1
|
Kibria MG, Yoshizawa T, Zhang T, Ono K, Mizumoto T, Sato Y, Sawa T, Yamagata K. SIRT7 Is a Lysine Deacylase with a Preference for Depropionylation and Demyristoylation. Int J Mol Sci 2025; 26:3153. [PMID: 40243935 PMCID: PMC11988671 DOI: 10.3390/ijms26073153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/22/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Sirtuins are nicotinamide adenine dinucleotide (NAD+)-dependent deacylases that remove acyl groups from lysine residues on target proteins, releasing nicotinamide. SIRT7 is associated with aging and a number of age-related diseases, but the enzymatic properties of SIRT7 are largely unknown. In the present study, we investigated the biochemical activity of SIRT7 by performing a series of in vitro kinetic studies in the presence of different acyl substrates. The binding affinity of SIRT7 for NAD+ was dependent on the acyl substrate, and SIRT7 showed a preference for depropionylation and demyristoylation. Nicotinamide, the end-product of the sirtuin reaction, inhibits the activity of SIRT1-6. We also found that the sensitivity of SIRT7 to nicotinamide inhibition also depended on the chain length of the acylated peptides and that nicotinamide was a poor inhibitor of SIRT7 with non-acetylated substrates. These findings may provide insights into the development of novel SIRT7 modulators for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Mohammad Golam Kibria
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
- Cell Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 606-0823, Japan
| | - Tianli Zhang
- Center for Integrated Control, Epidemiology and Molecular Pathophysiology of Infectious Diseases, Akita University, Akita 010-8543, Japan;
| | - Katsuhiko Ono
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.O.); (T.S.)
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (K.O.); (T.S.)
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (M.G.K.); (T.M.); (Y.S.)
- Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Nakagawa M, Nakagawa T. CUL4-Based Ubiquitin Ligases in Chromatin Regulation: An Evolutionary Perspective. Cells 2025; 14:63. [PMID: 39851492 PMCID: PMC11763709 DOI: 10.3390/cells14020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/22/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Ubiquitylation is a post-translational modification that modulates protein function and stability. It is orchestrated by the concerted action of three types of enzymes, with substrate specificity governed by ubiquitin ligases (E3s), which may exist as single proteins or as part of multi-protein complexes. Although Cullin (CUL) proteins lack intrinsic enzymatic activity, they participate in the formation of active ubiquitin ligase complexes, known as Cullin-Ring ubiquitin Ligases (CRLs), through their association with ROC1 or ROC2, along with substrate adaptor and receptor proteins. Mammalian genomes encode several CUL proteins (CUL1-9), each contributing to distinct CRLs. Among these CUL proteins, CUL1, CUL3, and CUL4 are believed to be the most ancient and evolutionarily conserved from yeast to mammals, with CUL4 uniquely duplicated in vertebrates. Genetic evidence strongly implicates CUL4-based ubiquitin ligases (CRL4s) in chromatin regulation across various species and suggests that, in vertebrates, CRL4s have also acquired a cytosolic role, which is facilitated by a cytosol-localizing paralog of CUL4. Substrates identified through biochemical studies have elucidated the molecular mechanisms by which CRL4s regulate chromatin and cytosolic processes. The substantial body of knowledge on CUL4 biology amassed over the past two decades provides a unique opportunity to explore the functional evolution of CRL4. In this review, we synthesize the available structural, genetic, and biochemical data on CRL4 from various model organisms and discuss the conserved and novel functions of CRL4s.
Collapse
Affiliation(s)
- Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Yamaguchi 755-8505, Japan;
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan
| |
Collapse
|
3
|
Li H, Yuan Z, Wu J, Lu J, Wang Y, Zhang L. Unraveling the multifaceted role of SIRT7 and its therapeutic potential in human diseases. Int J Biol Macromol 2024; 279:135210. [PMID: 39218192 DOI: 10.1016/j.ijbiomac.2024.135210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Sirtuins, as NAD+-dependent deacetylases, are widely found in eubacteria, archaea, and eukaryotes, and they play key roles in regulating cellular functions. Among these, SIRT7 stands out as a member discovered relatively late and studied less extensively. It is localized within the nucleus and displays enzymatic activity as an NAD+-dependent deacetylase, targeting a diverse array of acyl groups. The role of SIRT7 in important cellular processes like gene transcription, cellular metabolism, cellular stress responses, and DNA damage repair has been documented in a number of studies conducted recently. These studies have also highlighted SIRT7's strong correlation with human diseases like aging, cancer, neurological disorders, and cardiovascular diseases. In addition, a variety of inhibitors against SIRT7 have been reported, indicating that targeting SIRT7 may be a promising strategy for inhibiting tumor growth. The purpose of this review is to thoroughly look into the structure and function of SIRT7 and to explore its potential value in clinical applications, offering an essential reference for research in related domains.
Collapse
Affiliation(s)
- Han Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junhao Wu
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinjia Lu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yibei Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
4
|
Zou Y, Zhang Y, Li M, Cao K, Song C, Zhang Z, Cai K, Geng D, Chen S, Wu Y, Zhang N, Sun G, Wang J, Zhang Y, Sun Y. Regulation of lipid metabolism by E3 ubiquitin ligases in lipid-associated metabolic diseases. Int J Biol Macromol 2024; 265:130961. [PMID: 38508558 DOI: 10.1016/j.ijbiomac.2024.130961] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/10/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Previous studies have progressively elucidated the involvement of E3 ubiquitin (Ub) ligases in regulating lipid metabolism. Ubiquitination, facilitated by E3 Ub ligases, modifies critical enzymes in lipid metabolism, enabling them to respond to specific signals. In this review, we aim to present a comprehensive analysis of the role of E3 Ub ligases in lipid metabolism, which includes lipid synthesis and lipolysis, and their influence on cellular lipid homeostasis through the modulation of lipid uptake and efflux. Furthermore, it explores how the ubiquitination process governs the degradation or activation of pivotal enzymes, thereby regulating lipid metabolism at the transcriptional level. Perturbations in lipid metabolism have been implicated in various diseases, including hepatic lipid metabolism disorders, atherosclerosis, diabetes, and cancer. Therefore, this review focuses on the association between E3 Ub ligases and lipid metabolism in lipid-related diseases, highlighting enzymes critically involved in lipid synthesis and catabolism, transcriptional regulators, lipid uptake translocators, and transporters. Overall, this review aims to identify gaps in current knowledge, highlight areas requiring further research, offer potential targeted therapeutic approaches, and provide a comprehensive outlook on clinical conditions associated with lipid metabolic diseases.
Collapse
Affiliation(s)
- Yuanming Zou
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Ying Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Mohan Li
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cao
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Chunyu Song
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Zhaobo Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Kexin Cai
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Danxi Geng
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Shuxian Chen
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Yanjiao Wu
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Naijin Zhang
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China
| | - Guozhe Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Jing Wang
- Department of Hematology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| | - Yixiao Zhang
- Department of Urology Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning Province, People's Republic of China.
| | - Yingxian Sun
- Department of Cardiology, the First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning Province, People's Republic of China; Institute of Health Sciences, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China; Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, 77 Puhe Road, Shenbei New District, Shenyang, 110001, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Tran K, Gilbert M, Vazquez BN, Ianni A, Garcia BA, Vaquero A, Berger S. SIRT7 regulates NUCKS1 chromatin binding to elicit metabolic and inflammatory gene expression in senescence and liver aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578810. [PMID: 38370824 PMCID: PMC10871251 DOI: 10.1101/2024.02.05.578810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Sirtuins, a class of highly conserved histone/protein deacetylases, are heavily implicated in senescence and aging. The regulation of sirtuin proteins is tightly controlled both transcriptionally and translationally and via localization within the cell. While Sirtiun proteins are implicated with aging, how their levels are regulated during aging across cell types and eliciting tissue specific age-related cellular changes is unclear. Here, we demonstrate that SIRT7 is targeted for degradation during senescence and liver aging. To uncover the significance of SIRT7 loss, we performed proteomics analysis and identified a new SIRT7 interactor, the HMG box protein NUCKS1. We found that the NUCKS1 transcription factor is recruited onto chromatin during senescence and this is mediated by SIRT7 loss. Further, depletion of NUCKS1 delayed senescence upon DNA damage leading to reduction of inflammatory gene expression. Examination of NUCKS1 transcriptional regulation during senescence revealed gene targets of transcription factors NFKB1, RELA, and CEBPβ. Consistently, in both Sirt7 KO mouse liver and in naturally aged livers, Nucks1 was recruited to chromatin. Further, Nucks1 was bound at promoters and enhancers of age-related genes, including transcription factor Rela, and, moreover, these bound sites had increased accessibility during aging. Overall, our results uncover NUCKS1 as a novel interactor of SIRT7, and show that loss of SIRT7 during senescence and liver aging promotes NUCKS1 chromatin binding to regulate metabolic and inflammatory genes.
Collapse
|
6
|
Raza U, Tang X, Liu Z, Liu B. SIRT7: the seventh key to unlocking the mystery of aging. Physiol Rev 2024; 104:253-280. [PMID: 37676263 PMCID: PMC11281815 DOI: 10.1152/physrev.00044.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
Aging is a chronic yet natural physiological decline of the body. Throughout life, humans are continuously exposed to a variety of exogenous and endogenous stresses, which engender various counteractive responses at the cellular, tissue, organ, as well as organismal levels. The compromised cellular and tissue functions that occur because of genetic factors or prolonged stress (or even the stress response) may accelerate aging. Over the last two decades, the sirtuin (SIRT) family of lysine deacylases has emerged as a key regulator of longevity in a variety of organisms. SIRT7, the most recently identified member of the SIRTs, maintains physiological homeostasis and provides protection against aging by functioning as a watchdog of genomic integrity, a dynamic sensor and modulator of stresses. SIRT7 decline disrupts metabolic homeostasis, accelerates aging, and increases the risk of age-related pathologies including cardiovascular and neurodegenerative diseases, pulmonary and renal disorders, inflammatory diseases, and cancer, etc. Here, we present SIRT7 as the seventh key to unlock the mystery of aging, and its specific manipulation holds great potential to ensure healthiness and longevity.
Collapse
Affiliation(s)
- Umar Raza
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| | - Xiaolong Tang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), National Engineering Research Center for Biotechnology (Shenzhen), School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
7
|
Yamagata K, Mizumoto T, Yoshizawa T. The Emerging Role of SIRT7 in Glucose and Lipid Metabolism. Cells 2023; 13:48. [PMID: 38201252 PMCID: PMC10778536 DOI: 10.3390/cells13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Sirtuins (SIRT1-7 in mammals) are a family of NAD+-dependent lysine deacetylases and deacylases that regulate diverse biological processes, including metabolism, stress responses, and aging. SIRT7 is the least well-studied member of the sirtuins, but accumulating evidence has shown that SIRT7 plays critical roles in the regulation of glucose and lipid metabolism by modulating many target proteins in white adipose tissue, brown adipose tissue, and liver tissue. This review focuses on the emerging roles of SIRT7 in glucose and lipid metabolism in comparison with SIRT1 and SIRT6. We also discuss the possible implications of SIRT7 inhibition in the treatment of metabolic diseases such as type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomoya Mizumoto
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; (T.M.); (T.Y.)
| |
Collapse
|
8
|
Abstract
Sirtuins are identified as NAD+-dependent class III histone deacetylases (HDAC) and are involved in a variety of cellular activities, including energy metabolism, DNA repair, epigenetics, gene expression, cell proliferation, differentiation, and survival. Using genetically modified model organisms, sirtuins are proved to be one of the most conserved aging-regulatory and longevity-promoting genes/pathways among species. Of the seven sirtuins, SIRT7 is the only sirtuin that localizes in the nucleolus. SIRT7 senses endogenous and environmental stress to maintain physiological homeostasis. Sirt7 deficient and transgenic mice provide a useful tool to understand the mechanisms of aging and related pathologies. In this chapter, we summarized the most widely applied methods to understand the physiopathological function of SIRT7 in mice.
Collapse
Affiliation(s)
- Shimin Sun
- Shenzhen Key Laboratory of Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Xiaojiao Xia
- Shenzhen Key Laboratory of Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Ming Wang
- Shenzhen Key Laboratory of Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Baohua Liu
- Shenzhen Key Laboratory of Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen, China.
| |
Collapse
|
9
|
Li J, Cao Y, Niu K, Qiu J, Wang H, You Y, Li D, Luo Y, Zhu Z, Zhang Y, Liu N. Quantitative acetylomics reveals dynamics of protein lysine acetylation in mouse livers during aging and upon the treatment of nicotinamide mononucleotide. Mol Cell Proteomics 2022; 21:100276. [PMID: 35931320 PMCID: PMC9436820 DOI: 10.1016/j.mcpro.2022.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 10/24/2022] Open
Abstract
Lysine acetylation is a reversible and dynamic post-translational modification that play vital roles in regulating multiple cellular processes including aging. However, acetylome-wide analysis in the aging process remains poorly studied in mammalian tissues. Nicotinamide adenine dinucleotide (NAD+), a hub metabolite, benefits healthspan at least in part due to the activation of Sirtuins, a family of NAD+-consuming deacetylases, indicating changes in acetylome. Here, we combine two antibodies for the enrichment of acetylated peptides and perform label-free quantitative acetylomic analysis of mouse livers during natural aging and upon the treatment of beta-nicotinamide mononucleotide (NMN), a NAD+ booster. Our study describes previously unknown acetylation sites and reveals the acetylome-wide dynamics with age as well as upon the treatment of NMN. We discover protein acetylation events as potential aging biomarkers. We demonstrate that the life-beneficial effect of NMN could be partially reflected by the changes in age-related protein acetylation. Our quantitative assessment indicates that NMN has mild effects on acetylation sites previously reported as substrates of Sirtuins. Collectively, our data analyzes protein acetylation with age, laying critical foundation for the functional study of protein post-translational modification essential for healthy aging and perhaps disease conditions.
Collapse
Affiliation(s)
- Jingshu Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongyan Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaqian Qiu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingnan You
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dean Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Luo
- Abiochem Biotechnology, 1299 Zi Yue Rd., Shanghai, 200241, China
| | - Zhengjiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China.
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Hai Ke Rd., Pudong, Shanghai, 201210, China.
| |
Collapse
|
10
|
Kimura Y, Izumiya Y, Araki S, Yamamura S, Hanatani S, Onoue Y, Ishida T, Arima Y, Nakamura T, Yamamoto E, Senokuchi T, Yoshizawa T, Sata M, Kim-Mitsuyama S, Nakagata N, Bober E, Braun T, Kaikita K, Yamagata K, Tsujita K. Sirt7 Deficiency Attenuates Neointimal Formation Following Vascular Injury by Modulating Vascular Smooth Muscle Cell Proliferation. Circ J 2021; 85:2232-2240. [PMID: 33678753 DOI: 10.1253/circj.cj-20-0936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sirt7 is a recently identified sirtuin and has important roles in various pathological conditions, including cancer progression and metabolic disorders. It has previously been reported that Sirt7 is a key molecule in acute myocardial wound healing and pressure overload-induced cardiac hypertrophy. In this study, the role of Sirt7 in neointimal formation after vascular injury is investigated. METHODS AND RESULTS Systemic (Sirt7-/-) and smooth muscle cell-specific Sirt7-deficient mice were subjected to femoral artery wire injury. Primary vascular smooth muscle cells (VSMCs) were isolated from the aorta of wild type (WT) and Sirt7-/-mice and their capacity for cell proliferation and migration was compared. Sirt7 expression was increased in vascular tissue at the sites of injury. Sirt7-/-mice demonstrated significant reduction in neointimal formation compared to WT mice. In vitro, Sirt7 deficiency attenuated the proliferation of serum-induced VSMCs. Serum stimulation-induced upregulation of cyclins and cyclin-dependent-kinase 2 (CDK2) was significantly attenuated in VSMCs of Sirt7-/-compared with WT mice. These changes were accompanied by enhanced expression of the microRNA 290-295 cluster, the translational negative regulator of CDK2, in VSMCs of Sirt7-/-mice. It was confirmed that smooth muscle cell-specific Sirt7-deficient mice showed significant reduction in neointima compared with control mice. CONCLUSIONS Sirt7 deficiency attenuates neointimal formation after vascular injury. Given the predominant role in vascular neointimal formation, Sirt7 is a potentially suitable target for treatment of vascular diseases.
Collapse
Affiliation(s)
- Yuichi Kimura
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Yasuhiro Izumiya
- Department of Cardiovascular Medicine, Osaka City University Graduate School of Medicine
| | - Satoshi Araki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Satoru Yamamura
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Shinsuke Hanatani
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Yoshiro Onoue
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Toshifumi Ishida
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Yuichiro Arima
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Taishi Nakamura
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Eiichiro Yamamoto
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Takafumi Senokuchi
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Shokei Kim-Mitsuyama
- Departments of Pharmacology and Molecular Therapeutics, Faculty of Life Sciences, Kumamoto University
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University
| | - Eva Bober
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research
| | - Koichi Kaikita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
11
|
Akter F, Tsuyama T, Yoshizawa T, Sobuz SU, Yamagata K. SIRT7 regulates lipogenesis in adipocytes through deacetylation of PPARγ2. J Diabetes Investig 2021; 12:1765-1774. [PMID: 33955199 PMCID: PMC8504911 DOI: 10.1111/jdi.13567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Peroxisome proliferator-activated receptor (PPAR)-γ2 is a transcription factor crucial for regulating adipogenesis and glucose/lipid metabolism, and synthetic PPARγ ligands, such as thiazolidinediones, are effective oral medication for type 2 diabetes. Sirtuin 7 (SIRT7), a nicotinamide adenine dinucleotide-dependent deacetylase, also controls metabolism. However, it is not known whether SIRT7 regulates the function of PPARγ2 by its deacetylation. MATERIALS AND METHODS Physical interaction between SIRT7 and PPARγ2, the effect of SIRT7 on PPARγ2 acetylation, and the deacetylation residue targeted by SIRT7 were investigated. The effects of PPARγ2 K382 acetylation on lipid accumulation, gene expression in C3H10T1/2 cell-derived adipocytes, and ligand-dependent transactivation activity were also evaluated. RESULTS We demonstrated that SIRT7 binds to PPARγ2 and deacetylates PPARγ2 at K382. C3H10T1/2-derived adipocytes expressing PPARγ2K382Q (a mimic of acetylated K) accumulated much less fat than adipocytes expressing wild-type PPARγ2 or PPARγ2K382R (a mimic of nonacetylated K). Global gene expression analysis of adipocytes expressing PPARγ2K382Q revealed that K382Q caused the dysregulation of a set of genes involved in lipogenesis, including Srebp1c, Acaca, Fasn, and Scd1. The rosiglitazone-dependent transcriptional activity of PPARγ2K382Q was reduced compared with that of PPARγ2K382R . CONCLUSION Our findings indicate that SIRT7-dependent PPARγ2 deacetylation at K382 controls lipogenesis in adipocytes.
Collapse
Affiliation(s)
- Fatema Akter
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tomonori Tsuyama
- Center for Metabolic Regulation of Healthy Aging (CMHA)Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Tatsuya Yoshizawa
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Shihab U. Sobuz
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Kazuya Yamagata
- Department of Medical BiochemistryFaculty of Life SciencesKumamoto UniversityKumamotoJapan
- Center for Metabolic Regulation of Healthy Aging (CMHA)Faculty of Life SciencesKumamoto UniversityKumamotoJapan
| |
Collapse
|
12
|
Shahgaldi S, Kahmini FR. A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sci 2021; 282:119803. [PMID: 34237310 DOI: 10.1016/j.lfs.2021.119803] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 01/01/2023]
Abstract
Sirtuins are Class III protein deacetylases with seven conserved isoforms. In general, Sirtuins are highly activated under cellular stress conditions in which NAD+ levels are increased. Nevertheless, regulation of Sirtuins extends far beyond the influences of cellular NAD+/NADH ratio and a rapidly expanding body of evidence currently suggests that their expression and catalytic activity are highly kept under control at multiple levels by various factors and processes. Owing to their intrinsic ability to enzymatically target various intracellular proteins, Sirtuins are prominently involved in the regulation of fundamental biological processes including inflammation, metabolism, redox homeostasis, DNA repair and cell proliferation and senescence. In fact, Sirtuins are well established to regulate and reprogram different redox and metabolic pathways under both pathological and physiological conditions. Therefore, alterations in Sirtuin levels can be a pivotal intermediary step in the pathogenesis of several disorders. This review first highlights the mechanisms involved in the regulation of Sirtuins and further summarizes the current findings on the major functions of Sirtuins in cellular redox homeostasis and bioenergetics (glucose and lipid metabolism).
Collapse
Affiliation(s)
- Shahab Shahgaldi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Fatemeh Rezaei Kahmini
- Autoimmune Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Abstract
SIRT7 is a class III histone deacetylase that belongs to the sirtuin family. The past two decades have seen numerous breakthroughs in terms of understanding SIRT7 biological function. We now know that this enzyme is involved in diverse cellular processes, ranging from gene regulation to genome stability, ageing and tumorigenesis. Genomic instability is one hallmark of cancer and ageing; it occurs as a result of excessive DNA damage. To counteract such instability, cells have evolved a sophisticated regulated DNA damage response mechanism that restores normal gene function. SIRT7 seems to have a critical role in this response, and it is recruited to sites of DNA damage where it recruits downstream repair factors and directs chromatin regulation. In this review, we provide an overview of the role of SIRT7 in DNA repair and maintaining genome stability. We pay particular attention to the implications of SIRT7 function in cancer and ageing.
Collapse
Affiliation(s)
- Ming Tang
- Clinical and Translational Research Center, Shanghai Key Laboratory of Maternal-Fetal Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, People's Republic of China
| | - Huangqi Tang
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, People's Republic of China
| | - Bo Tu
- Fred Hutchinson Cancer Research Center, Seattle, WA 98101, USA
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, Shenzhen 518055, People's Republic of China
| |
Collapse
|
14
|
Kratz EM, Sołkiewicz K, Kaczmarek A, Piwowar A. Sirtuins: Enzymes with multidirectional catalytic activity. POSTEP HIG MED DOSW 2021. [DOI: 10.5604/01.3001.0014.7866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sirtuins (SIRT) are NAD+-dependent histone deacetylases that play an important role in the
functioning of the human body. They participate in numerous processes taking place in cells,
including in the post-translational modification of proteins, silencing gene transcription,
inducing repair processes, as well as in the regulation of metabolic processes. Sirtuins have
also been shown to play an important role in reducing the level of reactive oxygen species
as well as in stimulating cell growth, aging and death. Such a wide range of processes, which
are affected by sirtuins, have recently made sirtuins the object of many studies aimed at
a detailed understanding of the mechanisms of their action and the role they play.
The aim of our study was to collect and systematize information on sirtuins, mainly from
the last 10 years, both regarding the human body and based on the results of research on
animal models or cell lines. The article discusses the structure, function and biological role
of sirtuins in cellular processes.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Katedra Diagnostyki Laboratoryjnej, Zakład Diagnostyki Laboratoryjnej, Wydział Farmaceutyczny, Uniwersytet Medyczny we Wrocławiu
| | - Katarzyna Sołkiewicz
- Katedra Diagnostyki Laboratoryjnej, Zakład Diagnostyki Laboratoryjnej, Wydział Farmaceutyczny, Uniwersytet Medyczny we Wrocławiu
| | - Agnieszka Kaczmarek
- Katedra Diagnostyki Laboratoryjnej, Zakład Diagnostyki Laboratoryjnej, Wydział Farmaceutyczny, Uniwersytet Medyczny we Wrocławiu
| | - Agnieszka Piwowar
- Katedra i Zakład Toksykologii, Wydział Farmaceutyczny, Uniwersytet Medyczny we Wrocławiu
| |
Collapse
|
15
|
Zhou X, Monnie C, DeLucia M, Ahn J. HIV-1 Vpr activates host CRL4-DCAF1 E3 ligase to degrade histone deacetylase SIRT7. Virol J 2021; 18:48. [PMID: 33648539 PMCID: PMC7923639 DOI: 10.1186/s12985-021-01514-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 02/12/2021] [Indexed: 12/05/2022] Open
Abstract
Background Vpr is a virion-associated protein that is encoded by lentiviruses and serves to counteract intrinsic immunity factors that restrict infection. HIV-1 Vpr mediates proteasome-dependent degradation of several DNA repair/modification proteins. Mechanistically, Vpr directly recruits cellular targets onto DCAF1, a substrate receptor of Cullin 4 RING E3 ubiquitin ligase (CRL4) for poly-ubiquitination. Further, Vpr can mediate poly-ubiquitination of DCAF1-interacting proteins by the CRL4. Because Vpr-mediated degradation of its known targets can not explain the primary cell-cycle arrest phenotype that Vpr expression induces, we surveyed the literature for DNA-repair-associated proteins that interact with the CRL4-DCAF1. One such protein is SIRT7, a deacetylase of histone 3 that belongs to the Sirtuin family and regulates a wide range of cellular processes. We wondered whether Vpr can mediate degradation of SIRT7 via the CRL4-DCAF1. Methods HEK293T cells were transfected with cocktails of plasmids expressing DCAF1, DDB1, SIRT7 and Vpr. Ectopic and endogeneous levels of SIRT7 were monitered by immunoblotting and protein–protein interactions were assessed by immunoprecipitation. For in vitro reconstitution assays, recombinant CRL4-DCAF1-Vpr complexes and SIRT7 were prepared and poly-ubiqutination of SIRT7 was monitored with immunoblotting. Results We demonstrate SIRT7 polyubiquitination and degradation upon Vpr expression. Specifically, SIRT7 is shown to interact with the CRL4-DCAF1 complex, and expression of Vpr in HEK293T cells results in SIRT7 degradation, which is partially rescued by CRL inhibitor MNL4924 and proteasome inhibitor MG132. Further, in vitro reconstitution assays show that Vpr induces poly-ubiquitination of SIRT7 by the CRL4-DCAF1. Importantly, we find that Vpr from several different HIV-1 strains, but not HIV-2 strains, mediates SIRT7 poly-ubiquitination in the reconstitution assay and degradation in cells. Finally, we show that SIRT7 degradation by Vpr is independent of the known, distinctive phenotype of Vpr-induced cell cycle arrest at the G2 phase, Conclusions Targeting histone deacetylase SIRT7 for degradation is a conserved feature of HIV-1 Vpr. Altogether, our findings reveal that HIV-1 Vpr mediates down-regulation of SIRT7 by a mechanism that does not involve novel target recruitment to the CRL4-DCAF1 but instead involves regulation of the E3 ligase activity.
Collapse
Affiliation(s)
- Xiaohong Zhou
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, RM 1055, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Christina Monnie
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, RM 1055, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Maria DeLucia
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, RM 1055, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Jinwoo Ahn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, RM 1055, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA.
| |
Collapse
|
16
|
Schabla NM, Mondal K, Swanson PC. DCAF1 (VprBP): emerging physiological roles for a unique dual-service E3 ubiquitin ligase substrate receptor. J Mol Cell Biol 2020; 11:725-735. [PMID: 30590706 PMCID: PMC6821201 DOI: 10.1093/jmcb/mjy085] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/01/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Cullin-RING ligases (CRLs) comprise a large group of modular eukaryotic E3 ubiquitin ligases. Within this family, the CRL4 ligase (consisting of the Cullin4 [CUL4] scaffold protein, the Rbx1 RING finger domain protein, the DNA damage-binding protein 1 [DDB1], and one of many DDB1-associated substrate receptor proteins) has been intensively studied in recent years due to its involvement in regulating various cellular processes, its role in cancer development and progression, and its subversion by viral accessory proteins. Initially discovered as a target for hijacking by the human immunodeficiency virus accessory protein r, the normal targets and function of the CRL4 substrate receptor protein DDB1–Cul4-associated factor 1 (DCAF1; also known as VprBP) had remained elusive, but newer studies have begun to shed light on these questions. Here, we review recent progress in understanding the diverse physiological roles of this DCAF1 in supporting various general and cell type-specific cellular processes in its context with the CRL4 E3 ligase, as well as another HECT-type E3 ligase with which DCAF1 also associates, called EDD/UBR5. We also discuss emerging questions and areas of future study to uncover the dynamic roles of DCAF1 in normal physiology.
Collapse
Affiliation(s)
- N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Koushik Mondal
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, 2500 California Plaza, Omaha, NE, USA
| |
Collapse
|
17
|
Sobuz SU, Sato Y, Yoshizawa T, Karim F, Ono K, Sawa T, Miyamoto Y, Oka M, Yamagata K. SIRT7 regulates the nuclear export of NF-κB p65 by deacetylating Ran. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:1355-1367. [PMID: 31075303 DOI: 10.1016/j.bbamcr.2019.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/19/2019] [Accepted: 05/01/2019] [Indexed: 12/25/2022]
Abstract
Sirtuin 7 (SIRT7) is an NAD+-dependent lysine deacetylase that regulates diverse biological processes. We recently observed that SIRT7 deficiency suppresses the nuclear accumulation of p65, which is a component of nuclear factor kappa B. However, the underlying molecular mechanism remains elusive. In this study, we demonstrated that SIRT7 interacts with a small GTPase, Ras-related nuclear antigen (Ran), and deacetylates Ran at K37. The nuclear export of p65 was facilitated in SIRT7-deficient fibroblast cells, while the nuclear export was inhibited in SIRT7-deficient cells expressing K37R-Ran (deacetylation-mimicking mutant). Additionally, the nuclear export of p65 in wild-type fibroblast cells was promoted by K37Q-Ran (acetylation-mimicking mutant). K37Q-Ran exhibited an increased ability to bind to chromosome region maintenance 1 (CRM1), which is a major nuclear receptor that mediates the export of cargo proteins, and enhanced the binding between p65 and CRM1. These data suggest that SIRT7 is a lysine deacetylase that targets the K37 residue of Ran to suppress the nuclear export of p65.
Collapse
Affiliation(s)
- Shihab U Sobuz
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Fazlul Karim
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki-shi, Osaka 567-0085, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki-shi, Osaka 567-0085, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging (CMHA), Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
18
|
Cheng J, Guo J, North BJ, Tao K, Zhou P, Wei W. The emerging role for Cullin 4 family of E3 ligases in tumorigenesis. Biochim Biophys Acta Rev Cancer 2018; 1871:138-159. [PMID: 30602127 DOI: 10.1016/j.bbcan.2018.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
As a member of the Cullin-RING ligase family, Cullin-RING ligase 4 (CRL4) has drawn much attention due to its broad regulatory roles under physiological and pathological conditions, especially in neoplastic events. Based on evidence from knockout and transgenic mouse models, human clinical data, and biochemical interactions, we summarize the distinct roles of the CRL4 E3 ligase complexes in tumorigenesis, which appears to be tissue- and context-dependent. Notably, targeting CRL4 has recently emerged as a noval anti-cancer strategy, including thalidomide and its derivatives that bind to the substrate recognition receptor cereblon (CRBN), and anticancer sulfonamides that target DCAF15 to suppress the neoplastic proliferation of multiple myeloma and colorectal cancers, respectively. To this end, PROTACs have been developed as a group of engineered bi-functional chemical glues that induce the ubiquitination-mediated degradation of substrates via recruiting E3 ligases, such as CRL4 (CRBN) and CRL2 (pVHL). We summarize the recent major advances in the CRL4 research field towards understanding its involvement in tumorigenesis and further discuss its clinical implications. The anti-tumor effects using the PROTAC approach to target the degradation of undruggable targets are also highlighted.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengbo Zhou
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Korogi W, Yoshizawa T, Karim MF, Tanoue H, Yugami M, Sobuz SU, Hinoi E, Sato Y, Oike Y, Mizuta H, Yamagata K. SIRT7 is an important regulator of cartilage homeostasis and osteoarthritis development. Biochem Biophys Res Commun 2018; 496:S0006-291X(18)30144-X. [PMID: 29402405 DOI: 10.1016/j.bbrc.2018.01.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 01/20/2018] [Indexed: 11/21/2022]
Abstract
Sirtuins (SIRT1-7) are NAD+-dependent deacetylase/deacylases that regulate a wide variety of biological functions. Although the roles of sirtuins in cartilage homeostasis and cartilage diseases have been well studied, there is no information on the contribution of SIRT7 to cartilage homeostasis and osteoarthritis (OA) pathologies. Here, we demonstrate that Sirt7 knockout mice are resistant to the development of aging-associated OA and forced exercise-induced OA. Attenuation of Sirt7 in the murine chondrogenic cell line ATDC5 increased the deposition of a glycosaminoglycan-rich extracellular matrix and the mRNA expression of extracellular matrix components such as Col2a1 and Acan. Mechanistically, we found that SIRT7 suppressed the transcriptional activity of SOX9, which is an important transcription factor in chondrocytes, and that the enzymatic activity of SIRT7 was required for its function. Our results indicate that SIRT7 is a novel important regulator of cartilage homeostasis and OA development.
Collapse
Affiliation(s)
- Wataru Korogi
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan; Department of Orthopaedic Surgery, Faculty of Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Tatsuya Yoshizawa
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| | - Md Fazlul Karim
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hironori Tanoue
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masaki Yugami
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shihab U Sobuz
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, 920-1192, Japan
| | - Yoshifumi Sato
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuichi Oike
- Department of Molecular Genetics, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hiroshi Mizuta
- Department of Orthopaedic Surgery, Faculty of Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Kazuya Yamagata
- Department of Medical Biochemistry, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|
20
|
Abstract
Sirtuins are a family of intracellular enzymes whose enzymatic activities include catalyzing the β-nicotinamide adenine dinucleotide (β-NAD+)-dependent Nɛ-acyl-lysine deacylation and the β-NAD+-dependent mono-ADP-ribosylation. Among the seven sirtuin family members (i.e., SIRT1-7) thus far identified in mammals including humans, we know SIRT1/2/3/5/6 better than SIRT4/7 as for their enzymatic activities and the cellular roles of the reactions they catalyze. This chapter will provide an updated account on the enzymology and biology of SIRT4 and SIRT7, the two less well-understood mammalian sirtuins. It is hoped that this article will also be able to set a stage for the medicinal chemistry work on SIRT4 and SIRT7, potentially developing novel therapeutic agents for human diseases.
Collapse
|
21
|
Wu D, Li Y, Zhu KS, Wang H, Zhu WG. Advances in Cellular Characterization of the Sirtuin Isoform, SIRT7. Front Endocrinol (Lausanne) 2018; 9:652. [PMID: 30510540 PMCID: PMC6253933 DOI: 10.3389/fendo.2018.00652] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 10/17/2018] [Indexed: 12/15/2022] Open
Abstract
SIRT7 is one of seven mammalian sirtuins that functions as an NAD+-dependent histone/protein deacetylase. SIRT7 is the least well-known member of the sirtuin family, but recent efforts have identified its involvement in various cellular processes, such as ribosome biogenesis, gene expression, cellular metabolism and cancer. Here we provide an update on the functions and mechanisms of SIRT7 in cellular regulation and disease.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
- School of Basic Medical Sciences, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, China
| | - Yinglu Li
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
| | - Kathy S. Zhu
- Peking University Health Science Center, School of Public Health, Beijing, China
| | - Haiying Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, School of Basic Medical Sciences, Beijing, China
- *Correspondence: Wei-Guo Zhu ;
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, Shenzhen University Health Science Center, Shenzhen, China
- Haiying Wang
| |
Collapse
|
22
|
Islam MS, Wei FY, Ohta K, Shigematsu N, Fukuda T, Tomizawa K, Yoshizawa T, Yamagata K. Sirtuin 7 is involved in the consolidation of fear memory in mice. Biochem Biophys Res Commun 2018; 495:261-266. [DOI: 10.1016/j.bbrc.2017.10.159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 10/29/2017] [Indexed: 12/21/2022]
|
23
|
Yamagata K, Yoshizawa T. Transcriptional Regulation of Metabolism by SIRT1 and SIRT7. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 335:143-166. [DOI: 10.1016/bs.ircmb.2017.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Song J, Yang B, Jia X, Li M, Tan W, Ma S, Shi X, Feng L. Distinctive Roles of Sirtuins on Diabetes, Protective or Detrimental? Front Endocrinol (Lausanne) 2018; 9:724. [PMID: 30559718 PMCID: PMC6284472 DOI: 10.3389/fendo.2018.00724] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022] Open
Abstract
Dysregulation of metabolic pathways leads to type 2 diabetes, characteristic of high glucose concentration caused by insulin resistance. The histone deacetylases sirtuins exhibit remarkable enzymatic activities. Accumulating evidence indicates that sirtuins can be pharmacologically activated to ameliorate diabetes. Here, we evaluated different roles of sirtuins (SIRT1-SIRT7) in diabetes progression and described their involvement in metabolic pathways of skeletal muscle, adipose tissue and liver. The nuclear sirtuins, SIRT1, SIRT6, and SIRT7, regulate the activity of key transcription factors and cofactors in almost all tissues with the cellular responses to energy demands. The mitochondrial sirtuins, SIRT3, SIRT4, and SIRT5, regulate the activity of mitochondrial enzymes in response to fasting and calorie restriction. Moreover, genetic polymorphisms of SIRT1 and SIRT2 have been reported to associate with diabetes development. It's worth noting that SIRT1, SIRT2, SIRT3, and SIRT6 are positive regulators of insulin resistance in most cases. In the opposite, SIRT4 and SIRT7 inhibit insulin secretion and fatty acid oxidation. Identification of SIRT1 activators for diabetes has gained wide attention, such as metformin, resveratrol, and resveratrol derivatives. Randomized, prospective, and large-scale clinical trials are warrant to uncover the responsibilities of SIRTs modulators on diabetes progress.
Collapse
Affiliation(s)
- Jie Song
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing Yang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaobin Jia
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mingyu Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Tan
- Affiliated Hospital on Integration of Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shitang Ma
- Life and Health college, Anhui Science and Technology University, Fengyang, China
| | - Xinhong Shi
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Liang Feng
| |
Collapse
|