1
|
Baig F, Bakdaleyeh M, Bazzi HM, Cao L, Tripathy SK. Dissecting the pH Sensitivity of Kinesin-Driven Transport. J Phys Chem B 2024; 128:11855-11864. [PMID: 39575923 PMCID: PMC11627161 DOI: 10.1021/acs.jpcb.4c03850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 10/23/2024] [Indexed: 12/06/2024]
Abstract
Kinesin-1 is a crucial motor protein that drives the microtubule-based movement of organelles, vital for cellular function and health. Mostly studied at pH 6.9, it moves at approximately 800 nm/s, covers about 1 μm before detaching, and hydrolyzes one ATP per 8 nm step. Given that cellular pH is dynamic and alterations in pH have significant implications for disease, understanding how kinesin-1 functions across different pH levels is crucial. To explore this, we executed single-molecule motility assays paired with precise optical trapping techniques over a pH range of 5.5-9.8. Our results show a consistent positive relationship between increasing pH and the enhanced detachment (off rate) and speed of kinesin-1. Measurements of the nucleotide-dependent off rate show that kinesin-1 exhibits the highest rate of ATPase activity at alkaline pH, while it demonstrates the optimal number of ATP turnover and cargo translocation efficiency at the acidic pH. Physiological pH of 6.9 optimally balances the biophysical activity of kinesin-1, potentially allowing it to function effectively across a range of pH levels. These insights emphasize the crucial role of pH homeostasis in cellular function, highlighting its importance for the precise regulation of motor proteins and efficient intracellular transport.
Collapse
Affiliation(s)
- Fawaz Baig
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Michael Bakdaleyeh
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Hassan M. Bazzi
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Lanqin Cao
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| | - Suvranta K. Tripathy
- Department of Natural Sciences, University of Michigan-Dearborn, 4901 Evergreen Road, Dearborn, Michigan 48128, United States
| |
Collapse
|
2
|
Kabir AMR, Munmun T, Sada K, Kakugo A. Fluctuation in the Sliding Movement of Kinesin-Driven Microtubules Is Regulated Using the Deep-Sea Osmolyte Trimethylamine N-Oxide. ACS OMEGA 2022; 7:18597-18604. [PMID: 35694499 PMCID: PMC9178762 DOI: 10.1021/acsomega.2c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, biomolecular motor-based miniaturized lab-on-a-chip devices have been attracting much attention for their wide range of nanotechnological applications. Most of the applications are dependent on the motor-driven active transportation of their associated filamentous proteins as shuttles. Fluctuation in the movement of the shuttles is a major contributor to the dispersion in motor-driven active transportation, which limits the efficiency of the miniaturized devices. In this work, by employing the biomolecular motor kinesin and its associated protein filament microtubule as a model active transport system, we demonstrate that the deep-sea osmolyte trimethylamine N-oxide (TMAO) is useful in regulating the fluctuation in the motility of microtubule shuttles. We show that the motional diffusion coefficient, a measure of the fluctuation in the movement of the kinesin-propelled microtubules, gradually decreases upon increasing the concentration of TMAO in the transportation system. We have been able to reduce the motional diffusion coefficient of microtubules more than 200 times by employing TMAO at a concentration of 2 M. We also show that upon elimination of TMAO, the motional diffusion coefficient of microtubules can be restored, which confirms that TMAO can be used as a tool to reversibly regulate the fluctuation in the sliding movement of kinesin-propelled microtubule shuttles. Such reversible regulation of the dynamic behavior of the shuttles does not require sacrificing the concentration of fuel used for transportation. Our results confirm the ability to manipulate the nanoscale motion of biomolecular motor-driven active transporters in an artificial environment. This work is expected to further enhance the tunability of biomolecular motor functions, which, in turn, will foster their nanotechnological applications based on active transportation.
Collapse
Affiliation(s)
| | - Tasrina Munmun
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
3
|
Kabir AMR, Munmun T, Hayashi T, Yasuda S, Kimura AP, Kinoshita M, Murata T, Sada K, Kakugo A. Controlling the Rigidity of Kinesin-Propelled Microtubules in an In Vitro Gliding Assay Using the Deep-Sea Osmolyte Trimethylamine N-Oxide. ACS OMEGA 2022; 7:3796-3803. [PMID: 35128287 PMCID: PMC8811939 DOI: 10.1021/acsomega.1c06699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The biomolecular motor protein kinesin and its associated filamentous protein microtubule have been finding important nanotechnological applications in the recent years. Rigidity of the microtubules, which are propelled by kinesin motors in an in vitro gliding assay, is an important metric that determines the success of utilization of microtubules and kinesins in various applications, such as transportation, sensing, sorting, molecular robotics, etc. Therefore, regulating the rigidity of kinesin-propelled microtubules has been critical. In this work, we report a simple strategy to regulate the rigidity of kinesin-propelled microtubules in an in vitro gliding assay. We demonstrate that rigidity of the microtubules, propelled by kinesins in an in vitro gliding assay, can be modulated simply by using the natural osmolyte trimethylamine N-oxide (TMAO). By varying the concentration of TMAO in the gliding assay, the rigidity of microtubules can be modulated over a wide range. Based on this strategy, we are able to reduce the persistence length of microtubules, a measure of microtubule rigidity, ∼8 fold by using TMAO at the concentration of 1.5 M. Furthermore, we found that the decreased rigidity of the kinesin-propelled microtubules can be restored upon elimination of TMAO from the in vitro gliding assay. Alteration in the rigidity of microtubules is accounted for by the non-uniformity of the force applied by kinesins along the microtubules in the presence of TMAO. This work offers a facile strategy to reversibly regulate the rigidity of kinesin-propelled microtubules in situ, which would widen the applications of the biomolecular motor kinesin and its associated protein microtubule in various fields.
Collapse
Affiliation(s)
| | - Tasrina Munmun
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiko Hayashi
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Satoshi Yasuda
- Graduate
School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Atsushi P. Kimura
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masahiro Kinoshita
- Institute
of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- Graduate
School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Takeshi Murata
- Graduate
School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
- Membrane
Protein Research and Molecular Chirality Research Centers, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Kazuki Sada
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Faculty
of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate
School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
4
|
Hassell DS, Steingesser MG, Denney AS, Johnson CR, McMurray MA. Chemical rescue of mutant proteins in living Saccharomyces cerevisiae cells by naturally occurring small molecules. G3-GENES GENOMES GENETICS 2021; 11:6323229. [PMID: 34544143 PMCID: PMC8496222 DOI: 10.1093/g3journal/jkab252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 11/14/2022]
Abstract
Intracellular proteins function in a complex milieu wherein small molecules influence protein folding and act as essential cofactors for enzymatic reactions. Thus protein function depends not only on amino acid sequence but also on the concentrations of such molecules, which are subject to wide variation between organisms, metabolic states, and environmental conditions. We previously found evidence that exogenous guanidine reverses the phenotypes of specific budding yeast septin mutants by binding to a WT septin at the former site of an Arg side chain that was lost during fungal evolution. Here, we used a combination of targeted and unbiased approaches to look for other cases of "chemical rescue" by naturally occurring small molecules. We report in vivo rescue of hundreds of Saccharomyces cerevisiae mutants representing a variety of genes, including likely examples of Arg or Lys side chain replacement by the guanidinium ion. Failed rescue of targeted mutants highlight features required for rescue, as well as key differences between the in vitro and in vivo environments. Some non-Arg mutants rescued by guanidine likely result from "off-target" effects on specific cellular processes in WT cells. Molecules isosteric to guanidine and known to influence protein folding had a range of effects, from essentially none for urea, to rescue of a few mutants by DMSO. Strikingly, the osmolyte trimethylamine-N-oxide rescued ∼20% of the mutants we tested, likely reflecting combinations of direct and indirect effects on mutant protein function. Our findings illustrate the potential of natural small molecules as therapeutic interventions and drivers of evolution.
Collapse
Affiliation(s)
- Daniel S Hassell
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Marc G Steingesser
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ashley S Denney
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Courtney R Johnson
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael A McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Yadav S, Kunwar A. Temperature-Dependent Activity of Motor Proteins: Energetics and Their Implications for Collective Behavior. Front Cell Dev Biol 2021; 9:610899. [PMID: 33732692 PMCID: PMC7959718 DOI: 10.3389/fcell.2021.610899] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/11/2021] [Indexed: 12/27/2022] Open
Abstract
Molecular motor proteins are an extremely important component of the cellular transport system that harness chemical energy derived from ATP hydrolysis to carry out directed mechanical motion inside the cells. Transport properties of these motors such as processivity, velocity, and their load dependence have been well established through single-molecule experiments. Temperature dependent biophysical properties of molecular motors are now being probed using single-molecule experiments. Additionally, the temperature dependent biochemical properties of motors (ATPase activity) are probed to understand the underlying mechanisms and their possible implications on the enzymatic activity of motor proteins. These experiments in turn have revealed their activation energies and how they compare with the thermal energy available from the surrounding medium. In this review, we summarize such temperature dependent biophysical and biochemical properties of linear and rotary motor proteins and their implications for collective function during intracellular transport and cellular movement, respectively.
Collapse
Affiliation(s)
- Saumya Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
6
|
Doval F, Chiba K, McKenney RJ, Ori-McKenney KM, Vershinin MD. Temperature-dependent activity of kinesins is regulable. Biochem Biophys Res Commun 2020; 528:528-530. [PMID: 32507595 DOI: 10.1016/j.bbrc.2020.05.157] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022]
Abstract
Cytoskeletal transport in cells is driven by enzymes whose activity shows sensitive, typically Arrhenius, dependence on temperature. Often, the duration and outcome of cargo transport is determined by the relative success of kinesin vs. dynein motors, which can simultaneously bind to individual cargos and move in opposite direction on microtubules. The question of how kinesin and dynein activity remain coupled over the large temperature ranges experienced by some cells is one of clear biological relevance. We report a break in the Arrhenius behavior of both kinesin-1 and kinesin-3 enzymatic activity at 4.7 °C and 10.5 °C, respectively. Further, we report that this transition temperature significantly changes as a function of chemical background: addition of 200 mM TMAO increases transition temperatures by ∼6 °C in all cases. Our results show that Arrhenius trend breaks are common to all cytoskeletal motors and open a broad question of how such activity transitions are regulated in vivo. STATEMENT OF SIGNIFICANCE: Many cytoskeletal motors studied to date follow Arrhenius kinetics, at least from room temperature up to mammalian body temperature. However the thermal dynamic range is typically finite, and breaks in Arrhenius trends are commonly observed at biologically relevant temperatures. Here we report that the thermal dynamic range of kinesins is also limited and moreover that the location of the Arrhenius break for kinesins can shift significantly based on chemical backgrounds. This implies that the balance of multiple motor cargo transport along the cytoskeleton is far more tunable as a function of temperature than previously appreciated.
Collapse
Affiliation(s)
- F Doval
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, 84112, USA
| | - K Chiba
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - R J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - K M Ori-McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, USA
| | - M D Vershinin
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
7
|
Munmun T, Kabir AMR, Katsumoto Y, Sada K, Kakugo A. Controlling the kinetics of interaction between microtubules and kinesins over a wide temperature range using the deep-sea osmolyte trimethylamine N-oxide. Chem Commun (Camb) 2020; 56:1187-1190. [PMID: 31922177 DOI: 10.1039/c9cc09324a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trimethylamine N-oxide is found to be effective in regulating the interaction between microtubules and kinesins over a wide temperature range. The lifetime of the motility of microtubules on kinesins at high temperatures is prolonged using trimethylamine N-oxide. The activation energy of microtubule motility is increased by trimethylamine N-oxide. Prolonged operation at high temperatures decreased the activation energy of MT motility despite the increase in concentration of trimethylamine N-oxide.
Collapse
Affiliation(s)
- Tasrina Munmun
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan.
| | | | - Yukiteru Katsumoto
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma 8-19-1, Jonan-ku, Fukuoka 814-0180, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan. and Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan. and Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Shimizu Y, Togawa T, Chaen S. Possible cold-adaptation for the fungal kinesin in compensation for thermal stability acquired by single amino acid substitution. J Biochem 2018; 165:353-359. [DOI: 10.1093/jb/mvy109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/04/2018] [Indexed: 11/12/2022] Open
Abstract
Abstract
The amino acid sequence of the motor domain of AnKinA, kinesin-1 from Aspergillus nidulans, growing optimally at 37°C, was compared with that of SbKin1, kinesin-1 from the snow mold Sclerotinia borealis. For cold-adaptation, some enzymes are thought to exhibit augmented protein structure flexibility, acquired most effectively by substituting a glycine residue for another amino acid residue. By the comparison described above, two glycine residues proximal to tightly bound ADP were identified in the SbKin1 motor domain, of which the corresponding residues of AnKinA were non-glycine ones (P60 and S323). We made AnKinA recombinant kinesin (AnKinA-WT (WT)) along with P60G and S323G mutants. From the basal ATPase activity (without microtubules), these kinesins showed similar characteristics in activation energies, while deviation from the linearity of the ATPase activity time-course was detected at 34°C for WT and P60G but at 24°C for S323G. The microtubule translocation velocity of WT, P60G or S323G exhibited an activation energy of 60, 58 or 53 kJ/mol, respectively; for S323G, the activation energy was lower and the velocity at low temperatures was higher than those for the other two. These results suggest that the point mutation S323G would offer possible cold-adaptation in compensation for thermal stability.
Collapse
Affiliation(s)
- Youské Shimizu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, Japan
| | - Toru Togawa
- Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, Japan
| | - Shigeru Chaen
- Department of Biosciences, College of Humanities and Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, Japan
| |
Collapse
|