment. This review will provide us with new ideas and thoughts for subsequent cancer therapy specifically targeting AQGPs.
Collapse
|
15
|
Wang Y, Guo Y, Zhuang T, Xu T, Ji M. SP1-Induced Upregulation of lncRNA LINC00659 Promotes Tumour Progression in Gastric Cancer by Regulating miR-370/AQP3 Axis. Front Endocrinol (Lausanne) 2022; 13:936037. [PMID: 35957833 PMCID: PMC9361049 DOI: 10.3389/fendo.2022.936037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Growing evidence demonstrates that long noncoding RNAs (lncRNAs) play critical roles in various human tumors. LncRNA LINC00659 (LINC00659) is a newly identified lncRNA and its roles in tumors remain largely unclear. In this study, we elucidated the potential functions and molecular mechanisms of LINC00659 on the biological behaviors of gastric cancer (GC), and also explored its clinical significance. We firstly demonstrated that LINC00659 levels were distinctly up-regulated in both GC specimens and cells using bioinformatics analysis and RT-PCR. The results of ChIP assays and luciferase reporter assays confirmed that upregulation of LINC00659 was activated by SP1 in GC. Clinical assays revealed that higher levels of LINC00659 were associated with TNM stage, lymphatic metastasis, and poorer prognosis. Moreover, LINC00659 was confirmed to be an independent prognostic marker for the patients with GC using multivariate assays. Lost-of-function assays indicated that knockdown of LINC00659 suppressed the proliferation, metastasis, and EMT progress of GC cells in vitro. Mechanistic investigation indicated that LINC00659 served as a competing endogenous RNA (ceRNA) for miR-370, thereby resulting in the upregulation of leading to the depression of its endogenous target gene AQP3. Overall, our present study revealed that the LINC00659/miR-370/AQP3 axis contributes to GC progression, which may provide clues for the exploration of cancer biomarkers and therapeutic targets for GC.
Collapse
Affiliation(s)
- Yao Wang
- Department of General Surgery, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Guo
- School of Medicine Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Ting Xu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Li D, Zhang Q, Zhou Y, Zhu H, Li T, Du F. A novel nitidine chloride nanoparticle overcomes the stemness of CD133 +EPCAM + Huh7 hepatocellular carcinoma cells for liver cancer therapy. BMC Pharmacol Toxicol 2022; 23:48. [PMID: 35820920 PMCID: PMC9277916 DOI: 10.1186/s40360-022-00589-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 01/15/2023] Open
Abstract
Background Stemness of CD133+EPCAM+ hepatocellular carcinoma cells ensures cancer resistance to apoptosis,which is a challenge to current liver cancer treatments. In this study, we evaluated the tumorcidal activity of a novel nanoparticle of nitidine chloride (TPGS-FA/NC, TPGS-FA: folic acid modified D-α-tocopheryl polyethylene glycol 1000 succinate, NC: nitidine chloride), against human hepatocellular carcinoma (HCC) cell line Huh7 growth in vitro and in vivo. Methods Huh7 cells were treated with TPGS-FA/NC. Cell proliferation was assessed using MTT and colony assays. The expression of cell markers and signaling proteins was detected using western blot analyses. A sphere culture technique was used to enrich cancer stem cells (CSC) in Huh7 cells. TPGS-FA/NC (7.5, 15, 30, 60, 120 μg/mL) dose-dependently inhibited the proliferation of HCC cells, which associated with a reduction in AQP3 and STAT3 expression. Importantly,TPGS-FA/NC (10, 20, and 40 μg/mL) significantly reduced the EpCAM+/CD133+cell numbers, suppressed the sphere formation. The in vivo antitumor efficacy of TPGS-FA/NC was proved in Huh7 cell xenograft model in BALB/c nude mice, which were administered TPGS-FA/NC(4 mg· kg − 1· d − 1, ig) for 2 weeks. Results TPGS-FA/NC dose-dependently suppressed the AQP3/STAT3/CD133 axis in Huh7 cells. In Huh7 xenograft bearing nude mice, TPGS-FA/NC administration markedly inhibited Huh7 xenograft tumor growth . Conclusions TPGS-FA/NC inhibit HCC tumor growth through multiple mechanisms, and it may be a promising candidate drug for the clinical therapy of hepatocellular carcinoma. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00589-z.
Collapse
Affiliation(s)
- Danni Li
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China.
| | - Qiying Zhang
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China
| | - Yuzhu Zhou
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China
| | - Hua Zhu
- College of Pharmacy, Guangxi University for Chinese Medicine, No.13 , Wu He street, Qingxiu District, Nanning, 530200, Guangxi Province, China
| | - Tong Li
- College of Pharmacy, Guangxi University for Chinese Medicine, No.13 , Wu He street, Qingxiu District, Nanning, 530200, Guangxi Province, China
| | - Fangkai Du
- School of Chemistry and Chemical Eengineering, Guangxi Minzu University, No.158, Da Xue Xi street, Xixiangtang District, Nanning, 530006, Guangxi Province, China
| |
Collapse
|
17
|
Pellavio G, Martinotti S, Patrone M, Ranzato E, Laforenza U. Aquaporin-6 May Increase the Resistance to Oxidative Stress of Malignant Pleural Mesothelioma Cells. Cells 2022; 11:cells11121892. [PMID: 35741021 PMCID: PMC9221246 DOI: 10.3390/cells11121892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 01/02/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer of the pleural surface and is associated with previous asbestos exposure. The chemotherapy drug is one of the main treatments, but the median survival ranges from 8 to 14 months from diagnosis. The redox homeostasis of tumor cells should be carefully considered since elevated levels of ROS favor cancer cell progression (proliferation and migration), while a further elevation leads to ferroptosis. This study aims to analyze the functioning/role of aquaporins (AQPs) as a hydrogen peroxide (H2O2) channel in epithelial and biphasic MPM cell lines, as well as their possible involvement in chemotherapy drug resistance. Results show that AQP-3, -5, -6, -9, and -11 were expressed at mRNA and protein levels. AQP-6 was localized in the plasma membrane and intracellular structures. Compared to normal mesothelial cells, the water permeability of mesothelioma cells is not reduced by exogenous oxidative stress, but it is considerably increased by heat stress, making these cells resistant to ferroptosis. Functional experiments performed in mesothelioma cells silenced for aquaporin-6 revealed that it is responsible, at least in part, for the increase in H2O2 efflux caused by heat stress. Moreover, mesothelioma cells knocked down for AQP-6 showed a reduced proliferation compared to mock cells. Current findings suggest the major role of AQP-6 in providing mesothelioma cells with the ability to resist oxidative stress that underlies their resistance to chemotherapy drugs.
Collapse
Affiliation(s)
- Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Simona Martinotti
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Mauro Patrone
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Elia Ranzato
- DiSIT-Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, viale Teresa Michel 11, 15121 Alessandria, Italy; (S.M.); (M.P.); (E.R.)
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-98-7568
| |
Collapse
|
18
|
Sahabi K, Selvarajah GT, Mokrish A, Rasedee A, Kqueen CY. Development and molecular characterization of doxorubicin-resistant canine mammary gland tumour cells. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2032719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Kabiru Sahabi
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Gayathri T. Selvarajah
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Ajat Mokrish
- Department of Veterinary Preclinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Abdullah Rasedee
- Department of Veterinary Diagnostic Laboratory, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Cheah Y. Kqueen
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory (CANRES), Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
19
|
Pimpão C, Wragg D, da Silva IV, Casini A, Soveral G. Aquaglyceroporin Modulators as Emergent Pharmacological Molecules for Human Diseases. Front Mol Biosci 2022; 9:845237. [PMID: 35187089 PMCID: PMC8850838 DOI: 10.3389/fmolb.2022.845237] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 12/26/2022] Open
Abstract
Aquaglyceroporins, a sub-class of aquaporins that facilitate the diffusion of water, glycerol and other small uncharged solutes across cell membranes, have been recognized for their important role in human physiology and their involvement in multiple disorders, mostly related to disturbed energy homeostasis. Aquaglyceroporins dysfunction in a variety of pathological conditions highlighted their targeting as novel therapeutic strategies, boosting the search for potent and selective modulators with pharmacological properties. The identification of selective inhibitors with potential clinical applications has been challenging, relying on accurate assays to measure membrane glycerol permeability and validate effective functional blockers. Additionally, biologicals such as hormones and natural compounds have been revealed as alternative strategies to modulate aquaglyceroporins via their gene and protein expression. This review summarizes the current knowledge of aquaglyceroporins’ involvement in several pathologies and the experimental approaches used to evaluate glycerol permeability and aquaglyceroporin modulation. In addition, we provide an update on aquaglyceroporins modulators reported to impact disease, unveiling aquaglyceroporin pharmacological targeting as a promising approach for innovative therapeutics.
Collapse
Affiliation(s)
- Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Darren Wragg
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Munich, Germany
- *Correspondence: Angela Casini, ; Graça Soveral,
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Angela Casini, ; Graça Soveral,
| |
Collapse
|
20
|
Dutta A, Das M. Deciphering the Role of Aquaporins in Metabolic Diseases: A Mini Review. Am J Med Sci 2022; 364:148-162. [DOI: 10.1016/j.amjms.2021.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 06/16/2021] [Accepted: 10/21/2021] [Indexed: 12/23/2022]
|
21
|
Bruun-Sørensen AS, Edamana S, Login FH, Borgquist S, Nejsum LN. Aquaporins in pancreatic ductal adenocarcinoma. APMIS 2021; 129:700-705. [PMID: 34582595 DOI: 10.1111/apm.13184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022]
Abstract
Aquaporins are water channel proteins facilitating passive transport of water across cellular membranes. Aquaporins are over- or ectopically expressed in a multitude of cancers, including pancreatic ductal adenocarcinoma, which is a highly aggressive cancer with low survival rate. Evidence suggests that aquaporins can affect multiple cellular processes involved in cancer development and progression including epithelial-mesenchymal transition, cellular migration, cell proliferation, invasion, and cellular adhesions. In pancreatic ductal adenocarcinoma, aquaporin-1, aquaporin-3, and aquaporin-5 are overexpressed and have been associated with metastatic processes and poor survival. Thus, aquaporin expression has been suggested as diagnostic markers and therapeutic targets in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Anne Sofie Bruun-Sørensen
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Signe Borgquist
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
- Department of Oncology, Aarhus University Hospital, Aarhus N, Denmark
- Department of Oncology, Clinical Sciences, Lund University, Lund, Sweden
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
22
|
Ala M, Mohammad Jafari R, Hajiabbasi A, Dehpour AR. Aquaporins and diseases pathogenesis: From trivial to undeniable involvements, a disease-based point of view. J Cell Physiol 2021; 236:6115-6135. [PMID: 33559160 DOI: 10.1002/jcp.30318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/01/2023]
Abstract
Aquaporins (AQPs), as transmembrane proteins, were primarily identified as water channels with the ability of regulating the transmission of water, glycerol, urea, and other small-sized molecules. The classic view of AQPs involvement in therapeutic plan restricted them and their regulators into managing only a narrow spectrum of the diseases such as diabetes insipidus and the syndrome of inappropriate ADH secretion. However, further investigations performed, especially in the third millennium, has found that their cooperation in water transmission control can be manipulated to handle other burden-imposing diseases such as cirrhosis, heart failure, Meniere's disease, cancer, bullous pemphigoid, eczema, and Sjögren's syndrome.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Hajiabbasi
- Guilan Rheumatology Research Center, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Vieira da Silva I, P. Soares B, Pimpão C, M. A. Pinto R, Costa T, Freire JPB, Corrent E, Chalvon-Demersay T, Prates JAM, Lopes PA, Soveral G. Glutamine and cystine-enriched diets modulate aquaporins gene expression in the small intestine of piglets. PLoS One 2021; 16:e0245739. [PMID: 33465153 PMCID: PMC7815100 DOI: 10.1371/journal.pone.0245739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
The regulation of glycerol permeability in the gastrointestinal tract is crucial to control fat deposition, lipolysis and gluconeogenesis. Knowing that the amino acid glutamine is a physiological regulator of gluconeogenesis, whereas cystine promotes adiposity, herein we investigated the effects of dietary supplementation with glutamine and cystine on the serum biochemical parameters of piglets fed on amino acid-enriched diets, as well as on the transcriptional profile of membrane water and glycerol channels aquaporins (AQPs) in the ileum portion of the small intestine and its impact on intestinal permeability. Twenty male piglets with an initial body weight of 8.8 ± 0.89 kg were allocated to four dietary treatments (n = 5) and received, during a four week-period, a basal diet without supplementation (control) or supplemented with 8 kg/ton of glutamine (Gln), cystine (Cys) or the combination of the two amino acids in equal proportions (Gln + Cys). Most biochemical parameters were found improved in piglets fed Gln and Cys diet. mRNA levels of AQP3 were found predominant over the others. Both amino acids, individually or combined, were responsible for a consistent downregulation of AQP1, AQP7 and AQP10, without impacting on water permeability. Conversely, Cys enriched diet upregulated AQP3 enhancing basolateral membranes glycerol permeability and downregulating glycerol kinase (GK) of intestinal cells. Altogether, our data reveal that amino acids dietary supplementation can modulate intestinal AQPs expression and unveil AQP3 as a promising target for adipogenesis regulation.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Bárbara P. Soares
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Catarina Pimpão
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Rui M. A. Pinto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- JCS, Laboratório de Análises Clínicas Dr. Joaquim Chaves, Algés, Portugal
| | - Teresa Costa
- Indukern Portugal, Lda., Centro Empresarial Sintra Estoril II, Sintra, Portugal
| | - João P. B. Freire
- LEAF—Linking Engineering, Agriculture and Food, Departamento de Ciências e Engenharia de Biossistemas, Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Lisboa, Portugal
| | | | | | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (PAL); (GS)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
- Dept. Bioquímica e Biologia Humana, Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
- * E-mail: (PAL); (GS)
| |
Collapse
|
24
|
Schnipper J, Dhennin-Duthille I, Ahidouch A, Ouadid-Ahidouch H. Ion Channel Signature in Healthy Pancreas and Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:568993. [PMID: 33178018 PMCID: PMC7596276 DOI: 10.3389/fphar.2020.568993] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth most common cause of cancer-related deaths in United States and Europe. It is predicted that PDAC will become the second leading cause of cancer-related deaths during the next decades. The development of PDAC is not well understood, however, studies have shown that dysregulated exocrine pancreatic fluid secretion can contribute to pathologies of exocrine pancreas, including PDAC. The major roles of healthy exocrine pancreatic tissue are secretion of enzymes and bicarbonate rich fluid, where ion channels participate to fine-tune these biological processes. It is well known that ion channels located in the plasma membrane regulate multiple cellular functions and are involved in the communication between extracellular events and intracellular signaling pathways and can function as signal transducers themselves. Hereby, they contribute to maintain resting membrane potential, electrical signaling in excitable cells, and ion homeostasis. Despite their contribution to basic cellular processes, ion channels are also involved in the malignant transformation from a normal to a malignant phenotype. Aberrant expression and activity of ion channels have an impact on essentially all hallmarks of cancer defined as; uncontrolled proliferation, evasion of apoptosis, sustained angiogenesis and promotion of invasion and migration. Research indicates that certain ion channels are involved in the aberrant tumor growth and metastatic processes of PDAC. The purpose of this review is to summarize the important expression, localization, and function of ion channels in normal exocrine pancreatic tissue and how they are involved in PDAC progression and development. As ion channels are suggested to be potential targets of treatment they are furthermore suggested to be biomarkers of different cancers. Therefore, we describe the importance of ion channels in PDAC as markers of diagnosis and clinical factors.
Collapse
Affiliation(s)
- Julie Schnipper
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Isabelle Dhennin-Duthille
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| | - Ahmed Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France.,Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - Halima Ouadid-Ahidouch
- Laboratory of Cellular and Molecular Physiology, UR-4667, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
25
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
26
|
da Silva IV, Cardoso C, Méndez-Giménez L, Camoes SP, Frühbeck G, Rodríguez A, Miranda JP, Soveral G. Aquaporin-7 and aquaporin-12 modulate the inflammatory phenotype of endocrine pancreatic beta-cells. Arch Biochem Biophys 2020; 691:108481. [PMID: 32735865 DOI: 10.1016/j.abb.2020.108481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/08/2023]
Abstract
Aquaporins (AQPs) facilitate water and glycerol movement across membranes. AQP7 is the main aquaglyceroporin in pancreatic β-cells and was proposed to play a role in insulin exocytosis. Although AQP7-null mice display adult-onset obesity, impaired insulin secretion and insulin resistance, AQP7 loss-of-function homozygous mutations in humans do not correlate with obesity nor type-2 diabetes. In addition, AQP12 is upregulated in pancreatitis. However, the implication of this isoform in endocrine pancreas inflammation is still unclear. Here, we investigated AQP7 and AQP12 involvement in cellular and inflammatory processes using RIN-m5F beta cells, a model widely used for their high insulin secretion. AQP7 and AQP12 expression were directly associated with cell proliferation, adhesion and migration. While tumor necrosis factor-alpha (TNFα)-induced inflammation impaired AQP7 expression and drastically reduced insulin secretion, lipopolysaccharides (LPS) prompted AQP7 upregulation, and both TNFα and LPS upregulated AQP12. Importantly, cells overexpressing AQP12 are more resistant to inflammation, revealing lower levels of proinflammatory markers. Altogether, these data document AQP7 involvement in insulin secretion and AQP12 implication in inflammation, highlighting their fundamental role in pancreatic β-cell function.
Collapse
Affiliation(s)
- Inês Vieira da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Carlos Cardoso
- Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal; Clinical Chemistry Laboratory, Dr. Joaquim Chaves, 1495-068, Algés, Portugal
| | - Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Sérgio Povoas Camoes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, 31008, Pamplona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 31008, Pamplona, Spain
| | - Joana Paiva Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Toxicological and Bromatological Sciences, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal.
| |
Collapse
|
27
|
Chow PH, Bowen J, Yool AJ. Combined Systematic Review and Transcriptomic Analyses of Mammalian Aquaporin Classes 1 to 10 as Biomarkers and Prognostic Indicators in Diverse Cancers. Cancers (Basel) 2020; 12:E1911. [PMID: 32679804 PMCID: PMC7409285 DOI: 10.3390/cancers12071911] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Aquaporin (AQP) channels enable regulated transport of water and solutes essential for fluid homeostasis, but they are gaining attention as targets for anticancer therapies. Patterns of AQP expression and survival rates for patients were evaluated by systematic review (PubMed and Embase) and transcriptomic analyses of RNAseq data (Human Protein Atlas database). Meta-analyses confirmed predominantly negative associations between AQP protein and RNA expression levels and patient survival times, most notably for AQP1 in lung, breast and prostate cancers; AQP3 in esophageal, liver and breast cancers; and AQP9 in liver cancer. Patterns of AQP expression were clustered for groups of cancers and associated with risk of death. A quantitative transcriptomic analysis of AQP1-10 in human cancer biopsies similarly showed that increased transcript levels of AQPs 1, 3, 5 and 9 were most frequently associated with poor survival. Unexpectedly, increased AQP7 and AQP8 levels were associated with better survival times in glioma, ovarian and endometrial cancers, and increased AQP11 with better survival in colorectal and breast cancers. Although molecular mechanisms of aquaporins in pathology or protection remain to be fully defined, results here support the hypothesis that overexpression of selected classes of AQPs differentially augments cancer progression. Beyond fluid homeostasis, potential roles for AQPs in cancers (suggested from an expanding appreciation of their functions in normal tissues) include cell motility, membrane process extension, transport of signaling molecules, control of proliferation and apoptosis, increased mechanical compliance, and gas exchange. AQP expression also has been linked to differences in sensitivity to chemotherapy treatments, suggesting possible roles as biomarkers for personalized treatments. Development of AQP pharmacological modulators, administered in cancer-specific combinations, might inspire new interventions for controlling malignant carcinomas.
Collapse
Affiliation(s)
| | | | - Andrea J Yool
- Adelaide Medical School, University of Adelaide, Adelaide SA 5005, Australia; (P.H.C.); (J.B.)
| |
Collapse
|
28
|
Malale K, Fu J, Qiu L, Zhan K, Gan X, Mei Z. Hypoxia-Induced Aquaporin-3 Changes Hepatocellular Carcinoma Cell Sensitivity to Sorafenib by Activating the PI3K/Akt Signaling Pathway. Cancer Manag Res 2020; 12:4321-4333. [PMID: 32606928 PMCID: PMC7294049 DOI: 10.2147/cmar.s243918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/12/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose Hypoxia-induced changes are primarily activated in patients with hepatocellular carcinoma (HCC) and long-term sorafenib exposure, thereby reducing the sensitivity to the drug. Aquaporin-3 (AQP3), a member of the aquaporin family, is a hypoxia-induced substance that affects the chemosensitivity of non-hepatocellular tumors. However, its expression and role in the sensitivity of hypoxic HCC cells to sorafenib-induced apoptosis remain unclear. The purpose of this study was to detect changes in AQP3 expression in hypoxic HCC cells and to determine whether these changes alter the sensitivity of these cells to sorafenib. Materials and Methods Huh7 and HepG2 hypoxic cell models were established and AQP3 expression was detected using quantitative real-time polymerase chain reaction (qPCR) and Western blotting. Furthermore, the role of AQP3 in cell sensitivity to sorafenib was evaluated via flow cytometry, Western blotting, and a CCK-8 assay. Results The results of qPCR and Western blotting showed that AQP3 was overexpressed in the Huh7 and HepG2 hypoxic cell models. Furthermore, AQP3 protein levels were positively correlated with hypoxia-inducible factor-1α (HIF-1α) levels. Compared with cells transfected with lentivirus-GFP (Lv-GFP), hypoxic cells transfected with lentivirus-AQP3 (Lv-AQP3) were less sensitive to sorafenib-induced apoptosis. However, the sensitivity to the drug increased in cells transfected with lentivirus-AQP3RNAi (Lv-AQP3RNAi). Akt and Erk phosphorylation was enhanced in Lv-AQP3-transfected cells. Compared with UO126 (a Mek1/2 inhibitor), LY294002 (a PI3K inhibitor) attenuated the AQP3-induced insensitivity to sorafenib observed in hypoxic cells transfected with Lv-AQP3. Combined with LY294002-treated cells, hypoxic cells transfected with Lv-AQP3RNAi were more sensitive to sorafenib. Conclusion The study results show that AQP3 is a potential therapeutic target for improving the sensitivity of hypoxic HCC cells to sorafenib.
Collapse
Affiliation(s)
- Kija Malale
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Jili Fu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liewang Qiu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ke Zhan
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiuni Gan
- Department of Nursing, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
29
|
Wang S, Wu Y, Yang S, Liu X, Lu Y, Liu F, Li G, Tian G. miR-874 directly targets AQP3 to inhibit cell proliferation, mobility and EMT in non-small cell lung cancer. Thorac Cancer 2020; 11:1550-1558. [PMID: 32301290 PMCID: PMC7262918 DOI: 10.1111/1759-7714.13428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a major type of lung cancer with high morbidity and high mortality. miR-874 has been determined to play a role in tumor suppression in several cancers. The purpose of our study was to detect the biological mechanisms of miR-874 and AQP3 in NSCLC. METHODS CCK-8 and Transwell assays were utilized to perform cell invasion.Western blot was employed to evaluate the protein expression. RESULTS The expression of miR-874 was lower in NSCLC tissues than that of corresponding adjacent nontumor tissues. Downregulation of miR-874 predicted a poor prognosis in NSCLC. The cell proliferation and mobility were suppressed by overexpression of miR-874, which were promoted by knockdown of miR-874 in A549 and H1299 cells. miR-874 mediated the expression of AQP3 by directly binding to the 3'-untranslated regions (UTR) of AQP3 mRNA in NSCLC cells. Moreover, miR-874 inhibited the proliferation and mobility by targeting AQP3 and inhibited the PI3K/AKT signaling pathway in A549 cells. miR-874 inhibited the growth of NSCLC in vivo. CONCLUSIONS In conclusion, miR-874 inhibited proliferation and mobility by regulating AQP3 in NSCLC. The newly identified miR-874/AQP3 axis provides novel insight into the pathogenesis of NSCLC.
Collapse
Affiliation(s)
- Shuhua Wang
- Department of Clinical laboratoryHeze Municipal HospitalHezeChina
| | - Yuanyuan Wu
- Department of Clinical laboratoryHeze Municipal HospitalHezeChina
| | - Shenghua Yang
- Department of Clinical laboratoryHeze Municipal HospitalHezeChina
| | - Xunchao Liu
- Department of Respiratory MedicineHeze Municipal HospitalHezeChina
| | - Yong Lu
- Medical Research LaboratoryHeze Medical CollegeHezeChina
| | - Fengxia Liu
- Department of Clinical laboratoryJuye County Hospital of TCMHezeChina
| | - Guixia Li
- Department of Clinical laboratoryHeze Municipal HospitalHezeChina
| | - Guirong Tian
- Ministry of Science and EducationHeze Municipal HospitalHezeChina
| |
Collapse
|
30
|
Ren SM, Zhang W, Xu XJ, Zhou Y, Guo JY, Zhang XL, Wang DM, Pan YN, Liu XQ. Morning glory seed keeps laxative effect while retains less subchronic toxicity after being fried. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112522. [PMID: 31883474 DOI: 10.1016/j.jep.2019.112522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Morning glory seed (MGS), has been widely used in treating constipation especially towards children. Clinically, people usually take fried MGS (MGSF) in formulas to reduce its side effect. However, the safety of MGSF other than MGS has yet to be explored. OBJECTIVE The study aimed to reveal the potential mechanisms of using MGSF instead of MGS basing on chemistry, pharmacodynamics and toxicology. METHODS The chemical compositions of the extracts of MGS and MGSF were compared using UPLC-Q-TOF/MS method. Simultaneously, to prove the availability and safety of MGSF, we investigated the laxative effect and subchronic toxicity of MGS and MGSF and addressed the mechanism of laxative effect of them. RESULTS In this study, less phenolic acids and more fatty acids were detected in MGSF compared with the compounds in MGS. Moreover, we found that MGS group had stronger laxative effect than MGSF group via downregulating the expression of AQP3 protein. As for subchronic toxicity test, the body weights of MGS group were lower than MGSF group. In serum biochemistry and histopathological examinations, MGS group could cause more serious toxicity in liver, kidney and colon than MGSF group with higher values of BUN, Cr, AST and ALP. CONCLUSION Based on the findings in this study, MGSF with varied compounds contents could still keep the laxative effect while retain less subchronic toxicity, which emphasized the necessity of processing and provided an insight into the rational use of MGSF in clinical practice.
Collapse
Affiliation(s)
- Shu-Meng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Wei Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xia-Jing Xu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Ye Zhou
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Jing-Yan Guo
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Xiao-Li Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Dong-Mei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China
| | - Ying-Ni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| | - Xiao-Qiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, PR China.
| |
Collapse
|
31
|
Aquaporin 1, 3, and 5 Patterns in Salivary Gland Mucoepidermoid Carcinoma: Expression in Surgical Specimens and an In Vitro Pilot Study. Int J Mol Sci 2020; 21:ijms21041287. [PMID: 32075009 PMCID: PMC7073006 DOI: 10.3390/ijms21041287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Salivary gland aquaporins (AQPs) are essential for the control of saliva production and maintenance of glandular structure. However, little is known of their role in salivary gland neoplasia. Salivary gland tumors comprise a heterogeneous group of lesions, featuring variable histological characteristics and diverse clinical behaviors. Mucoepidermoid carcinoma (MEC) is the most common salivary gland malignancy. The aim of this study was to evaluate the expression of AQP1, AQP3, and AQP5 in 24 MEC samples by immunohistochemistry. AQP1 expression was observed in vascular endothelium throughout the tumor stroma. AQP3 was expressed in epidermoid and mucosal cells and AQP5 was expressed in mucosal cells of MEC. These proteins were expressed in the human MEC cell line UH-HMC-3A. Cellular ultrastructural aspects were analyzed by electron microscopy to certificate the tumor cell phenotype. In summary, our results show that, despite the fact that these molecules are important for salivary gland physiology, they may not play a distinct role in tumorigenesis in MEC. Additionally, the in vitro model may offer new possibilities to further investigate mechanisms of these molecules in tumor biology and their real significance in prognosis and possible target therapies.
Collapse
|
32
|
Arsenijevic T, Perret J, Van Laethem JL, Delporte C. Aquaporins Involvement in Pancreas Physiology and in Pancreatic Diseases. Int J Mol Sci 2019; 20:E5052. [PMID: 31614661 PMCID: PMC6834120 DOI: 10.3390/ijms20205052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/14/2022] Open
Abstract
Aquaporins are a family of transmembrane proteins permeable to water. In mammals, they are subdivided into classical aquaporins that are permeable to water; aquaglyceroporins that are permeable to water, glycerol and urea; peroxiporins that facilitate the diffusion of H2O2 through cell membranes; and so called unorthodox aquaporins. Aquaporins ensure important physiological functions in both exocrine and endocrine pancreas. Indeed, they are involved in pancreatic fluid secretion and insulin secretion. Modification of aquaporin expression and/or subcellular localization may be involved in the pathogenesis of pancreatic insufficiencies, diabetes and pancreatic cancer. Aquaporins may represent useful drug targets for the treatment of pathophysiological conditions affecting pancreatic function, and/or diagnostic/predictive biomarker for pancreatic cancer. This review summarizes the current knowledge related to the involvement of aquaporins in the pancreas physiology and physiopathology.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, 1070 Brussels, Belgium.
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hôpital Erasme, Université Libre de Bruxelles, 808, Route de Lennik, 1070 Brussels, Belgium.
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, 1070 Brussels, Belgium.
| |
Collapse
|
33
|
Wang Y, Wu G, Fu X, Xu S, Wang T, Zhang Q, Yang Y. Aquaporin 3 maintains the stemness of CD133+ hepatocellular carcinoma cells by activating STAT3. Cell Death Dis 2019; 10:465. [PMID: 31197130 PMCID: PMC6565673 DOI: 10.1038/s41419-019-1712-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
An increasing interest in liver cancer stemness arises owing to its aggressive behavior and poor prognosis. CD133, a widely known liver cancer stem cell marker, plays critical roles in the maintenance of liver cancer stemness. Thus, exploring the regulatory mechanism of CD133 expression is significant. In the present study, we proved the carcinogenesis roles of aquaporin 3 (AQP3) in hepatocellular carcinoma (HCC) and demonstrated that AQP3 promotes the stem cell-like properties of hepatoma cells by regulating CD133 expression. In addition, AQP3 promoted the stimulation and nuclear translocation of signal transducer and activator of transcription 3 (STAT3) with a subsequent increase in the level of CD133 promoter-acetylated histone H3. This phenomenon accelerated CD133 transcription. Next, whether AQP3 acted as an oncogenic gene in HCC and maintained the stemness of CD133+ hepatoma cells were elucidated; also, a novel mechanism underlying the AQP3/STAT3/CD133 pathway in HCC was deduced.
Collapse
Affiliation(s)
- Yawei Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Gang Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China.
| | - Xueyan Fu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Shaolin Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Tianlong Wang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Qi Zhang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| | - Ye Yang
- Department of Geriatric Surgery, The First Affiliated Hospital of China Medical University, Shenyang, PR China
| |
Collapse
|
34
|
Aquaporins 1, 3 and 5 in Different Tumors, their Expression, Prognosis Value and Role as New Therapeutic Targets. Pathol Oncol Res 2019; 26:615-625. [PMID: 30927206 DOI: 10.1007/s12253-019-00646-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
All different types of metabolism of tumors are dependent on the flow of water molecules through the biological membrane, where fluid transfer interceded by aquaporins (AQPs) are the basis means for water entrance into the cells or outside them. Aquaporins play other roles including cellular migration, cellular expansion and cellular adhesion facilitation. Therefore, regulators of AQPs may be useful anticancer agents. Medline, Scopus, Embase, and Web of Sciences were searched. From among the papers found, 106 were related to the subject. All of the examined cancers in relation to AQP1 included adenoid cystic carcinoma, bladder, breast, cervical, colon, colorectal, hepatocellular, lung, ovarian, plural mesothelioma, prostate, renal cell carcinoma and squamous cell carcinoma. All of the studied cancers in relation with AQP3 included gastric, breast, prostate, lung, pancreas, skin, bladder, squamous cell carcinoma, cervical, adenoid cystic carcinoma, colon, colorectal, ovarian, and hepatocellular cancers and with regard to AQP5 were lung, squamous cell carcinoma, ovarian, adenoid cystic carcinoma, breast, colon, colorectal, hepatic, pancreas, gallbladder, prostate, and gastric cancers. Over or under-expression of AQP1, 3 and is exist in the mentioned cancers across different studies. Over-expression of AQP1, AQP3 and AQP5 is clearly associated with carcinogenesis, metastasis, reduced survival rate, lymph node metastasis, poorer prognosis, and cellular migration. Also, cancer treatments in relation to these markers suggest AQP reduction during the treatment.
Collapse
|
35
|
Aikman B, de Almeida A, Meier-Menches SM, Casini A. Aquaporins in cancer development: opportunities for bioinorganic chemistry to contribute novel chemical probes and therapeutic agents. Metallomics 2019; 10:696-712. [PMID: 29766198 DOI: 10.1039/c8mt00072g] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aquaporins (AQPs) are membrane proteins allowing permeation of water, glycerol & hydrogen peroxide across biomembranes, and playing an important role in water homeostasis in different organs, exocrine gland secretion, urine concentration, skin moisturization, fat metabolism and neural signal transduction. Notably, a large number of studies showed that AQPs are closely associated with cancer biological functions and expressed in more than 20 human cancer cell types. Furthermore, AQP expression is positively correlated with tumour types, grades, proliferation, migration, angiogenesis, as well as tumour-associated oedema, rendering these membrane channels attractive as both diagnostic and therapeutic targets in cancer. Recent developments in the field of AQPs modulation have identified coordination metal-based complexes as potent and selective inhibitors of aquaglyceroporins, opening new avenues in the application of inorganic compounds in medicine and chemical biology. The present review is aimed at providing an overview on AQP structure and function, mainly in relation to cancer. In this context, the exploration of coordination metal compounds as possible inhibitors of aquaporins may open the way to novel chemical approaches to study AQP roles in tumour growth and potentially to new drug families. Thus, we describe recent results in the field and reflect upon the potential of inorganic chemistry in providing compounds to modulate the activity of "elusive" membrane targets as the aquaporins.
Collapse
Affiliation(s)
- Brech Aikman
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK.
| | | | | | | |
Collapse
|
36
|
Dajani S, Saripalli A, Sharma-Walia N. Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget 2018; 9:36392-36405. [PMID: 30555637 PMCID: PMC6284741 DOI: 10.18632/oncotarget.26351] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
As highly conserved ubiquitous proteins, aquaporins (AQPs) play an imperative role in the development and progression of cancer. By trafficking water and other small molecules, AQPs play a vital role in preserving the cellular environment. Due to their critical role in cell stability and integrity, it would make sense that AQPs are involved in cancer progression. When AQPs alter the cellular environment, there may be several downstream effects such as alterations in cellular osmolality, volume, ionic composition, and signaling pathways. Changes in the intracellular levels of certain molecules serving as second messengers are synchronized by AQPs. Thus AQPs regulate numerous downstream effector signaling molecules that promote cancer development and progression. In numerous cancer types, AQP expression has shown a correlation with tumor stage and prognosis. Furthermore, AQPs assist in angiogenic and oxidative stress related damaging processes critical for cancer progression. This indicates that AQP proteins may be a viable therapeutic target or biomarker of cancer prognosis.
Collapse
Affiliation(s)
- Salah Dajani
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anand Saripalli
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Neelam Sharma-Walia
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
37
|
Qiu J, Zhang Y, Chen H, Guo Z. MicroRNA-488 inhibits proliferation, invasion and EMT in osteosarcoma cell lines by targeting aquaporin 3. Int J Oncol 2018; 53:1493-1504. [PMID: 30015825 PMCID: PMC6086618 DOI: 10.3892/ijo.2018.4483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
It has been reported that aquaporin 3 (AQP3) expression is associated with the progression of numerous types of cancer and microRNA (miRNA/miR) processing. However, the effects and precise mechanisms of AQP3 in osteosarcoma (OS) have not been fully elucidated. The present study aimed to investigate the interaction between AQP3 and miR-488 in OS. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assay was performed to detect the levels of AQP3 and miR-488 in OS tissues and cell lines, respectively. Cell proliferation, invasion and epithelial-mesenchymal transition (EMT) were detected to analyze the biological functions of miR-488 and AQP3 in OS cells. Furthermore, mRNA and protein levels of AQP3 was measured by RT-qPCR and western blot analysis. Furthermore, AQP3 was validated as an miR-488 target using luciferase assays in OS cells. The present study revealed that the miR-488 level was significantly downregulated in OS tissues and cell lines, and that the expression of AQP3 was markedly increased. Notable, the low miR-488 expression level was associated with upregulated AQP3 expression in OS tissues. Furthermore, introduction of miR-488 markedly suppressed the proliferation, invasion and EMT of OS cells. However, miR-488-knockdown increased the proliferation, invasion and EMT of OS cells. The present study demonstrated that miR-488 could directly target AQP3 using bioinformatics analysis and luciferase reporter assays. In addition, AQP3-silencing had similar effects to miR-488 overexpression on OS cells. Overexpression of AQP3 in OS cells partially reversed the inhibitory effects of miR-488 mimic. miR-488 inhibited the proliferation, invasion and EMT of OS cells by directly downregulating AQP3 expression, and miR-488 targeting AQP3 was responsible for inhibition of the proliferation, invasion and EMT of OS cells.
Collapse
Affiliation(s)
- Jing Qiu
- Department of Administration, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yongzhi Zhang
- Department of Radiology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Hu Chen
- Department of Scientific Research, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Zhi Guo
- Department of Human Resources, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
38
|
Venglovecz V, Pallagi P, Kemény LV, Balázs A, Balla Z, Becskeházi E, Gál E, Tóth E, Zvara Á, Puskás LG, Borka K, Sendler M, Lerch MM, Mayerle J, Kühn JP, Rakonczay Z, Hegyi P. The Importance of Aquaporin 1 in Pancreatitis and Its Relation to the CFTR Cl - Channel. Front Physiol 2018; 9:854. [PMID: 30050452 PMCID: PMC6052342 DOI: 10.3389/fphys.2018.00854] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 12/17/2022] Open
Abstract
Aquaporins (AQPs) facilitate the transepithelial water flow involved in epithelial fluid secretion in numerous tissues; however, their function in the pancreas is less characterized. Acute pancreatitis (AP) is a serious disorder in which specific treatment is still not possible. Accumulating evidence indicate that decreased pancreatic ductal fluid secretion plays an essential role in AP; therefore, the aim of this study was to investigate the physiological and pathophysiological role of AQPs in the pancreas. Expression and localization of AQPs were investigated by real-time PCR and immunocytochemistry, whereas osmotic transmembrane water permeability was estimated by the dye dilution technique, in Capan-1 cells. The presence of AQP1 and CFTR in the mice and human pancreas were investigated by immunohistochemistry. Pancreatic ductal HCO3- and fluid secretion were studied on pancreatic ducts isolated from wild-type (WT) and AQP1 knock out (KO) mice using microfluorometry and videomicroscopy, respectively. In vivo pancreatic fluid secretion was estimated by magnetic resonance imaging. AP was induced by intraperitoneal injection of cerulein and disease severity was assessed by measuring biochemical and histological parameters. In the mice, the presence of AQP1 was detected throughout the whole plasma membrane of the ductal cells and its expression highly depends on the presence of CFTR Cl- channel. In contrast, the expression of AQP1 is mainly localized to the apical membrane of ductal cells in the human pancreas. Bile acid treatment dose- and time-dependently decreased mRNA and protein expression of AQP1 and reduced expression of this channel was also demonstrated in patients suffering from acute and chronic pancreatitis. HCO3- and fluid secretion significantly decreased in AQP1 KO versus WT mice and the absence of AQP1 also worsened the severity of pancreatitis. Our results suggest that AQP1 plays an essential role in pancreatic ductal fluid and HCO3- secretion and decreased expression of the channel alters fluid secretion which probably contribute to increased susceptibility of the pancreas to inflammation.
Collapse
Affiliation(s)
- Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Petra Pallagi
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Lajos V. Kemény
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Anita Balázs
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Zsolt Balla
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Eleonóra Gál
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | - Emese Tóth
- First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - László G. Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Katalin Borka
- Second Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
| | - Julia Mayerle
- Department of Medicine A, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
- Department of Medicine II, Klinikum Grosshadern, Universitätsklinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jens-Peter Kühn
- Institute of Radiology, University Medicine Greifswald, University of Greifswald, Greifswald, Germany
- Institute and Policlinic of Radiology, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Zoltán Rakonczay
- Department of Pathophysiology, University of Szeged, Szeged, Hungary
| | - Péter Hegyi
- First Department of Medicine, University of Szeged, Szeged, Hungary
- MTA-SZTE Translational Gastroenterology Research Group, University of Szeged, Szeged, Hungary
- Institute for Translational Medicine and First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
39
|
Calamita G, Perret J, Delporte C. Aquaglyceroporins: Drug Targets for Metabolic Diseases? Front Physiol 2018; 9:851. [PMID: 30042691 PMCID: PMC6048697 DOI: 10.3389/fphys.2018.00851] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/15/2018] [Indexed: 12/29/2022] Open
Abstract
Aquaporins (AQPs) are a family of transmembrane channel proteins facilitating the transport of water, small solutes, and gasses across biological membranes. AQPs are expressed in all tissues and ensure multiple roles under normal and pathophysiological conditions. Aquaglyceroporins are a subfamily of AQPs permeable to glycerol in addition to water and participate thereby to energy metabolism. This review focalizes on the present knowledge of the expression, regulation and physiological roles of AQPs in adipose tissue, liver and endocrine pancreas, that are involved in energy metabolism. In addition, the review aims at summarizing the involvement of AQPs in metabolic disorders, such as obesity, diabetes and liver diseases. Finally, challenges and recent advances related to pharmacological modulation of AQPs expression and function to control and treat metabolic diseases are discussed.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Jason Perret
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
40
|
Gomes A, da Silva IV, Rodrigues CMP, Castro RE, Soveral G. The Emerging Role of microRNAs in Aquaporin Regulation. Front Chem 2018; 6:238. [PMID: 29977890 PMCID: PMC6021494 DOI: 10.3389/fchem.2018.00238] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/04/2018] [Indexed: 12/18/2022] Open
Abstract
Aquaporins (AQPs) are membrane channels widely distributed in human tissues. AQPs are essential for water and energy homeostasis being involved in a broad range of pathophysiological processes such as edema, brain injury, glaucoma, nephrogenic diabetes insipidus, salivary and lacrimal gland dysfunction, cancer, obesity and related metabolic complications. Compelling evidence indicates that AQPs are targets for therapeutic intervention with potential broad application. Nevertheless, efficient AQP modulators have been difficult to find due to either lack of selectivity and stability, or associated toxicity that hamper in vivo studies. MicroRNAs (miRNAs) are naturally occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. Recent identification of miRNAs as endogenous modulators of AQP expression provides an alternative approach to target these proteins and opens new perspectives for therapeutic applications. This mini-review compiles the current knowledge of miRNA interaction with AQPs highlighting miRNA potential for regulation of AQP-based disorders.
Collapse
Affiliation(s)
- André Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Wang P, Liu XM, Ding L, Zhang XJ, Ma ZL. mTOR signaling-related MicroRNAs and Cancer involvement. J Cancer 2018; 9:667-673. [PMID: 29556324 PMCID: PMC5858488 DOI: 10.7150/jca.22119] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of single-stranded RNAs, 18-23 nucleotides in length that regulate gene expression at the post-transcriptional level. Dysregulation of miRNAs has been closely associated with the development of cancer. In the process of tumorigenesis, mammalian target of rapamycin (mTOR) plays important roles, and the mTOR signaling pathway is aberrant in various types of human cancers, including non-small cell lung cancer (NSCLC), breast cancer, prostate cancer, as well as others. However, the relationship between miRNAs and the mTOR signaling pathway is indistinct. Herein, we not only summarize the progress of miRNAs and the mTOR signaling pathway in cancers, but also highlight their role in the diagnosis and treatment in the clinic.
Collapse
Affiliation(s)
- Ping Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiao-Min Liu
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China.,School of Environmental Science and Engineering, Shanghai University, Shanghai, 200444, China
| | - Lei Ding
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xin-Ju Zhang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Zhong-Liang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
42
|
Abstract
Increasing evidence suggests that the water/glycerol channel aquaporin-3 (AQP3) plays a pivotal role in cancer metastasis. AQP3 knockout mice were resistant to skin tumor formation and overexpression correlated with metastasis and poor prognosis in patients with breast or gastric cancer. In cultured cancer cells, increased AQP3 expression stimulated several intracellular signaling pathways and resulted in increased cell proliferation, migration, and invasion as well as aggravation of epithelial-to-mesenchymal transition. Besides AQP facilitated water transport at the leading edge of migrating cells, AQP3 signaling mechanisms are beginning to be unraveled. Here, we give a thorough review of current knowledge regarding AQP3 expression in cancer and how AQP3 contributes to cancer progression via signaling that modulates cellular mechanisms. This review article will expand our understanding of the known pathophysiological findings regarding AQP3 in cancer.
Collapse
|