1
|
Dar MI, Hussain Y, Pan X. Roles of circadian clocks in macrophage metabolism: implications in inflammation and metabolism of lipids, glucose, and amino acids. Am J Physiol Endocrinol Metab 2025; 328:E723-E741. [PMID: 40193204 DOI: 10.1152/ajpendo.00009.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 05/06/2025]
Abstract
Macrophages are essential immune cells that play crucial roles in inflammation and tissue homeostasis and are important regulators of metabolic processes, such as the metabolism of glucose, lipids, and amino acids. The regulation of macrophage metabolism by circadian clock genes has been emphasized in many studies. Changes in metabolic profiles occurring after the perturbation of macrophage circadian cycles may underlie the etiology of several diseases. Specifically, chronic inflammatory disorders, such as atherosclerosis, diabetes, cardiovascular diseases, and liver dysfunction, are associated with poor macrophage metabolism. Developing treatment approaches that target metabolic and immunological ailments requires an understanding of the complex relationships among clock genes, disease etiology, and macrophage metabolism. This review explores the molecular mechanisms through which clock genes regulate lipid, amino acid, and glucose metabolism in macrophages and discusses their potential roles in the development and progression of metabolic disorders. The findings underscore the importance of maintaining circadian homeostasis in macrophage function as a promising avenue for therapeutic intervention in diseases involving metabolic dysregulation, given its key roles in inflammation and tissue homeostasis. Moreover, reviewing the therapeutic implications of circadian rhythm in macrophages can help minimize the side effects of treatment. Novel strategies may be beneficial in treating immune-related diseases caused by shifted and blunted circadian rhythms via light exposure, jet lag, seasonal changes, and shift work or disruption to the internal clock (such as stress or disease).
Collapse
Affiliation(s)
- Mohammad Irfan Dar
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Yusuf Hussain
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| | - Xiaoyue Pan
- Department of Foundations of Medicine, New York University Grossman Long Island School of Medicine, Mineola, New York, United States
- Diabetes and Obesity Research Center, NYU Langone Hospital-Long Island, Mineola, New York, United States
| |
Collapse
|
2
|
Shao F, Wang Z, Ye L, Wu R, Wang J, Yu QX, Wusiman D, Tuo Z, Yoo KH, Shu Z, Wei W, Li D, Cho WC, Liu Z, Feng D. Basic helix-loop-helix ARNT like 1 regulates the function of immune cells and participates in the development of immune-related diseases. BURNS & TRAUMA 2025; 13:tkae075. [PMID: 39830193 PMCID: PMC11741524 DOI: 10.1093/burnst/tkae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/26/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025]
Abstract
The circadian clock is an internal timekeeper system that regulates biological processes through a central circadian clock and peripheral clocks controlling various genes. Basic helix-loop-helix ARNT-like 1 (BMAL1), also known as aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL1), is a key component of the circadian clock. The deletion of BMAL1 alone can abolish the circadian rhythms of the human body. BMAL1 plays a critical role in immune cell function. Dysregulation of BMAL1 is linked to immune-related diseases such as autoimmune diseases, infectious diseases, and cancer, and vice versa. This review highlights the significant role of BMAL1 in governing immune cells, including their development, differentiation, migration, homing, metabolism, and effector functions. This study also explores how dysregulation of BMAL1 can have far-reaching implications and potentially contribute to the onset of immune-related diseases such as autoimmune diseases, infectious diseases, cancer, sepsis, and trauma. Furthermore, this review discusses treatments for immune-related diseases that target BMAL1 disorders. Understanding the impact of BMAL1 on immune function can provide insights into the pathogenesis of immune-related diseases and help in the development of more effective treatment strategies. Targeting BMAL1 has been demonstrated to achieve good efficacy in immune-related diseases, indicating its promising potential as a targetable therapeutic target in these diseases.
Collapse
Affiliation(s)
- Fanglin Shao
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, First Ring Road, Qingyang District, Chengdu 610041, China
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, West Gate Street, Linhai City 317000, Zhejiang Province, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Qing-Xin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Huancheng North Road, Jiangbei District, Ningbo, Zhejiang Province, 315211, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
- Purdue Institute for Cancer Research, Purdue University, 615 W. State Street, West Lafayette, IN 47907, USA
| | - Zhouting Tuo
- Chengdu Basebio Company, Tianfu Third Street, High-Tech Zone, Chengdu 610041, China
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Jinzhai South Road, Shushan District, Hefei, Anhui 230032, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, South Korea
| | - Ziyu Shu
- Department of Earth Science and Engineering, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, UK
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Shapingba Street, Shapingba District, Chongqing 400044, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Gascoigne Road, Yau Ma Tei, Kowloon, Hong Kong SAR, China
| | - Zhihong Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Renmin South Road, Wuhou District, Chengdu 610041, China
- Division of Surgery & Interventional Science, University College London, Gower Street, London W1T 6JF, London W1W 7TS, UK
| |
Collapse
|
3
|
Liu Q, Zhang Y. Biological Clock Perspective in Rheumatoid Arthritis. Inflammation 2024:10.1007/s10753-024-02120-4. [PMID: 39126449 DOI: 10.1007/s10753-024-02120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/13/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by systemic polyarticular pain, and its main pathological features include inflammatory cell infiltration, synovial fibroblast proliferation, and cartilage erosion. Immune cells, synovial cells and neuroendocrine factors play pivotal roles in the pathophysiological mechanism underlying rheumatoid arthritis. Biological clock genes regulate immune cell functions, which is linked to rhythmic changes in arthritis pathology. Additionally, the interaction between biological clock genes and neuroendocrine factors is also involved in rhythmic changes in rheumatoid arthritis. This review provides an overview of the contributions of circadian rhythm genes to RA pathology, including their interaction with the immune system and their involvement in regulating the secretion and function of neuroendocrine factors. A molecular understanding of the role of the circadian rhythm in RA may offer insights for effective disease management.
Collapse
Affiliation(s)
- Qingxue Liu
- Gengjiu Clinical College of Anhui Medical University; Anhui Zhongke Gengjiu Hospital, Hefei, 230051, China
| | - Yihao Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, China.
- Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
4
|
Kaneshiro K, Nakagawa K, Tsukamoto H, Matsuoka G, Okuno S, Tateishi K, Terashima Y, Shibanuma N, Yoshida K, Hashiramoto A. The clock gene Bmal1 controls inflammatory mediators in rheumatoid arthritis fibroblast-like synoviocytes. Biochem Biophys Res Commun 2024; 691:149315. [PMID: 38043198 DOI: 10.1016/j.bbrc.2023.149315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
OBJECT To clarify the involvement of clock genes in the production of inflammatory mediators from RA-FLS, we examined the role of Bmal1, one of the master clock genes. METHODS RA-FLSs were stimulated with IL-1β (0, 20 ng/mL), IL-6 (0, 20 ng/mL), IL-17 (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expression of Bmal1, MMP-3, CCL2, IL-6, IL-7 and IL-15 by qPCR and immunofluorescence staining. After silencing Bmal1, RA-FLSs were stimulated with IL-1β (0, 20 ng/mL), TNF-α (0, 20 ng/mL) or IFN-γ (0, 20 ng/mL) to examine the expressions of inflammatory mediators; MMP-3, CCL2, IL-6 and IL-15 by qPCR, ELISA and immunofluorescence staining. RESULTS Bmal1 expressions were increased by IL-1β, TNF-α and IFN-γ stimulations. Under stimulations with TNF-α, IL-1β, and IFN-γ, mRNA and protein expressions of MMP-3, CCL2 and IL-6 were suppressed by siBmal1. CONCLUSION Results indicate that Bmal1 contributes the production of MMP-3, CCL2, and IL-6 from RA-FLS, implying Bmal1 is involved in the pathogenesis of RA by regulating the inflammation.
Collapse
Affiliation(s)
- Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - Kanako Nakagawa
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Hikari Tsukamoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Genta Matsuoka
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Seitaro Okuno
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koji Tateishi
- Department of Orthopedics, Kohnan Kakogawa Hospital, Kakogawa, Japan
| | | | - Nao Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - Kohsuke Yoshida
- Department of Public Health, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
5
|
de Lima Cavalcanti TYV, Lima MC, Bargi-Souza P, Franca RFO, Peliciari-Garcia RA. Zika Virus Infection Alters the Circadian Clock Expression in Human Neuronal Monolayer and Neurosphere Cultures. Cell Mol Neurobiol 2023; 44:10. [PMID: 38141078 PMCID: PMC11407173 DOI: 10.1007/s10571-023-01445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023]
Abstract
Rhythmic regulations are virtually described in all physiological processes, including central nervous system development and immunologic responses. Zika virus (ZIKV), a neurotropic arbovirus, has been recently linked to a series of birth defects and neurodevelopmental disorders. Given the well-characterized role of the intrinsic cellular circadian clock within neurogenesis, cellular metabolism, migration, and differentiation among other processes, this study aimed to characterize the influence of ZIKV infection in the circadian clock expression in human neuronal cells. For this, in vitro models of human-induced neuroprogenitor cells (hiNPCs) and neuroblastoma cell line SH-SY5Y, cultured as monolayer and neurospheres, were infected by ZIKV, followed by RNA-Seq and RT-qPCR investigation, respectively. Targeted circadian clock components presented mRNA oscillations only after exogenous synchronizing stimuli (Forskolin) in SH-SY5Y monolayer culture. Interestingly, when these cells were grown as 3D-arranged neurospheres, an intrinsic oscillatory expression pattern was observed for some core clock components without any exogenous stimulation. The ZIKV infection significantly disturbed the mRNA expression pattern of core clock components in both neuroblastoma cell culture models, which was also observed in hiNPCs infected with different strains of ZIKV. The ZIKV-mediated desynchronization of the circadian clock expression in human cells might further contribute to the virus impairment of neuronal metabolism and function observed in adults and ZIKV-induced congenital syndrome. In vitro models of Zika virus (ZIKV) neuronal infection. Human neuroprogenitor cells were cultured as monolayer and neurospheres and infected by ZIKV. Monolayer-cultured cells received forskolin (FSK) as a coupling factor for the circadian clock rhythmicity, while 3D-arranged neurospheres showed an intrinsic oscillatory pattern in the circadian clock expression. The ZIKV infection affected the mRNA expression pattern of core clock components in both cell culture models. The ZIKV-mediated desynchronization of the circadian clock machinery might contribute to the impairment of neuronal metabolism and function observed in both adults (e.g., Guillain-Barré syndrome) and ZIKV-induced congenital syndrome (microcephaly). The graphical abstract has been created with Canva at the canva.com website.
Collapse
Affiliation(s)
- Thaíse Yasmine Vasconcelos de Lima Cavalcanti
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Morganna Costa Lima
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafael Freitas Oliveira Franca
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Virology and Experimental Therapy, Aggeu Magalhães Institute, Oswaldo Cruz Foundation - FIOCRUZ, Av. Professor Moraes Rego, S/N, Cidade Universitária, Recife, PE, CEP 50740-465, Brazil.
- Morphophysiology & Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Rua São Nicolau, 210, Diadema, SP, CEP 09913-030, Brazil.
| |
Collapse
|
6
|
Berisha G, Sedliak M, Zeman M, Hamar D, Cvečka J, Tirpáková V, Vajda M, Oreská Ľ, Černáčková A, Čupka M, Šarabon N, Protasi F, Zampieri S, Kern H, Lofler S, Musaro A, Stebelová K, Okuliarová M. Can lifelong endurance exercise improve ageing through beneficial effects on circadian timing function, muscular performance and health status in men? Protocol for a comparative cross-sectional study. Eur J Transl Myol 2023; 33:10.4081/ejtm.2023. 12012. [PMID: 38058287 PMCID: PMC10811640 DOI: 10.4081/ejtm.2023.12012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
A well-synchronized circadian system is a manifestation of an individual's health. A gradual weakening of the circadian timing function characterizes aging. Regular exercise has been suggested as a modality to improve many detrimental changes associated with aging. Therefore, we aim to examine the benefits and risks of lifelong endurance exercise on age-dependent changes in the circadian time-keeping function, the performance of the muscular system and health status. The study protocol has a comparative cross-sectional design, including groups of senior (65 to 75 years old, n=16) and young (20-30 years old, n=16) endurance runners and triathletes. Age-matched groups of young and elderly sedentary men are included as controls. The circadian function is evaluated mainly by measurement of urinary 6-sulphatoxymelatonin, a metabolite of the hormone melatonin shown to participate in the modulation of sleep cycles. The 6-sulphatoxymelatonin will be assessed in urine samples collected upon awakening in the morning and in the late evening, as a marker of melatonin production. In addition, sleep/activity rhythms and sleep quality will be measured by wrist actigraphy. Performance of the muscular system will be assessed by examination of muscular strength and quantifying of gene expression in the skeletal muscle tissue samples. Health status and age-induced reduction in immune function are to be analysed via the balance of pro- and anti-inflammatory immune markers in the plasma and skeletal muscle, body composition, bone density and physical fitness.
Collapse
Affiliation(s)
- Genc Berisha
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences.
| | - Milan Sedliak
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences.
| | - Michal Zeman
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Animal Physiology and Ethology.
| | - Dušan Hamar
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences.
| | - Ján Cvečka
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Professor Hamar Diagnostic Centre.
| | - Veronika Tirpáková
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Professor Hamar Diagnostic Centre.
| | - Matej Vajda
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Professor Hamar Diagnostic Centre.
| | - Ľudmila Oreská
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences.
| | - Alena Černáčková
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences.
| | - Martin Čupka
- Comenius University in Bratislava, Faculty of Physical Education and Sport, Department of Biological and Medical Sciences.
| | - Nejc Šarabon
- University of Primorska, Faculty of Health Sciences.
| | - Feliciano Protasi
- Gabriele d'Annunzio University of Chieti and Pescara, Center for Advanced Studies and Technology, Department of Medicine and Aging Sciences.
| | - Sandra Zampieri
- University of Padova, Department of Surgery, Oncology and Gastroenterology, Department of Biomedical Sciences.
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, St. Pölten, Austria and 2. Physiko- und Rheumatherapie.
| | - Stefan Lofler
- Ludwig Boltzmann Institute for Rehabilitation Research, St. Pölten, Austria and 2. Physiko- und Rheumatherapie.
| | - Antonio Musaro
- University of Rome La Sapienza, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, DAHFMO-Unit of Histology and Medical Embryology, Scuola Superiore di Studi Avanzati Sapienza.
| | - Katarína Stebelová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Animal Physiology and Ethology.
| | - Monika Okuliarová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Animal Physiology and Ethology.
| |
Collapse
|
7
|
Shen B, Ma C, Wu G, Liu H, Chen L, Yang G. Effects of exercise on circadian rhythms in humans. Front Pharmacol 2023; 14:1282357. [PMID: 37886134 PMCID: PMC10598774 DOI: 10.3389/fphar.2023.1282357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
The biological clock system is an intrinsic timekeeping device that integrates internal physiology and external cues. Maintaining a healthy biological clock system is crucial for life. Disruptions to the body's internal clock can lead to disturbances in the sleep-wake cycle and abnormalities in hormone regulation, blood pressure, heart rate, and other vital processes. Long-term disturbances have been linked to the development of various common major diseases, including cardiovascular diseases, metabolic disorders, tumors, neuropsychiatric conditions, and so on. External factors, such as the diurnal rhythm of light, have a significant impact on the body's internal clock. Additionally, as an important non-photic zeitgeber, exercise can regulate the body's internal rhythms to a certain extent, making it possible to become a non-drug intervention for preventing and treating circadian rhythm disorders. This comprehensive review encompasses behavioral, physiological, and molecular perspectives to provide a deeper understanding of how exercise influences circadian rhythms and its association with related diseases.
Collapse
Affiliation(s)
- Bingyi Shen
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Changxiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Guanlin Wu
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Haibin Liu
- School of Kinesiology and Health Promotion, Dalian University of Technology, Dalian, China
| | - Lihong Chen
- Health Science Center, East China Normal University, Shanghai, China
| | - Guangrui Yang
- School of Clinical Medicine, Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
8
|
Kulkarni A, Demory-Beckler M, Kesselman MM. The Role of Clock Genes in Maintaining Circadian Rhythm and Rheumatoid Arthritis Pathophysiology. Cureus 2023; 15:e39104. [PMID: 37378201 PMCID: PMC10292020 DOI: 10.7759/cureus.39104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive autoimmune condition that affects up to 1% of the world population and symmetrically affects the joints leading to joint stiffness and decreased mobility. RA patients present with increased pain and chronic inflammation within their joint spaces, which researchers have linked to poorer sleep patterns, including difficulty falling asleep and non-restorative sleep. As such, identifying mediators of poor sleep quality among RA patients may improve their long-term quality of life. More recently, researchers identified an association between chronic inflammation in RA patients and their circadian rhythm. Altered circadian rhythms negatively impact the hypothalamic-pituitary-adrenal (HPA) axis and lead to altered cortisol release. Cortisol has shown to have a strong anti-inflammatory effect; when dysregulated, it may lead to increased pain experienced in RA patients. This literature review aims to provide insight into how chronic inflammation tied to RA pathophysiology may affect clock genes that are involved in maintaining the circadian rhythm. Specifically, this review focused on four common clock genes found dysregulated in RA patients: circadian locomotor output cycles kaput (CLOCK), brain and muscle ARNT like-1 (BMAL1), period (PER), and cryptochrome (CRY). Of the four clock genes discussed in this review, BMAL1 and PER are the most well-studied of the affected genes. Further knowledge surrounding clock genes and their dysregulated expression in RA may help guide therapy decisions for RA patients. Traditionally, disease-modifying antirheumatic drugs (DMARDs) have been used as first-line therapy for RA patients. Meanwhile, chronotherapy, optimizing drug release in a timed manner, has shown positive results in RA patients as well. Because of the association of altered circadian rhythms with increased symptom severity in RA patients, it seems highly plausible that DMARD therapy with chronotherapy may be an ideal therapeutic regimen for RA.
Collapse
Affiliation(s)
- Arathi Kulkarni
- Internal Medicine, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| | - Michelle Demory-Beckler
- Division of Immunology, Nova Southeastern University Dr. Kiran C. Patel College of Allopathic Medicine, Davie, USA
| | - Marc M Kesselman
- Rheumatology, Nova Southeastern University Dr. Kiran C. Patel College of Osteopathic Medicine, Davie, USA
| |
Collapse
|
9
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
10
|
Sheng M, Chen X, Yu Y, Wu Q, Kou J, Chen G. Rev-erbα agonist SR9009 protects against cerebral ischemic injury through mechanisms involving Nrf2 pathway. Front Pharmacol 2023; 14:1102567. [PMID: 37063298 PMCID: PMC10102520 DOI: 10.3389/fphar.2023.1102567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/08/2023] [Indexed: 04/03/2023] Open
Abstract
Backgrounds: The circadian clock protein Rev-erbα is a crucial regulator of circadian rhythms that affects multiple molecular, cellular, and physiology pathways that control susceptibility, injury, and recovery in the neurological disorders. Emerging evidence suggest that Rev-erbα plays a key role in the inflammation and oxidative stress, two pivotal mechanisms in the pathogenesis, progression, and recovery process of ischemic stroke. However, it remains inconclusive whether Rev-erbα activation is protective against ischemic brain damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, a master regulator of inflammatory and oxidative responses. Our study aimed to determine whether pharmacological activation of Rev-erbα by SR9009 protects against acute ischemic brain damage partly via Nrf2 pathway.Methods: Adult mice were pretreated with SR9009 or Nrf2 inhibitor all-trans-retinoic acid (ATRA) for 3 days prior to Sham or middle cerebral artery occlusion (MCAO) operation. After ischemia for 1 h and reperfusion for 24 h, the neurological function and cerebral infarction volume were determined, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and glutathione peroxidase (GSH-PX) activity in serum were detected by kit. The mRNA and/or protein level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), Period (Per)1, Brain and muscle arnt-like1 (Bmal1), Circadian locomotor output cycles kaput (Clock), Rev-erbα, Nrf2, heme oxygenase-1 (HO-1) and quinone oxidoreductase 1 (NQO1) in cerebral cortex were detected by q-PCR and Western blot.Results: We confirmed that SR9009 activated Rev-erbα gene in the cerebral cortex under basal condition. At 24 h after reperfusion, SR9009 ameliorated acute neurological deficits, reduced infarct volume. Meanwhile, the inflammatory TNF-α, IL-1β, iNOS and MDA content levels were significant decreased, SOD and GSH-PX activity were obviously increased, which were markedly blunted (or abolished) by ATRA. SR9009 enhanced the induction of Nrf2 and its downstream target genes HO-1 and NQO1 after ischemic insult. In addition, we found that SR9009 restored Rev-erbα, Bmal1, Clock, Per1 genes expression in the cerebral cortex under ischemic condition.Conclusion: Taken together, Rev-erbα activation by SR9009 protects against ischemic stroke damage, at least, partly through Nrf2 pathway.
Collapse
Affiliation(s)
- Mingyue Sheng
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xun Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yan Yu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Wu
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Junping Kou
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Gangling Chen, ; Junping Kou,
| | - Gangling Chen
- Department of Pharmacology of Chinese Materia Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- *Correspondence: Gangling Chen, ; Junping Kou,
| |
Collapse
|
11
|
Wang D, Yin H, Wang X, Wang Z, Han M, He Q, Chen J, Xian H, Zhang B, Wei X, Yang B, Pan Y, Li J. Influence of sleep disruption on inflammatory bowel disease and changes in circadian rhythm genes. Heliyon 2022; 8:e11229. [PMID: 36325141 PMCID: PMC9618989 DOI: 10.1016/j.heliyon.2022.e11229] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/07/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
According to clinical investigations, sleep disruption (SD) can influence the immune system and cause inflammatory bowel disease (IBD). However, the detailed effects of sleep on IBD development and progression have not been clarified. Here, we used dextran sulfate sodium (DSS) to induce colitis in mice, and then interfered with SD (day-time 8:00 a.m. to 5:00 p.m.) to explore the influence of sleep on colitis by analyzing colon length, mouse body weight, disease activity index (DAI) score, pathology detection, and infiltration of inflammatory cells with LCA immunohistochemistry analysis. Next, we detected the mRNA levels of circadian genes and related inflammatory factors, including Bmal1, CLOCK, Cry1, Cry2, Per1, Per2, Timeless, Rev-erbα, TNF-α, IL-6, and IFN-γ. Additionally, we conducted a sleep survey in IBD patients and collected colon lesion sites to detect the mRNA levels of those eight circadian genes and three inflammatory factors. We found that SD promoted the body weight decrease, increased inflammation as shown with pathological staining of the DSS animal model, and increased expression of the clock gene Cry2 in DSS-induced colitis mice. In IBD patients with active disease, the mRNA level of circadian genes Bmal1, Cry1, Cry2, and Rev-erbα in inflammatory tissues decreased significantly compared with non-inflammatory tissues.
Collapse
Affiliation(s)
- Dan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Houqing Yin
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Zequn Wang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Mengyuan Han
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Quanzhao He
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Jingjing Chen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China,Department of Pharmacology, Changzhi Medical College, Changzhi City, Shanxi Province, 046000, China
| | - Haocheng Xian
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Bentuo Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Xihua Wei
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Baoxue Yang
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China
| | - Yan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Peking University, Beijing 100191, China,Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China,Corresponding author.
| | - Jun Li
- Department of Gastroenterology, Peking University Third Hospital, Beijing 100191, China,Beijing Key Laboratory for Helicobacter Pylori Infection and Upper Gastrointestinal Diseases, Beijing, China,Corresponding author.
| |
Collapse
|
12
|
Yeo H, Ahn SS, Jung E, Lim Y, Lee YH, Shin SY. Transcription factor EGR1 regulates the expression of the clock gene PER2 under IL-4 stimulation in human keratinocytes. J Invest Dermatol 2022; 142:2677-2686.e9. [DOI: 10.1016/j.jid.2022.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
|
13
|
Ledezma C, Coria-Lucero C, Castro A, Leporatti J, Perez M, Delgado S, Anzulovich AC, Navigatore-Fonzo L. Day-night oscillations of cognitive functions, TNF alpha and clock -related factors expression are modified by an intracerebroventricular injection of amyloid beta peptide in rat. Neurochem Int 2022; 154:105277. [PMID: 35007657 DOI: 10.1016/j.neuint.2022.105277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 11/26/2021] [Accepted: 01/04/2022] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia characterized by a gradual impairment in cognitive functions. Recent research have shown that TNF-α is a proinflammatory cytokine implicated in the pathogenesis of neurodegenerative diseases, such as AD. Besides cognitive deficit, AD patients show alterations in their circadian rhythms. The objective of this work was to investigate the effects of an intracerebroventricular injection of Aß aggregates on temporal patterns of cognitive functions and on daily rhythms of Aβ, TNFα, BMAL1 and RORα protein levels in the rat prefrontal cortex. Four-month-old males Holtzman rats were used in this study. Groups were defined as: control and Aβ-injected rats. Rats were maintained under 12h-light:12h-dark throughout the entire experimental period. Prefrontal cortex samples were isolated every 4 h during a 24h period. Our results demonstrated that an intracerebroventricular injection of Aß aggregates impaired learning and memory in rats at ZT 2 and ZT 14 and modified daily patterns of Aβ, TNFα, and clock-related factors in the rat prefrontal cortex. Our findings showed that the increase of Aß altered temporal patterns of TNFα, and, consequently, induced alterations in daily rhythms of clock-related factors, affecting the cognitive performance of animals with Alzheimer's.
Collapse
Affiliation(s)
- Carina Ledezma
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Cinthia Coria-Lucero
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Andrea Castro
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Jorge Leporatti
- Faculty of Economic, Legal and Social Sciences, National University of San Luis (UNSL), Campus Universitario: Ruta Prov. Nº 55 (Ex. 148) Extremo Norte, Argentina
| | - Mariela Perez
- Institute of Experimental Pharmacology of Cordoba (CONICET), 5700HHW, San Luis, Argentina
| | - Silvia Delgado
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Ana Cecilia Anzulovich
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina
| | - Lorena Navigatore-Fonzo
- Laboratory of Chronobiology, National Council of Science and Technology (CONICET), National University of San Luis (UNSL), Av Ejército de los Andes N° 950, D5700HHW, San Luis, Argentina.
| |
Collapse
|
14
|
Ditmer M, Gabryelska A, Turkiewicz S, Białasiewicz P, Małecka-Wojciesko E, Sochal M. Sleep Problems in Chronic Inflammatory Diseases: Prevalence, Treatment, and New Perspectives: A Narrative Review. J Clin Med 2021; 11:67. [PMID: 35011807 PMCID: PMC8745687 DOI: 10.3390/jcm11010067] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies have shown that individuals with sleep problems are at a greater risk of developing immune and chronic inflammatory diseases. As sleep disorders and low sleep quality in the general population are frequent ailments, it seems important to recognize them as serious public health problems. The exact relation between immunity and sleep remains elusive; however, it might be suspected that it is shaped by others stress and alterations of the circadian rhythm (commonly caused by for example shift work). As studies show, drugs used in the therapy of chronic inflammatory diseases, such as steroids or monoclonal antibodies, also influence sleep in more complex ways than those resulting from attenuation of the disease symptoms. Interestingly, the relation between sleep and immunity appears to be bidirectional; that is, sleep may influence the course of immune diseases, such as inflammatory bowel disease. Thus, proper diagnosis and treatment of sleep disorders are vital to the patient's immune status and, in effect, health. This review examines the epidemiology of sleep disorders and immune diseases, the associations between them, and their current treatment and novel perspectives in therapy.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| | - Ewa Małecka-Wojciesko
- Department of Digestive Tract Diseases, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, 92-215 Lodz, Poland; (M.D.); (A.G.); (S.T.); (P.B.)
| |
Collapse
|
15
|
Németh V, Horváth S, Kinyó Á, Gyulai R, Lengyel Z. Expression Patterns of Clock Gene mRNAs and Clock Proteins in Human Psoriatic Skin Samples. Int J Mol Sci 2021; 23:121. [PMID: 35008548 PMCID: PMC8745255 DOI: 10.3390/ijms23010121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a systemic inflammatory skin disorder that can be associated with sleep disturbance and negatively influence the daily rhythm. The link between the pathomechanism of psoriasis and the circadian rhythm has been suggested by several previous studies. However, there are insufficient data on altered clock mechanisms in psoriasis to prove these theories. Therefore, we investigated the expression of the core clock genes in human psoriatic lesional and non-lesional skin and in human adult low calcium temperature (HaCaT) keratinocytes after stimulation with pro-inflammatory cytokines. Furthermore, we examined the clock proteins in skin biopsies from psoriatic patients by immunohistochemistry. We found that the clock gene transcripts were elevated in psoriatic lesions, especially in non-lesional psoriatic areas, except for rev-erbα, which was consistently downregulated in the psoriatic samples. In addition, the REV-ERBα protein showed a different epidermal distribution in non-lesional skin than in healthy skin. In cytokine-treated HaCaT cells, changes in the amplitude of the bmal1, cry1, rev-erbα and per1 mRNA oscillation were observed, especially after TNFα stimulation. In conclusion, in our study a perturbation of clock gene transcripts was observed in uninvolved and lesional psoriatic areas compared to healthy skin. These alterations may serve as therapeutic targets and facilitate the development of chronotherapeutic strategies in the future.
Collapse
Affiliation(s)
| | | | | | | | - Zsuzsanna Lengyel
- Department of Dermatology, Venereology and Oncodermatology, Medical School, University of Pécs, H-7632 Pecs, Hungary; (V.N.); (S.H.); (Á.K.); (R.G.)
| |
Collapse
|
16
|
Exercise as a Peripheral Circadian Clock Resynchronizer in Vascular and Skeletal Muscle Aging. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412949. [PMID: 34948558 PMCID: PMC8702158 DOI: 10.3390/ijerph182412949] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022]
Abstract
Aging is characterized by several progressive physiological changes, including changes in the circadian rhythm. Circadian rhythms influence behavior, physiology, and metabolic processes in order to maintain homeostasis; they also influence the function of endothelial cells, smooth muscle cells, and immune cells in the vessel wall. A clock misalignment could favor vascular damage and indirectly also affect skeletal muscle function. In this review, we focus on the dysregulation of circadian rhythm due to aging and its relationship with skeletal muscle changes and vascular health as possible risk factors for the development of sarcopenia, as well as the role of physical exercise as a potential modulator of these processes.
Collapse
|
17
|
Guo T, Xing Y, Chen Z, Zhu H, Yang L, Xiao Y, Xu J. Long Non-Coding RNA NEAT1 Knockdown Alleviates Rheumatoid Arthritis by Reducing IL-18 through p300/CBP Repression. Inflammation 2021; 45:100-115. [PMID: 34773548 DOI: 10.1007/s10753-021-01531-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 01/02/2023]
Abstract
Rheumatoid arthritis (RA) is chronic inflammatory autoimmune disease. The crucial role of long non-coding RNA (lncRNA) in the progression of RA has been highlighted. Hence, this study was designed to explore the specific downstream mechanism of lncRNA nuclear-enriched abundant transcript 1 (NEAT1) in RA. Initially, the expression of NEAT1, p-p65, p300, and IL-18 in clinical tissues and cells was determined. Then, interactions among p65, NEAT1, p300, CBP, and IL-18 were investigated by immunofluorescence staining, dual luciferase reporter gene assay, RT-qPCR assay ChIP assay, and RIP assay followed by the analysis of their effects on RA in vivo and in vitro after expression alteration. The expressions of NEAT1, p-p65, p300, and IL-18 were all upregulated in the synovial tissues from the mice and patients with RA. NEAT1 silencing reduced the infiltration of CD4+ T cells and macrophages in synovial tissues, downregulated expression of blood inflammatory factors, relieved RA severity, and lowered incidence of RA in mice. Further, p-p65 could increase the expression of NEAT1 by binding to the NEAT1 promoter region, NEAT1 could co-locate and interact with p300, thus regulating the expression of IL-18 by regulating histone acetylation modification in IL-18 promoter region. NEAT1 aggravated RA via p300/CBP/IL-18 axis, representing a promising therapeutic target in RA.
Collapse
Affiliation(s)
- Tuanmao Guo
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yanli Xing
- Department of Pharmacy, Xianyang Central Hospital, No. 78, Renmin East Road, Xianyang, 712000, People's Republic of China. .,Department of Pharmacy, Xianyang Central Hospital, No. 78, Renmin East Road, Xianyang, 712000, People's Republic of China.
| | - Zhongning Chen
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Haiyun Zhu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Lan Yang
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Yuan Xiao
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| | - Jiang Xu
- Department of Orthopedics, Xianyang Central Hospital, Xianyang, 712000, People's Republic of China
| |
Collapse
|
18
|
Luo B, Zhou X, Tang Q, Yin Y, Feng G, Li S, Chen L. Circadian rhythms affect bone reconstruction by regulating bone energy metabolism. J Transl Med 2021; 19:410. [PMID: 34579752 PMCID: PMC8477514 DOI: 10.1186/s12967-021-03068-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/02/2021] [Indexed: 01/02/2023] Open
Abstract
Metabolism is one of the most complex cellular biochemical reactions, providing energy and substances for basic activities such as cell growth and proliferation. Early studies have shown that glucose is an important nutrient in osteoblasts. In addition, amino acid metabolism and fat metabolism also play important roles in bone reconstruction. Mammalian circadian clocks regulate the circadian cycles of various physiological functions. In vertebrates, circadian rhythms are mediated by a set of central clock genes: muscle and brain ARNT like-1 (Bmal1), muscle and brain ARNT like-2 (Bmal2), circadian rhythmic motion output cycle stagnates (Clock), cryptochrome 1 (Cry1), cryptochrome2 (Cry2), period 1 (Per1), period 2 (Per2), period 3 (Per3) and neuronal PAS domain protein 2 (Npas2). Negative feedback loops, controlled at both the transcriptional and posttranslational levels, adjust these clock genes in a diurnal manner. According to the results of studies on circadian transcriptomic studies in several tissues, most rhythmic genes are expressed in a tissue-specific manner and are affected by tissue-specific circadian rhythms. The circadian rhythm regulates several activities, including energy metabolism, feeding time, sleeping, and endocrine and immune functions. It has been reported that the circadian rhythms of mammals are closely related to bone metabolism. In this review, we discuss the regulation of the circadian rhythm/circadian clock gene in osteoblasts/osteoclasts and the energy metabolism of bone, and the relationship between circadian rhythm, bone remodeling, and energy metabolism. We also discuss the therapeutic potential of regulating circadian rhythms or changing energy metabolism on bone development/bone regeneration.
Collapse
Affiliation(s)
- Beibei Luo
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xin Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ying Yin
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
19
|
Abo SMC, Layton AT. Modeling the circadian regulation of the immune system: Sexually dimorphic effects of shift work. PLoS Comput Biol 2021; 17:e1008514. [PMID: 33788832 PMCID: PMC8041207 DOI: 10.1371/journal.pcbi.1008514] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 04/12/2021] [Accepted: 03/06/2021] [Indexed: 12/31/2022] Open
Abstract
The circadian clock exerts significance influence on the immune system and disruption of circadian rhythms has been linked to inflammatory pathologies. Shift workers often experience circadian misalignment as their irregular work schedules disrupt the natural light-dark cycle, which in turn can cause serious health problems associated with alterations in genetic expressions of clock genes. In particular, shift work is associated with impairment in immune function, and those alterations are sex-specific. The goal of this study is to better understand the mechanisms that explain the weakened immune system in shift workers. To achieve that goal, we have constructed a mathematical model of the mammalian pulmonary circadian clock coupled to an acute inflammation model in the male and female rats. Shift work was simulated by an 8h-phase advance of the circadian system with sex-specific modulation of clock genes. The model reproduces the clock gene expression in the lung and the immune response to various doses of lipopolysaccharide (LPS). Under normal conditions, our model predicts that a host is more sensitive to LPS at circadian time (CT) CT12 versus CT0 due to a dynamic change of Interleukin 10 (IL-10), an anti-inflammatory cytokine. We identify REV-ERB as a key modulator of IL-10 activity throughout the circadian day. The model also predicts a reversal of the times of lowest and highest sensitivity to LPS, with males and females exhibiting an exaggerated response to LPS at CT0, which is countered by a blunted immune response at CT12. Overall, females produce fewer pro-inflammatory cytokines than males, but the extent of sequelae experienced by males and females varies across the circadian day. This model can serve as an essential component in an integrative model that will yield mechanistic understanding of how shift work-mediated circadian disruptions affect the inflammatory and other physiological responses.
Collapse
Affiliation(s)
- Stéphanie M. C. Abo
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
20
|
Nathan P, Gibbs JE, Rainger GE, Chimen M. Changes in Circadian Rhythms Dysregulate Inflammation in Ageing: Focus on Leukocyte Trafficking. Front Immunol 2021; 12:673405. [PMID: 34054857 PMCID: PMC8160305 DOI: 10.3389/fimmu.2021.673405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/13/2021] [Indexed: 01/21/2023] Open
Abstract
Leukocyte trafficking shows strong diurnal rhythmicity and is tightly regulated by circadian rhythms. As we age, leukocyte trafficking becomes dysregulated, contributing to the increased systemic, low-grade, chronic inflammation observed in older adults. Ageing is also associated with diminished circadian outputs and a dysregulation of the circadian rhythm. Despite this, there is little evidence to show the direct impact of age-associated dampening of circadian rhythms on the dysregulation of leukocyte trafficking. Here, we review the core mammalian circadian clock machinery and discuss the changes that occur in this biological system in ageing. In particular, we focus on the changes that occur to leukocyte trafficking rhythmicity with increasing age and consider how this impacts inflammation and the development of immune-mediated inflammatory disorders (IMIDs). We aim to encourage future ageing biology research to include a circadian approach in order to fully elucidate whether age-related circadian changes occur as a by-product of healthy ageing, or if they play a significant role in the development of IMIDs.
Collapse
Affiliation(s)
- Poppy Nathan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Julie Elizabeth Gibbs
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - G. Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Myriam Chimen
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Myriam Chimen,
| |
Collapse
|
21
|
de Souza Teixeira AA, Lira FS, Rosa-Neto JC. Aging with rhythmicity. Is it possible? Physical exercise as a pacemaker. Life Sci 2020; 261:118453. [PMID: 32956663 PMCID: PMC7500276 DOI: 10.1016/j.lfs.2020.118453] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Aging is associated with gradual decline in numerous physiological processes, including a reduction in metabolic functions and immunological system. The circadian rhythm plays a vital role in health, and prolonged clock disruptions are associated with chronic diseases. The relationships between clock genes, aging, and immunosenescence are not well understood. Inflammation is an immune response triggered in living organisms in response to the danger associated with pathogens and injury. The term 'inflammaging' has been used to describe the chronic low-grade-inflammation that develops with advancing age and predicts susceptibility to age-related pathologies. Equilibrium between pro-and anti-inflammatory cytokines is needed for healthy aging and longevity. Sedentary and poor nutrition style life indices a disruption in circadian rhythm promoting an increase in pro-inflammatory factors or leads for chronic low-grade inflammation. Moreover, signals mediated by pro-inflammatory cytokines, such as tumor necrosis factor-alpha and interleukin-6, might accentuate of the muscle loss during aging. Circadian clock is important to maintain the physiological functions, as maintenance of immune system. A strategy for imposes rhythmicity in the physiological systems may be adopted of exercise training routine. The lifelong regular practice of physical exercise decelerates the processes of aging, providing better quality and prolongation of life. Thus, in this review, we will focus on how aging affects circadian rhythms and its relationship to inflammatory processes (inflammaging), as well as the role of physical exercise as a regulator of the circadian rhythm, promoting aging with rhythmicity.
Collapse
Affiliation(s)
| | - Fábio Santos Lira
- Exercise and Immunometabolism Research Group, Post-Graduation Program in Movement Sciences, Department of Physical Education, Universidade Estadual Paulista (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
| | | |
Collapse
|
22
|
Chen R, Zuo Z, Li Q, Wang H, Li N, Zhang H, Yu X, Liu Z. DHA substitution overcomes high-fat diet-induced disturbance in the circadian rhythm of lipid metabolism. Food Funct 2020; 11:3621-3631. [PMID: 32292967 DOI: 10.1039/c9fo02606a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Disruptions to circadian rhythm have been associated with an increased risk of nonalcoholic fatty liver disease (NAFLD). DHA has been found to affect both circadian rhythm and lipid metabolism. In this study, the relationship between DHA substitution and improvements in lipid metabolism and circadian clock regulation was studied. Male C57BL/6 mice were fed a control, a high fat or a DHA substituted diet for 12 weeks. Biochemical analysis and H&E staining showed that the high-fat diet (HFD) could induce NAFLD, and DHA substitution (AOH) could attenuate NAFLD. The qPCR results showed that the expressions of core clock genes Clock and Bmal1 were significantly higher at zeitgeber (ZT) 0 (7:00 am) than those at ZT12 (7:00 pm) in the control group, while this difference in day and night disappeared in the HFD group, but was observed in the AOH group. Western blotting results indicated that the expressions of rhythm output molecules (RORα and REV-ERBα) and their downstream protein INSIG2 all showed the corresponding circadian changes. SREBP-regulated proteins were significantly increased in the HFD group at both ZT0 and ZT12, but decreased in the AOH group accompanied by the corresponding changes in the protein expressions of HMGCR, LXR, CYP7A1 and CYP27A1. Altogether, HFD can decrease or disrupt circadian rhythm fluctuation by up-regulating the expression of core circadian rhythm genes Clock and Bmal1 at ZT12, and induce metabolic abnormalities through the INSIG2-SREBP pathway regulated by RORα and REV-ERBα. DHA substitution seems to restore circadian rhythm similar to the normal circadian rhythm of "night-high, day-low" through the metabolic pathway regulated by rhythmic nuclear receptors, improving the lipid metabolism rhythm and reducing liver fat.
Collapse
Affiliation(s)
- Rulong Chen
- Hubei Province Engineering Research Center of Healthy Food, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hand LE, Gray KJ, Dickson SH, Simpkins DA, Ray DW, Konkel JE, Hepworth MR, Gibbs JE. Regulatory T cells confer a circadian signature on inflammatory arthritis. Nat Commun 2020; 11:1658. [PMID: 32245954 PMCID: PMC7125185 DOI: 10.1038/s41467-020-15525-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
The circadian clock is an intrinsic oscillator that imparts 24 h rhythms on immunity. This clock drives rhythmic repression of inflammatory arthritis during the night in mice, but mechanisms underlying this effect are not clear. Here we show that the amplitude of intrinsic oscillators within macrophages and neutrophils is limited by the chronic inflammatory environment, suggesting that rhythms in inflammatory mediators might not be a direct consequence of intrinsic clocks. Anti-inflammatory regulatory T (Treg) cells within the joints show diurnal variation, with numbers peaking during the nadir of inflammation. Furthermore, the anti-inflammatory action of Treg cells on innate immune cells contributes to the night-time repression of inflammation. Treg cells do not seem to have intrinsic circadian oscillators, suggesting that rhythmic function might be a consequence of external signals. These data support a model in which non-rhythmic Treg cells are driven to rhythmic activity by systemic signals to confer a circadian signature to chronic arthritis.
Collapse
Affiliation(s)
- L E Hand
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - K J Gray
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - S H Dickson
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D A Simpkins
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK
| | - D W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK and Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - J E Konkel
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - M R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK
| | - J E Gibbs
- Centre for Biological Timing, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
24
|
Kaneshiro K, Yoshida K, Morii K, Oketani Y, Uchida K, Yaekura A, Okumura I, Hashimoto T, Kawasaki Y, Shibanuma N, Sakai Y, Hashiramoto A. Expressions of circadian clock genes represent disease activities of RA patients treated with biological DMARDs. Mod Rheumatol 2019; 30:293-300. [DOI: 10.1080/14397595.2019.1602242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Kenta Kaneshiro
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kohsuke Yoshida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Kanta Morii
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Yuto Oketani
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Koto Uchida
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Arisa Yaekura
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ikumi Okumura
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Teppei Hashimoto
- Department of Rheumatology, Hyogo College of Medicine, Nishinomiya, Japan
| | | | - Nao Shibanuma
- Department of Orthopedic Surgery, Kobe Kaisei Hospital, Kobe, Japan
| | - Yoshitada Sakai
- Division of Rehabilitation Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Hashiramoto
- Department of Biophysics, Kobe University Graduate School of Health Sciences, Kobe, Japan
| |
Collapse
|
25
|
Ertosun MG, Kocak G, Ozes ON. The regulation of circadian clock by tumor necrosis factor alpha. Cytokine Growth Factor Rev 2019; 46:10-16. [PMID: 31000463 DOI: 10.1016/j.cytogfr.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/23/2019] [Accepted: 04/01/2019] [Indexed: 12/13/2022]
Abstract
All organisms display circadian rhythms which are under the control of the circadian clock located in the hypothalamus at the suprachiasmatic nucleus, (SCN). The circadian rhythms allow individuals to adjust their physiological activities and daily behavior for the diurnal changes in the living environment. To achieve these, all metabolic processes are aligned with the sleep/wake and fasting/feeding cycles. Subtle changes of daily behavior or food intake can result in misalignment of circadian rhythms. This can cause development of variety of metabolic diseases and even cancer. Although light plays a pivotal role for the activation of the master clock in SCN, the peripheral secondary clocks (or non-SCN), such as melatonin, growth hormone (GH), insulin, adiponectin and Ghrelin also are important in maintaining the circadian rhythms in the brain and peripheral organs. In recent years, growing body of evidence strongly suggest that CA2+ signaling, tumor necrosis factor alpha (TNFα) and transforming growth factor beta (TGFβ) also play very important roles in the regulation of circadian rhythms by regulating the transcription of the clock genes.
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University School of Medicine, Department of Plastic, Reconstructive & Anesthetic Surgery, Turkey.
| | - Gamze Kocak
- Akdeniz University School of Medicine, Department of Medical Biology and Genetics, Turkey.
| | | |
Collapse
|
26
|
Abstract
The master pro-inflammatory cytokine, tumour necrosis factor (TNF), has been shown to modulate multiple signalling pathways, with wide-ranging downstream effects. TNF plays a vital role in the typical immune response through the regulation of a number of pathways encompassing an immediate inflammatory reaction with significant innate immune involvement as well as cellular activation with subsequent proliferation and programmed cell death or necrosis. As might be expected with such a broad spectrum of cellular effects and complex signalling pathways, TNF has also been implicated in a number of disease states, such as rheumatoid arthritis, ankylosing spondylitis, and Crohn’s disease. Since the time of its discovery over 40 years ago, TNF ligand and its receptors, TNF receptor (TNFR) 1 and 2, have been categorised into two complementary superfamilies, namely TNF (TNFSF) and TNFR (TNFRSF), and 19 ligands and 29 receptors have been identified to date. There have been significant advances in our understanding of TNF signalling pathways in the last decade, and this short review aims to elucidate some of the most recent advances involving TNF signalling in health and disease.
Collapse
Affiliation(s)
- Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Heledd Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Institute of Medical Research at St. James's, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| | - Michael McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Leeds, UK
| |
Collapse
|
27
|
Hand LE, Dickson SH, Freemont AJ, Ray DW, Gibbs JE. The circadian regulator Bmal1 in joint mesenchymal cells regulates both joint development and inflammatory arthritis. Arthritis Res Ther 2019; 21:5. [PMID: 30612576 PMCID: PMC6322248 DOI: 10.1186/s13075-018-1770-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The circadian clock plays a crucial role in regulating physiology and is important for maintaining immune homeostasis and responses to inflammatory stimuli. Inflammatory arthritis often shows diurnal variation in disease symptoms and disease markers, and it is now established that cellular clocks regulate joint inflammation. The clock gene Bmal1 is critical for maintenance of 24-h rhythms and plays a key role in regulating immune responses, as well as in aging-related processes. Fibroblast-like synoviocytes (FLS) are circadian rhythmic joint mesenchymal cells which are important for maintenance of joint health and play a crucial role in the development of inflammatory arthritis. The aim of this study was to investigate the importance of the joint mesenchymal cell circadian clock in health and disease. METHODS Mice were generated which lack Bmal1 in Col6a1-expressing cells, targeting mesenchymal cells in the ankle joints. Joints of these animals were assessed by X-ray imaging, whole-mount staining and histology, and the composition of the synovium was assessed by flow cytometry. Arthritis was induced using collagen antibodies. RESULTS Bmal1 deletion in joint mesenchymal cells rendered the FLS and articular cartilage cells arrhythmic. Targeted mice exhibited significant changes in the architecture of the joints, including chondroid metaplasia (suggesting a switch of connective tissue stem cells towards a chondroid phenotype), reductions in resident synovial macrophages and changes in the basal pro-inflammatory activity of FLS. Loss of Bmal1 in FLS rendered these resident immune cells more pro-inflammatory in response to challenge, leading to increased paw swelling, localised infiltration of mononuclear cells and enhanced cytokine production in a model of arthritis. CONCLUSIONS This study demonstrates the importance of Bmal1 in joint mesenchymal cells in regulating FLS and chondrocyte development. Additionally, we have identified a role for this core clock component for restraining local responses to inflammation and highlight a role for the circadian clock in regulating inflammatory arthritis.
Collapse
Affiliation(s)
- Laura E. Hand
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
| | - Suzanna H. Dickson
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
| | - Anthony J. Freemont
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David W. Ray
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, OX3 7LE UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, OX3 9DU UK
| | - Julie E. Gibbs
- Division of Diabetes, Endocrinology and Gastroenterology, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, UK
- The Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| |
Collapse
|
28
|
Cutolo M. Circadian rhythms and rheumatoid arthritis. Joint Bone Spine 2018; 86:327-333. [PMID: 30227223 DOI: 10.1016/j.jbspin.2018.09.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/03/2018] [Indexed: 12/18/2022]
Abstract
Circadian rhythms (Nobel prize for Medicine 2017) regulate, under action of biological clocks located both at the level of central nervous system and inside peripheral cells, several daily activities, embracing sleep, feeding times, energy metabolism, endocrine and immune functions with related pathological conditions, including rheumatoid arthritis (RA). In RA the circadian rhythms impact on cellular functions, involving night synthesis and release of pro-inflammatory cytokines and chemokines, cell migration to inflamed tissues, phagocytosis, proliferative cell response and all are peaking at late night. In chronic inflammatory conditions such as RA, the amplitude of the circadian rhythm of the anti-inflammatory endogenous cortisol availability is not increased as expected and requested, which indicate a reduced night cortisol secretion under the adrenal chronic stress induced by the disease. Therefore, the prevention/treatment of the immune cell night hyperactivity, with related flare of cytokine synthesis and morning RA clinical symptoms, has been shown more effective when the availability of the exogenous glucocorticoids is obtained in the middle of the night (night release). The impressive positive results observed in RA patients treated with modified-night release prednisone with a low-dose chronotherapy, seem applicable even for other agents such as conventional NSAIDs and DMARDs, including the positive experimental and clinical results obtained by the night time daily administration of methotrexate. Interestingly, a very recent study showed that methotrexate upregulates important cell circadian genes, resulting in induction of apoptosis in synovial fibroblasts. The link between the circadian rhythms of the disease and the chronotherapy of RA is promising.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Division of Rheumatology, Department of Internal Medicine, University of Genova, 16132 Genova, Italy; Postgraduate School of Rheumatology, University of Genova, 16132 Genova, Italy; Department of Internal Medicine, IRCCS Polyclinic Hospital San Martino, 16132 Genova, Italy.
| |
Collapse
|
29
|
Abreu M, Basti A, Genov N, Mazzoccoli G, Relógio A. The reciprocal interplay between TNFα and the circadian clock impacts on cell proliferation and migration in Hodgkin lymphoma cells. Sci Rep 2018; 8:11474. [PMID: 30065253 PMCID: PMC6068144 DOI: 10.1038/s41598-018-29847-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
A bidirectional interaction between the circadian network and effector mechanisms of immunity brings on a proper working of both systems. In the present study, we used Hodgkin lymphoma (HL) as an experimental model for a type of cancer involving cells of the immune system. We identified this cancer type among haematological malignancies has having a strong differential expression of core-clock elements. Taking advantage of bioinformatics analyses and experimental procedures carried out in III- and IV-stage HL cells, and lymphoblastoid B cells, we explored this interplay and bear out diverse interacting partners of both systems. In particular, we assembled a wide-ranging network of clock-immune-related genes and pinpointed TNF as a crucial intermediary player. A robust circadian clock hallmarked III-stage lymphoma cells, differently from IV-stage HL cells, which do not harbour a properly functioning clockwork. TNF and circadian gene modulation impacted on clock genes expression and triggered phenotypic changes in lymphoma cells, suggesting a crucial involvement of core-clock elements and TNF in the physiopathological mechanisms hastening malignancy. Our results move forward our understanding of the putative role of the core-clock and TNF in the pathobiology of Hodgkin lymphoma, and highlight their influence in cellular proliferation and migration in lymphatic cancers.
Collapse
Affiliation(s)
- Mónica Abreu
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany
| | - Alireza Basti
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany
| | - Nikolai Genov
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Angela Relógio
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Theoretical Biology, Berlin, Germany. .,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Medical Department of Hematology, Oncology, and Tumor Immunology, Molecular Cancer Research Center, Berlin, Germany.
| |
Collapse
|
30
|
Lai X, Wei J, Ding X. Paeoniflorin Antagonizes TNF-α-Induced L929 Fibroblastoma Cells Apoptosis by Inhibiting NF-κBp65 Activation. Dose Response 2018; 16:1559325818774977. [PMID: 29887769 PMCID: PMC5989054 DOI: 10.1177/1559325818774977] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/01/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Paeoniflorin (PF) is one of the main pharmacodynamic components of Paeonia suffruticosa Andr, which has a significant anti-inflammatory effect on rheumatoid arthritis (RA), with a mechanism related to the tumor necrosis factor α (TNF-α). The aim of the present study was to investigate the role of PF in the apoptosis and expression of NF-κBp65 of L929 fibroblastoma cells induced by TNF-α. Our results showed that different concentrations of PF can significantly reduce the growth inhibition of L929 cells. Moreover, morphological observations, Hoechst 33342 staining, and flow cytometry detection of apoptosis showed that PF can significantly attenuate the TNF-α-induced apoptosis in a dose-dependent manner. Western blot analysis revealed that TNF-α induced the activation of NF-κBp65, whereas PF treatment had a marked dose-dependent suppression on it, which indicates that its action might be associated with inhibiting NF-κB signaling pathway. These results show that PF exerts a beneficial effect on L929 cells to prevent TNF-α-induced apoptosis and expression of NF-κBp65, which would be helpful to clarify its role in the treatment of RA.
Collapse
Affiliation(s)
- Xiaoyu Lai
- Bone Marrow Transplantation Center, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, People's Republic of China
| | - Jing Wei
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xinghong Ding
- College of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
31
|
Arias JL, Mayordomo AC, Silva JE, Ragusa JAV, Rabinovich GA, Anzulovich AC, Di Genaro MS. Peripheral Neuroimmunoendocrine Interactions: Contribution of TNFRp55 to the Circadian Synchronization of Progesterone and Cytokine Production in Joints of Mice in Late Pregnancy. Neuroimmunomodulation 2018; 25:153-162. [PMID: 30304732 DOI: 10.1159/000493143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/16/2018] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Circadian rhythms are generated by the suprachiasmatic nucleus of the hypothalamus and involve rhythmic expression of clock genes and proteins. This rhythmicity is transferred to peripheral tissues by neural and hormonal signals. Late pregnancy is considered a state of inflammation which impacts on peripheral tissues such as joints. Tumor necrosis factor (TNF) mediates inflammatory and circadian responses through its p55 receptor (TNFRp55). Neuroimmunoendocrine interactions in joints have not been studied completely. The purpose of this study was to analyze these interactions, investigating the circadian rhythms of progesterone (Pg) and pro- and anti-inflammatory cytokines in the joints at the end of pregnancy (gestational day 18). Moreover, the impact of TNFRp55 deficiency on these temporal oscillations was explored. METHODS Wild-type and TNFRp55-deficient (KO) C57BL/6 mice were kept under constant darkness in order to study their endogenous circadian rhythms. The expression of the clock genes Bmal1 and Per1 at circadian time 7 was studied by reverse transcription polymerase chain reaction in the ankle joints of nonpregnant and pregnant (gestational day 18) mice. In late pregnancy, Pg and the cytokines interleukin 17 (IL-17), IL-6, and IL-10 were measured in the joints throughout a 24-h period by radioimmunoassay and enzyme-linked immunosorbent assay, respectively. RESULTS A significant increase in Bmal1 and Per1 mRNA expression was detected in the joints of pregnant KO mice. Furthermore, KO mice displayed a desynchronization of articular Pg and cytokine production. CONCLUSIONS Our results show that TNF, via TNFRp55 signaling, modulates articular Pg and cytokine circadian rhythms in late pregnancy. These findings suggest a temporal neuroimmunoendocrine association in peripheral tissues in late pregnancy.
Collapse
Affiliation(s)
- José L Arias
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Andrea C Mayordomo
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
| | - Juan E Silva
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis, Argentina
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Juan A V Ragusa
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Laboratorio de Cronobiología, IMIBIO-SL (CONICET), San Luis, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana C Anzulovich
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- Laboratorio de Cronobiología, IMIBIO-SL (CONICET), San Luis, Argentina
| | - María S Di Genaro
- Laboratorio de Inmunopatología, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Luis,
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis,
| |
Collapse
|