1
|
Etuze T, Triniac H, Zheng Z, Vivien D, Dubois F. Apolipoproteins in ischemic stroke progression and recovery: Key molecular mechanisms and therapeutic potential. Neurobiol Dis 2025; 209:106896. [PMID: 40180226 DOI: 10.1016/j.nbd.2025.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025] Open
Abstract
Ischemic stroke, responsible for 80 % of all strokes, is a leading cause of mortality globally. While altered lipids profiles are recognized as modifiable risk factors, their direct impact on stroke outcomes is less understood due to the brain's distinct lipid metabolism and the selective permeability of the blood-brain barrier for lipoproteins. As key components of lipoproteins, apolipoproteins are essential for lipid transport, redistribution and metabolism in both the central nervous system and peripheral blood circulation. This review provides an updated perspective on the influence of brain-expressed apolipoproteins (such as ApoE, ApoA-I, ApoJ, ApoD, and others) and those that cross the damaged blood-brain barrier following ischemic stroke. We explore hypotheses regarding their involvement in molecular pathways related to lipid metabolism, inflammation, oxidative stress, mitochondrial function and blood-brain barrier integrity. Through this synthesis, we aim to identify potential biomarkers and therapeutic targets, thereby enhancing our understanding of apolipoproteins in ischemic stroke progression and contributing to improved clinical outcomes.
Collapse
Affiliation(s)
- Tamara Etuze
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France
| | | | - Ze Zheng
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA; Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de La Côte de Nacre, Caen, France.
| | - Fatemeh Dubois
- Normandie University, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Pathology, CHU de Caen Normandie, 14000 Caen, France.
| |
Collapse
|
2
|
Lundsgaard AM, Del Giudice R, Kanta JM, Larance M, Armour SL, London A, Richter MM, Andersen NR, Nicolaisen TS, Carl CS, Sjøberg KA, Bojsen-Møller KN, Knudsen JG, Lagerstedt JO, Fritzen AM, Kiens B. Apolipoprotein A-IV is induced by high-fat diets and mediates positive effects on glucose and lipid metabolism. Mol Metab 2025; 95:102119. [PMID: 40032158 PMCID: PMC11938269 DOI: 10.1016/j.molmet.2025.102119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025] Open
Abstract
OBJECTIVE Low-carbohydrate, high-fat diets under eucaloric conditions are associated with several health-beneficial metabolic effects in humans, particularly in the liver. We recently observed that apolipoprotein A-IV (apoA-IV), a highly abundant apolipoprotein, was among the most upregulated proteins in circulation after six weeks of consuming a high-fat diet in humans. However, the impact of dietary changes in regulating apoA-IV, and the potential effects of apoA-IV on regulation of glucose- and lipid metabolism remain to be fully established. METHODS We investigated the regulation of circulating fasting concentrations of apoA-IV in humans in response to diets enriched in either fat or carbohydrates. Moreover, to study the whole-body and tissue-specific glucose and lipid metabolic effects of apoA-IV, we administrered apoA-IV recombinant protein to mice and isolated pancreatic islets. RESULTS We demonstrate that in healthy human individuals high-fat intake increased fasting plasma apoA-IV concentrations by up to 54%, while high-carbohydrate intake suppressed plasma apoA-IV concentrations. In mice, administration of apoA-IV acutely lowered blood glucose levels both in lean and obese mice. Interestingly, this was related to a dual mechanism, involving both inhibition of hepatic glucose production and increased glucose uptake into white and brown adipose tissues. In addition to an effect on hepatic glucose production, the apoA-IV-induced liver proteome revealed increased capacity for lipoprotein clearance. The effects of apoA-IV in the liver and adipose tissues were concomitant with increased whole-body fatty acid oxidation. Upon glucose stimulation, an improvement in glucose tolerance by apoA-IV administration was related to potentiation of glucose-induced insulin secretion, while apoA-IV inhibited glucagon secretion ex vivo in islets. CONCLUSIONS We find that apoA-IV is potently increased by intake of fat in humans, and that several beneficial metabolic effects, previously associated with high fat intake in humans, are mimicked by administration of apoA-IV protein to mice.
Collapse
Affiliation(s)
- Anne-Marie Lundsgaard
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk A/S, Søborg, Denmark
| | - Rita Del Giudice
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Biomedical Science and Biofilms - Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Josephine M Kanta
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Mark Larance
- Charles Perkins Centre and School of Medical Sciences, University of Sydney, Sydney, Australia
| | - Sarah L Armour
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Amalie London
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Michael M Richter
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Nicoline R Andersen
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine S Nicolaisen
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Nyvold Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jakob G Knudsen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| | - Andreas M Fritzen
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- The August Krogh Section for Human & Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
3
|
Thomas WR, Richter T, O'Neil ET, Baldoni C, Corthals A, von Elverfeldt D, Nieland JD, Dechmann D, Hunter R, Davalos LM. Seasonal and comparative evidence of adaptive gene expression in mammalian brain size plasticity. eLife 2025; 13:RP100788. [PMID: 40310674 PMCID: PMC12045622 DOI: 10.7554/elife.100788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Contrasting almost all other mammalian wintering strategies, Eurasian common shrews, Sorex araneus, endure winter by shrinking their brain, skull, and most organs, only to then regrow to breeding size the following spring. How such tiny mammals achieve this unique brain size plasticity while maintaining activity through the winter remains unknown. To discover potential adaptations underlying this trait, we analyzed seasonal differential gene expression in the shrew hypothalamus, a brain region that both regulates metabolic homeostasis and drastically changes size, and compared hypothalamus gene expression across species. We discovered seasonal variation in suites of genes involved in energy homeostasis and apoptosis, shrew-specific upregulation of genes involved in the development of the hypothalamic blood-brain barrier and calcium signaling, as well as overlapping seasonal and comparative gene expression divergence in genes implicated in the development and progression of human neurological and metabolic disorders, including CCDC22. With high metabolic rates and facing harsh winter conditions, S. araneus have evolved both adaptive and plastic mechanisms to sense and regulate their energy budget. Many of these changes mirrored those identified in human neurological and metabolic disease, highlighting the interactions between metabolic homeostasis, brain size plasticity, and longevity.
Collapse
Affiliation(s)
- William R Thomas
- Department of Ecology and Evolution, Stony Brook UniversityNew YorkUnited States
| | - Troy Richter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts BostonBostonUnited States
| | - Erin T O'Neil
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts BostonBostonUnited States
| | - Cecilia Baldoni
- Max Planck Institute of Animal BehaviorRadolfzellGermany
- University of KonstanzRadolfzellGermany
| | | | - Dominik von Elverfeldt
- Division of Medical Physics, Department of Dignostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University FreiburgFreiburgGermany
| | - John D Nieland
- Health Science and Technology, Aalborg UniversityAalborgDenmark
| | - Dina Dechmann
- Max Planck Institute of Animal BehaviorRadolfzellGermany
- University of KonstanzRadolfzellGermany
| | - Richard Hunter
- Department of Psychology, Developmental and Brain Sciences Program, University of Massachusetts BostonBostonUnited States
| | - Liliana M Davalos
- Department of Ecology and Evolution, Stony Brook UniversityNew YorkUnited States
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook UniversityNew YorkUnited States
| |
Collapse
|
4
|
Li MJ, Du YX, Lan MN, Ye LY, Xu Y, Liu Y, Wu YX, Xia HY, Zhang HY, Guo M, Yang ZL, Wu ZJ, Zheng HJ. Epigenetics-Driven Appetite System Disorders and PI3K/AKT Signaling Activation Mediate a Weight Gain Resistance Phenotype Induced by a High-Fat Diet in Male Rats. Int J Eat Disord 2025. [PMID: 40237130 DOI: 10.1002/eat.24442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVE Some patients with anorexia nervosa (AN) exhibit an aversion to high-fat food. The hypothalamus plays a crucial role in feeding behavior. This study investigated the role of epigenetic modifications in the hypothalamus of male rats exhibiting a weight gain resistance (WR) phenotype induced by a high-fat diet (HFD). METHOD Male Sprague-Dawley (SD) rats were divided into normal diet (ND) and HFD groups for 9 weeks. Rats in the HFD group were then divided into HFD-induced obese (HFO) or HFD-induced WR phenotype (HFWR) groups, and body weight and food intake were monitored for 24 days. Samples such as hypothalamus and serum were collected. RESULTS The hypothalamus of HFWR rats showed increased 5-methylcytosine (5mC) levels. Whole-genome bisulfite sequencing (WGBS) analysis revealed that the level of 5mC in the hypothalamic DNA of HFWR rats was higher than that of HFO rats. The hypothalamus of HFWR rats displayed molecular disturbances in appetite systems. Through integrated analysis of the methylome and transcriptome, we discovered that alterations in methylation levels directly influenced changes in the galanin and IGF systems. Five genes (Aurkb, Cdkn1a, Galr1, ND2, and Tf) with promoter hypermethylation may be involved in appetite system disturbances. Furthermore, HFD-induced alteration of 5mC affects PI3K/Akt signaling activation, resulting in increased neuroinflammation and apoptosis in the ventromedial nucleus of the hypothalamus (VMH) in HFWR rats. DISCUSSION Our study suggests that 5mC-mediated molecular disturbances in the hypothalamic appetite system and activation of PI3K/Akt signaling in the VMH may serve as a potential pathogenic basis for HFWR.
Collapse
Affiliation(s)
- Ming-Jie Li
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai, China
| | - Yao-Xuan Du
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng-Ning Lan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu-Yi Ye
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Xu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yue Liu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Xiao Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hai-Yang Xia
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hua-Yue Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Min Guo
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zi-Long Yang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Zheng-Jun Wu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co. Ltd., Shanghai, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zhu Q, Yang Q, Shen L, Xu M, Liu M. The Impact of Cannabidiol (CBD) on Lipid Absorption and Lymphatic Transport in Rats. Nutrients 2025; 17:1034. [PMID: 40292467 PMCID: PMC11944757 DOI: 10.3390/nu17061034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Cannabidiol (CBD) exerts diverse metabolic effects, yet its influence on intestinal lipid metabolism remains unclear. Methods: In this study, we investigated whether short-term (one-week) CBD treatment affects lipid absorption and transport through the lymphatic system using a validated lymph fistula model. Results: CBD treatment significantly enhanced the transport of radiolabeled triglycerides through the lymphatic system. This effect appeared specific, as CBD did not substantially alter cholesterol output in the lymph. Chemical assays indicated that CBD treatment did not significantly alter total triglycerides, cholesterol, phospholipids, or non-esterified fatty acid levels in the lymph. However, it significantly enhanced the lymphatic output of apolipoprotein A4 (ApoA4) and apolipoprotein A1 (ApoA1). Additionally, gene expression analysis revealed a downregulation of vascular endothelial growth factor receptor 1 (Flt1) in the small intestine, leading to increased lymphatic lacteal permeability and altered lipid transport dynamics. Conclusions: These findings indicate that short-term CBD treatment modulates lymphatic lipid composition and apolipoprotein secretion by regulating lymphatic lacteal function, thereby influencing lipid transport and metabolism. This study provides novel insights into CBD's role in facilitating TG-rich lipoprotein transport via the lymphatic system, highlighting its potential therapeutic applications in lipid-related disorders.
Collapse
Affiliation(s)
| | | | | | | | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.); (Q.Y.); (L.S.); (M.X.)
| |
Collapse
|
6
|
Wu X, Tao Y, Ren Y, Zhang Z, Zhao Y, Tian Y, Li Y, Hou M, Guo Y, Gong Y, Zhang Y, Li D, Li H, Jiang R, Li G, Liu X, Kang X, Tian Y. Adiponectin inhibits GnRH secretion via activating AMPK and PI3K signaling pathways in chicken hypothalamic neuron cells. Poult Sci 2023; 102:103028. [PMID: 37660449 PMCID: PMC10491727 DOI: 10.1016/j.psj.2023.103028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
It has been reported that adiponectin (AdipoQ), an adipokine secreted by white adipose tissue, plays an important role in the control of animal reproduction in addition to its function in energy homeostasis by binding to its receptors AdipoR1/2. However, the molecular mechanisms of AdipoQ in the regulation of animal reproduction remain elusive. In this study, we investigated the effects of AdipoQ on hypothalamic reproductive hormone (GnRH) secretion and reproduction-related receptor gene (estrogen receptor [ER] and progesterone receptor [PR]) expression in hypothalamic neuronal cells (HNCs) of chickens by using real-time fluorescent quantitative PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), Western blot (WB) and cell counting kit-8 (CCK-8) assays and found that overexpression of AdipoQ could increase the expression levels of AdipoR1/2 and reproduction-related receptor genes (P < 0.05) while decreasing the expression level of GnRH. In contrast, interference with AdipoQ mRNA showed the opposite results in HNCs. Furthermore, we demonstrated that AdipoQ exerts its functions through the AMPK and PI3K signaling pathways. Finally, our in vitro experiments found that AdipoRon (a synthetic substitute for AdipoQ) treatment and AdipoR1/2 RNAi interference co-treatment resulted in no effect on GnRH secretion, suggesting that the inhibition of GnRH secretion by AdipoQ is mediated by the AdipoR1/2 signaling axis. In summary, we uncovered, for the first time, the molecular mechanism of AdipoQ in the regulation of reproductive hormone secretion in hypothalamic neurons in chickens.
Collapse
Affiliation(s)
- Xing Wu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yiqing Tao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yangguang Ren
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zihao Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yudian Zhao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixiang Tian
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yijie Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Meng Hou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yujie Gong
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Huang M, Zheng J, Chen L, You S, Huang H. Advances in the study of the pathogenesis of obesity: Based on apolipoproteins. Clin Chim Acta 2023; 545:117359. [PMID: 37086940 DOI: 10.1016/j.cca.2023.117359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 04/24/2023]
Abstract
Obesity is a state presented by excessive accumulation and abnormal distribution of body fat, with metabolic disorders being one of its distinguishing features. Obesity is associated with dyslipidemia, apolipoproteins are important structural components of plasma lipoproteins, which influence lipid metabolism in the body by participating in lipoprotein metabolism and are closely related to the progression of obesity. Apolipoproteins influence the progression of obesity from lipid metabolism, energy expenditure and inflammatory response. In this review, we discuss the alterations of apolipoproteins in obesity, understand the potential mechanisms by which apolipoproteins affect obesity, as well as provide new targets for the treatment of obesity.
Collapse
Affiliation(s)
- Mingjing Huang
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jingyi Zheng
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lijun Chen
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Sufang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province China; Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Huibin Huang
- Department of Endocrinology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
8
|
Betaine Reduces Lipid Anabolism and Promotes Lipid Transport in Mice Fed a High-Fat Diet by Influencing Intestinal Protein Expression. Foods 2022; 11:foods11162421. [PMID: 36010422 PMCID: PMC9407371 DOI: 10.3390/foods11162421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/21/2022] Open
Abstract
Betaine is more efficient than choline and methionine methyl donors, as it can increase nitrogen storage, promote fat mobilisation and fatty acid oxidation and change body fat content and distribution. Lipid is absorbed primarily in the small intestine after consumption, which is also the basis of lipid metabolism. This study was conducted to establish a mouse model of obesity in Kunming mice of the same age and similar body weight, and to assess the effect of betaine on the intestinal protein expression profile of mice using a proteomic approach. Analysis showed that betaine supplementation reversed the reduction in expression of proteins related to lipid metabolism and transport in the intestine of mice induced by a high-fat diet (HFD). For example, the addition of betaine resulted in a significant upregulation of microsomal triglyceride transfer protein (Mttp), apolipoprotein A-IV (Apoa4), fatty-acid-binding protein 1 (Fabp1) and fatty-acid-binding protein 2 (Fabp2) expression compared to the HFD group (p < 0.05), which exhibited accelerated lipid absorption and then translocation from the intestine into the body’s circulation, in addition to a significant increase in Acetyl-CoA acyltransferase (Acaa1a) protein expression, hastening lipid metabolism in the intestine (p < 0.05). Simultaneously, a significant reduction in protein expression of alpha-enolase 1 (Eno1) as the key enzyme for gluconeogenesis in mice in the betaine-supplemented group resulted in a reduction in lipid synthesis in the intestine (p < 0.05). These findings provide useful information for understanding the changes in the protein profile of the small intestine in response to betaine supplementation and the potential physiological regulation of diets’ nutrient absorption.
Collapse
|
9
|
Shearston K, Tan JTM, Cochran BJ, Rye KA. Inhibition of Vascular Inflammation by Apolipoprotein A-IV. Front Cardiovasc Med 2022; 9:901408. [PMID: 35845068 PMCID: PMC9279673 DOI: 10.3389/fcvm.2022.901408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
Background Apolipoprotein (apo) A-IV, the third most abundant apolipoprotein in human high density lipoproteins (HDLs), inhibits intestinal and systemic inflammation. This study asks if apoA-IV also inhibits acute vascular inflammation. Methods Inflammation was induced in New Zealand White rabbits by placing a non-occlusive silastic collar around the common carotid artery. A single 1 mg/kg intravenous infusion of lipid-free apoA-IV or saline (control) was administered to the animals 24 h before collar insertion. The animals were euthanised 24 h post-collar insertion. Human coronary artery cells (HCAECs) were pre-incubated with reconstituted HDLs containing apoA-IV complexed with phosphatidylcholine, (A-IV)rHDLs, then activated by incubation with tumour necrosis factor (TNF)-α. Cell surface vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in the TNF-α-activated HCAECs was quantified by flow cytometry. VCAM-1, ICAM-1 and 3β-hydroxysteroid-Δ24 reductase (DHCR24) mRNA levels were quantified by real time PCR. Results Apolipoprotein ApoA-IV treatment significantly decreased collar-induced endothelial expression of VCAM-1, ICAM-1 and neutrophil infiltration into the arterial intima by 67.6 ± 9.9% (p < 0.01), 75.4 ± 6.9% (p < 0.01) and 74.4 ± 8.5% (p < 0.05), respectively. It also increased endothelial expression of DHCR24 by 2.6-fold (p < 0.05). Pre-incubation of HCAECs with (A-IV)rHDLs prior to stimulation with TNF-α inhibited VCAM-1 and ICAM-1 protein levels by 62.2 ± 12.1% and 33.7 ± 5.7%, respectively. VCAM-1 and ICAM-1 mRNA levels were decreased by 55.8 ± 7.2% and 49.6 ± 7.9%, respectively, while DHCR24 mRNA expression increased by threefold. Transfection of HCAECs with DHCR24 siRNA attenuated the anti-inflammatory effects of (A-IV)rHDLs. Pre-incubation of TNF-α-activated HCAECs with (A-IV)rHDLs also inhibited nuclear translocation of the p65 subunit of nuclear factor-κB (NF-κB), and decreased IκBα phosphorylation. Conclusion These results indicate that apoA-IV inhibits vascular inflammation in vitro and in vivo by inhibiting NF-κB activation in a DHCR24-dependent manner.
Collapse
Affiliation(s)
- Kate Shearston
- Lipid Research Group, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Joanne T. M. Tan
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Blake J. Cochran
- Lipid Research Group, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Kerry-Anne Rye
- Lipid Research Group, Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Kerry-Anne Rye,
| |
Collapse
|
10
|
Montégut L, Lopez-Otin C, Magnan C, Kroemer G. Old Paradoxes and New Opportunities for Appetite Control in Obesity. Trends Endocrinol Metab 2021; 32:264-294. [PMID: 33707095 DOI: 10.1016/j.tem.2021.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Human obesity is accompanied by alterations in the blood concentrations of multiple circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are elevated in nonsyndromic obesity, while most of the appetite stimulatory hormones are reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In this context, it is important to understand which appetite regulators exhibit a convergent rather than paradoxical behavior and hence are likely to contribute to the maintenance of the obese state. Pharmacological interventions in obesity should preferentially consist of the supplementation of deficient appetite inhibitors or the neutralization of excessive appetite stimulators. Here, we critically analyze the current literature on appetite-regulatory peptide hormones. We propose a short-list of appetite modulators that may constitute the best candidates for therapeutic interventions.
Collapse
Affiliation(s)
- Léa Montégut
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France; Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université Paris Diderot, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-, HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Roula D, Theiler A, Luschnig P, Sturm GJ, Tomazic PV, Marsche G, Heinemann A, Sturm EM. Apolipoprotein A-IV acts as an endogenous anti-inflammatory protein and is reduced in treatment-naïve allergic patients and allergen-challenged mice. Allergy 2020; 75:392-402. [PMID: 31408538 PMCID: PMC7065107 DOI: 10.1111/all.14022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/07/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022]
Abstract
Background Recent studies pointed to a crucial role for apolipoproteins in the pathogenesis of inflammatory diseases. However, the role of apolipoprotein‐IV (ApoA‐IV) in allergic inflammation has not been addressed thoroughly thus far. Objective Here, we explored the anti‐inflammatory effects and underlying signaling pathways of ApoA‐IV on eosinophil effector function in vitro and in vivo. Methods Migratory responsiveness, Ca2+‐flux and apoptosis of human peripheral blood eosinophils were assessed in vitro. Allergen‐driven airway inflammation was assessed in a mouse model of acute house dust mite‐induced asthma. ApoA‐IV serum levels were determined by ELISA. Results Recombinant ApoA‐IV potently inhibited eosinophil responsiveness in vitro as measured by Ca2+‐flux, shape change, integrin (CD11b) expression, and chemotaxis. The underlying molecular mechanism involved the activation of Rev‐ErbA‐α and induced a PI3K/PDK1/PKA‐dependent signaling cascade. Systemic application of ApoA‐IV prevented airway hyperresponsiveness (AHR) and airway eosinophilia in mice following allergen challenge. ApoA‐IV levels were decreased in serum from allergic patients compared to healthy controls. Conclusion Our data suggest that ApoA‐IV is an endogenous anti‐inflammatory protein that potently suppresses effector cell functions in eosinophils. Thus, exogenously applied ApoA‐IV may represent a novel pharmacological approach for the treatment of allergic inflammation and other eosinophil‐driven disorders.
Collapse
Affiliation(s)
- David Roula
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Anna Theiler
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Petra Luschnig
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Gunter J. Sturm
- Department of Dermatology and Venerology Medical University of Graz Graz Austria
- Allergy Outpatient Clinic Reumannplatz Vienna Austria
| | | | - Gunther Marsche
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Akos Heinemann
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| | - Eva M. Sturm
- Division of Pharmacology, Otto‐Loewi Research Center for Vascular Biology, Immunology and Inflammation Medical University of Graz Graz Austria
| |
Collapse
|
12
|
Advanced Glycated apoA-IV Loses Its Ability to Prevent the LPS-Induced Reduction in Cholesterol Efflux-Related Gene Expression in Macrophages. Mediators Inflamm 2020; 2020:6515401. [PMID: 32410861 PMCID: PMC7201780 DOI: 10.1155/2020/6515401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/06/2019] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
We addressed how advanced glycation (AGE) affects the ability of apoA-IV to impair inflammation and restore the expression of genes involved in cholesterol efflux in lipopolysaccharide- (LPS-) treated macrophages. Recombinant human apoA-IV was nonenzymatically glycated by incubation with glycolaldehyde (GAD), incubated with cholesterol-loaded bone marrow-derived macrophages (BMDMs), and then stimulated with LPS prior to measurement of proinflammatory cytokines by ELISA. Genes involved in cholesterol efflux were quantified by RT-qPCR, and cholesterol efflux was measured by liquid scintillation counting. Carboxymethyllysine (CML) and pyrraline (PYR) levels, determined by Liquid Chromatography-Mass Spectrometry (LC-MS/MS), were greater in AGE-modified apoA-IV (AGE-apoA-IV) compared to unmodified-apoA-IV. AGE-apoA-IV inhibited expression of interleukin 6 (Il6), TNF-alpha (Tnf), IL-1 beta (Il1b), toll-like receptor 4 (Tlr4), tumor necrosis factor receptor-associated factor 6 (Traf6), Janus kinase 2/signal transducer and activator of transcription 3 (Jak2/Stat3), nuclear factor kappa B (Nfkb), and AGE receptor 1 (Ddost) as well as IL-6 and TNF-alpha secretion. AGE-apoA-IV alone did not change cholesterol efflux or ABCA-1 levels but was unable to restore the LPS-induced reduction in expression of Abca1 and Abcg1. AGE-apoA-IV inhibited inflammation but lost its ability to counteract the LPS-induced changes in expression of genes involved in macrophage cholesterol efflux that may contribute to atherosclerosis.
Collapse
|
13
|
Qu J, Ko CW, Tso P, Bhargava A. Apolipoprotein A-IV: A Multifunctional Protein Involved in Protection against Atherosclerosis and Diabetes. Cells 2019; 8:E319. [PMID: 30959835 PMCID: PMC6523623 DOI: 10.3390/cells8040319] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein A-IV (apoA-IV) is a lipid-binding protein, which is primarily synthesized in the small intestine, packaged into chylomicrons, and secreted into intestinal lymph during fat absorption. In the circulation, apoA-IV is present on chylomicron remnants, high-density lipoproteins, and also in lipid-free form. ApoA-IV is involved in a myriad of physiological processes such as lipid absorption and metabolism, anti-atherosclerosis, platelet aggregation and thrombosis, glucose homeostasis, and food intake. ApoA-IV deficiency is associated with atherosclerosis and diabetes, which renders it as a potential therapeutic target for treatment of these diseases. While much has been learned about the physiological functions of apoA-IV using rodent models, the action of apoA-IV at the cellular and molecular levels is less understood, let alone apoA-IV-interacting partners. In this review, we will summarize the findings on the molecular function of apoA-IV and apoA-IV-interacting proteins. The information will shed light on the discovery of apoA-IV receptors and the understanding of the molecular mechanism underlying its mode of action.
Collapse
Affiliation(s)
- Jie Qu
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Chih-Wei Ko
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Institute, University of Cincinnati, 2180 E Galbraith Road, Cincinnati, OH 45237-0507, USA.
| | - Aditi Bhargava
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0556, USA.
| |
Collapse
|
14
|
Matsuda S, Nakagawa Y, Tsuji A, Kitagishi Y, Nakanishi A, Murai T. Implications of PI3K/AKT/PTEN Signaling on Superoxide Dismutases Expression and in the Pathogenesis of Alzheimer's Disease. Diseases 2018; 6:E28. [PMID: 29677102 PMCID: PMC6023281 DOI: 10.3390/diseases6020028] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/15/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease is a neurodegenerative sickness, where the speed of personal disease progression differs prominently due to genetic and environmental factors such as life style. Alzheimer’s disease is described by the construction of neuronal plaques and neurofibrillary tangles composed of phosphorylated tau protein. Mitochondrial dysfunction may be a noticeable feature of Alzheimer’s disease and increased production of reactive oxygen species has long been described. Superoxide dismutases (SODs) protect from excess reactive oxygen species to form less reactive hydrogen peroxide. It is suggested that SODs can play a protective role in neurodegeneration. In addition, PI3K/AKT pathway has been shown to play a critical role on the neuroprotection and inhibiting apoptosis via the enhancing expression of the SODs. This pathway appears to be crucial in Alzheimer’s disease because it is related to the tau protein hyper-phosphorylation. Dietary supplementation of several ordinary compounds may provide a novel therapeutic approach to brain disorders by modulating the function of the PI3K/AKT pathway. Understanding these systems may offer a better efficacy of new therapeutic approaches. In this review, we summarize recent progresses on the involvement of the SODs and PI3K/AKT pathway in neuroprotective signaling against Alzheimer’s disease.
Collapse
Affiliation(s)
- Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yukie Nakagawa
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Ai Tsuji
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Yasuko Kitagishi
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan.
| | - Atsuko Nakanishi
- Department of Food and Nutrition, Faculty of Contemporary Human Life Science, Tezukayama University, Nara 631-8501, Japan.
| | - Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan.
| |
Collapse
|