1
|
DNA methylation-induced ablation of miR-133a accelerates cancer aggressiveness in glioma through upregulating peroxisome proliferator-activated receptor γ. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:19-28. [PMID: 36067936 DOI: 10.1016/j.slasd.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/31/2023]
Abstract
Emerging evidences suggest that miRNAs can be used as theranostic biomarkers for multiple cancers, including glioma. Thus, identification of novel miRNAs for glioma treatment and prognosis becomes necessary and urgent. Here, by analyzing miRNA expression profiles in the glioma and para-cancer tissues by miRNA microarray and verified by RT-PCR, we found that miR-133a was significantly downregulated in the cancerous tissues, and patients with low-expressed miR-133a levels predicted an unfavorable prognosis. The following functional experiments confirmed that overexpression of miR-133a restrained cell proliferation and colony formation abilities, and induced cell cycle arrest to restrain cancer progression in glioma cells. Then, the underlying mechanisms were uncovered, and the peroxisome proliferator-activated receptor γ (PPARγ, PPARG) was verified as the downstream target of miR-133a. Mechanistically, miR-133a negatively regulated PPARG expressions by binding to its 3' untranslated regions (3'UTR). The following rescuing experiments evidenced that miR-133a overexpression-induced anti-cancer effects in glioma cells were abrogated by upregulating PPARγ. Interestingly, we noticed that the promoter region of miR-133a was hypermethylated, and removal of DNA methylation by 5-Azacytidine (AZA) significantly increased the expression levels of miR-133a in glioma cells. Taken together, we concluded that DNA-methylation-induced miR-133a silence contributed to cancer progression in glioma through upregulating PPARγ, and firstly identified the DNA-methylation-regulated miR-133a/PPARG axis as the novel indicators for glioma treatment and prognosis.
Collapse
|
2
|
Santovito D, Weber C. Non-canonical features of microRNAs: paradigms emerging from cardiovascular disease. Nat Rev Cardiol 2022; 19:620-638. [PMID: 35304600 DOI: 10.1038/s41569-022-00680-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2022] [Indexed: 02/08/2023]
Abstract
Research showing that microRNAs (miRNAs) are versatile regulators of gene expression has instigated tremendous interest in cardiovascular research. The overwhelming majority of studies are predicated on the dogmatic notion that miRNAs regulate the expression of specific target mRNAs by inhibiting mRNA translation or promoting mRNA decay in the RNA-induced silencing complex (RISC). These efforts mostly identified and dissected contributions of multiple regulatory networks of miRNA-target mRNAs to cardiovascular pathogenesis. However, evidence from studies in the past decade indicates that miRNAs also operate beyond this canonical paradigm, featuring non-conventional regulatory functions and cellular localizations that have a pathophysiological role in cardiovascular disease. In this Review, we highlight the functional relevance of atypical miRNA biogenesis and localization as well as RISC heterogeneity. Moreover, we delineate remarkable non-canonical examples of miRNA functionality, including direct interactions with proteins beyond the Argonaute family and their role in transcriptional regulation in the nucleus and in mitochondria. We scrutinize the relevance of non-conventional biogenesis and non-canonical functions of miRNAs in cardiovascular homeostasis and pathology, and contextualize how uncovering these non-conventional properties can expand the scope of translational research in the cardiovascular field and beyond.
Collapse
Affiliation(s)
- Donato Santovito
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, Milan, Italy.
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU), Munich, Germany. .,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany. .,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, Netherlands. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
3
|
Exosomal miR-17-3p Alleviates Programmed Necrosis in Cardiac Ischemia/Reperfusion Injury by Regulating TIMP3 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2785113. [PMID: 35116091 PMCID: PMC8807034 DOI: 10.1155/2022/2785113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/17/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022]
Abstract
Objective Myocardial ischemia/reperfusion (I/R) injury can aggravate myocardial injury. Programmed necrosis plays a crucial role in this injury. However, the role of exosomal miRNAs in myocardial I/R injury remains unclear. Therefore, this study is aimed at exploring the function and mechanism of exosomal miR-17-3p in myocardial I/R injury. Methods The myocardial I/R injury animal model was established in C57BL/6 mice. Exosomes were identified using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and Western blotting. Programmed necrosis was detected by PI staining. Heart function and myocardial infarct size were evaluated using echocardiography and triphenyl tetrazolium chloride (TTC) staining, respectively. Histopathological changes were visualized by hematoxylin and eosin (H&E) and Masson staining. The regulation of TIMP3 expression by miR-17-3p was verified using a dual-luciferase reporter assay. Lactate dehydrogenase (LDH) and tumor necrosis factor-α (TNF-α) levels were measured by enzyme-linked immunosorbent assays (ELISA). TIMP3 expression was measured by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. Results We demonstrated that miR-17-3p was significantly downregulated in peripheral blood exosomes after cardiac I/R injury. Further analysis indicated that exosomal miR-17-3p attenuated H2O2-induced programmed necrosis in cardiomyocytes in vitro. Moreover, TIMP3 was a target for miR-17-3p. TIMP3 affected H2O2-induced programmed necrosis in cardiomyocytes. This effect was modulated by miR-17-3p in vitro. Furthermore, exosomal miR-17-3p greatly alleviated cardiac I/R injury in vivo. Conclusions The present study demonstrated that exosomal miR-17-3p alleviated the programmed necrosis associated with cardiac I/R injury by regulating TIMP3 expression. These findings could represent a potential treatment for I/R injury.
Collapse
|
4
|
Nyam-Erdene A, Nebie O, Delila L, Buée L, Devos D, Chou SY, Blum D, Burnouf T. Characterization and Chromatographic Isolation of Platelet Extracellular Vesicles from Human Platelet Lysates for Applications in Neuroregenerative Medicine. ACS Biomater Sci Eng 2021; 7:5823-5835. [PMID: 34846835 DOI: 10.1021/acsbiomaterials.1c01226] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human platelet lysates (HPLs) made from clinical-grade platelet concentrates are currently evaluated in the preclinical models of Parkinson's disease, Alzheimer's disease, traumatic brain injury, and others, as a new polyvalent neuroprotective biotherapy of the central nervous system. However, the presence and content of extracellular vesicles (EVs) in HPLs and their potential contribution to the neuroprotective and neurorestorative activities of HPLs are still unknown. We, therefore, characterized the EVs present in four different HPL preparations and after purification by size-exclusion chromatography. We then tested the effect of the isolated EVs on neuronal cell repair. We identified that all four HPLs contained a high and similar amount of EVs (1011 to 1012/mL) with a mean size ranging from ca. 50 to 300 nm and a negative zeta potential as determined by nanoparticle tracking analysis and dynamic light scattering. Western blot analysis revealed that the EVs present in HPLs expressed the clusters of differentiation 41 (CD41) and 61 (CD61) characteristic of platelets. These EVs were efficiently isolated from HPL proteins by Sepharose CL-2B size-exclusion column chromatography as confirmed by total protein determination and protein profile by sodium dodecyl sulfate polyacrylamide gel electrophoresis, with 73-85% recovery and maintenance of their size, negative zeta potential, and CD41 and CD61 expression. Interestingly, the EVs purified from the four HPLs exhibited a differential capacity to promote cell growth and migration in a wound-healing assay using SH-SY5Y neuronal cells, and one EV preparation stimulated network formation in primary neuronal cultures. These data indicated that the EVs present in HPLs have different neuroregenerative capacities and that some EV preparations may have interesting applications as a stand-alone therapy for usage in neuroregenerative medicine.
Collapse
Affiliation(s)
- Ariunjargal Nyam-Erdene
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 101, Taiwan
| | - Ouada Nebie
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Liling Delila
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Luc Buée
- Université de Lille, Inserm U1172, CHU-Lille, Lille Neuroscience & Cognition, Lille 59000, France.,Alzheimer & Tauopathies, Labex DISTALZ, Lille 59000, France.,NeuroTMULille International Laboratory, Université de Lille, Lille 59000, France
| | - David Devos
- Université de Lille, Inserm U1172, CHU-Lille, Lille Neuroscience & Cognition, Lille 59000, France.,NeuroTMULille International Laboratory, Université de Lille, Lille 59000, France
| | - Szu-Yi Chou
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.,NeuroTMULille International Laboratory, Taipei Medical University, Taipei 101, Taiwan
| | - David Blum
- Université de Lille, Inserm U1172, CHU-Lille, Lille Neuroscience & Cognition, Lille 59000, France.,Alzheimer & Tauopathies, Labex DISTALZ, Lille 59000, France.,NeuroTMULille International Laboratory, Université de Lille, Lille 59000, France
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 101, Taiwan.,Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan.,NeuroTMULille International Laboratory, Taipei Medical University, Taipei 101, Taiwan.,International PhD Program in Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Brain and Consciousness Research Centre, TMU Shuang Ho Hospital, New Taipei City 106, Taiwan
| |
Collapse
|
5
|
Wang Y, Chen J, Cowan DB, Wang DZ. Non-coding RNAs in cardiac regeneration: Mechanism of action and therapeutic potential. Semin Cell Dev Biol 2021; 118:150-162. [PMID: 34284952 PMCID: PMC8434979 DOI: 10.1016/j.semcdb.2021.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/19/2022]
Abstract
In the past two decades, thousands of non-coding RNAs (ncRNAs) have been discovered, annotated, and characterized in nearly every tissue under both physiological and pathological conditions. Here, we will focus on the role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in ischemic heart disease (IHD), which remains the leading cause of morbidity and mortality in humans-resulting in 8.9 million deaths annually. Cardiomyocyte (CM) proliferation, differentiation, and survival in addition to neovascularization of injured tissues and the prevention of fibrosis are commonly regarded as critically important for the recovery of the heart following myocardial infarction (MI). An abundance of evidence has been accumulated to show ncRNAs participate in cardiac recovery after MI. Because miRNAs are important regulators of cardiac regeneration, the therapeutic potential of at least five of these molecules has been assessed in large animal models of human IHD. In particular, miRNA-based interventions based on miR-132 and miR-92a inhibition in related diseases have displayed favorable outcomes that have provided the impetus for miRNA-based clinical trials for IHD. At the same time, the functional roles of lncRNAs and circRNAs in cardiac regeneration are also being explored. In the present review, we will summarize the latest ncRNA studies aimed at reversing damage to the ischemic heart and discuss the therapeutic potential of targeting miRNAs, lncRNAs, and circRNAs to stimulate cardiac regeneration.
Collapse
Affiliation(s)
- Yi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jinghai Chen
- Provincial Key Lab of Cardiovascular Research, Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University, 268 Kaixuan Road, Hangzhou, China
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Abstract
Extracellular vesicles (EVs) have received considerable attention in biological and clinical research due to their ability to mediate cell-to-cell communication. Based on their size and secretory origin, EVs are categorized as exosomes, microvesicles, and apoptotic bodies. Increasing number of studies highlight the contribution of EVs in the regulation of a wide range of normal cellular physiological processes, including waste scavenging, cellular stress reduction, intercellular communication, immune regulation, and cellular homeostasis modulation. Altered circulating EV level, expression pattern, or content in plasma of patients with cardiovascular disease (CVD) may serve as diagnostic and prognostic biomarkers in diverse cardiovascular pathologies. Due to their inherent characteristics and physiological functions, EVs, in turn, have become potential candidates as therapeutic agents. In this review, we discuss the evolving understanding of the role of EVs in CVD, summarize the current knowledge of EV-mediated regulatory mechanisms, and highlight potential strategies for the diagnosis and therapy of CVD. We also attempt to look into the future that may advance our understanding of the role of EVs in the pathogenesis of CVD and provide novel insights into the field of translational medicine.
Collapse
Affiliation(s)
- Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Xue Zou
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Chongqing Institute of Cardiology and Chongqing Key Laboratory for Hypertension Research, Chongqing, PR China; State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, The Third Military Medical University, Chongqing, PR China; Heart Center of Fujian Province, Union Hospital, Fujian Medical University, Fuzhou, PR China.
| |
Collapse
|
7
|
Liu ZZ, Jose PA, Yang J, Zeng C. Importance of extracellular vesicles in hypertension. Exp Biol Med (Maywood) 2021; 246:342-353. [PMID: 33517775 DOI: 10.1177/1535370220974600] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hypertension affects approximately 1.13 billion adults worldwide and is the leading global risk factor for cardiovascular, cerebrovascular, and kidney diseases. There is emerging evidence that extracellular vesicles participate in the development and progression of hypertension. Extracellular vesicles are membrane-enclosed structures released from nearly all types of eukaryotic cells. During their formation, extracellular vesicles incorporate various parent cell components, including proteins, lipids, and nucleic acids that can be transferred to recipient cells. Extracellular vesicles mediate cell-to-cell communication in a variety of physiological and pathophysiological processes. Therefore, studying the role of circulating and urinary extracellular vesicles in hypertension has the potential to identify novel noninvasive biomarkers and therapeutic targets of different hypertension phenotypes. This review discusses the classification and biogenesis of three EV subcategories (exosomes, microvesicles, and apoptotic bodies) and provides a summary of recent discoveries in the potential impact of extracellular vesicles on hypertension with a specific focus on their role in the blood pressure regulation by organs-artery and kidney, as well as renin-angiotensin-system.
Collapse
Affiliation(s)
- Zhi Z Liu
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Jian Yang
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Chunyu Zeng
- Cardiovascular Research Center of Chongqing College, Department of Cardiology of Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing 400714, P.R. China.,Chongqing Key Laboratory for Hypertension Research, Chongqing Cardiovascular Clinical Research Center, Chongqing Institute of Cardiology, Chongqing 400042, P. R. China.,Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
8
|
Li T, Gu J, Yang O, Wang J, Wang Y, Kong J. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal miRNA-29c Decreases Cardiac Ischemia/Reperfusion Injury Through Inhibition of Excessive Autophagy via the PTEN/Akt/mTOR Signaling Pathway. Circ J 2020; 84:1304-1311. [PMID: 32581152 DOI: 10.1253/circj.cj-19-1060] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Cardiac ischemia/reperfusion (I/R) injury will cause a large amount of cardiomyocyte loss and cascade reactions such as apoptosis, mitochondrial dysfunction, and excessive autophagy. Mesenchymal stem cells (MSCs) are promising therapeutic tools to replace damaged cardiomyocytes, but the underlying mechanism is still unknown. METHODS AND RESULTS Exosomes contain many microRNAs and protein, which are believed to have multiple biological functions. This study explored the role of bone marrow MSCs (BMMSCs)-derived exosomes under different oxidation levels in heart protection and miRNA-related mechanisms. Exosomes extracted from BMMSCs contained a high level of miR-29c, and its expression level changed after cells were treated under hypoxia/reoxygenation (H/R) conditions. In vivo I/R experiments also confirmed an expression change of miR-29c, and PTEN-Akt-mTOR is one of the predominant pathways that regulate autophagic change during this process. CONCLUSIONS This study highlighted the role of miR-29c in regulating autophagy under cardiac I/R injury, which also extended existing mechanisms of a stem cell and its derivative to explore potential therapeutic interventions in ischemic heart diseases.
Collapse
Affiliation(s)
- Te Li
- Department of Geriatrics, The First Hospital of Jilin University
| | | | - Ou Yang
- Department of Geriatrics, The First Hospital of Jilin University
| | - Jianmeng Wang
- Department of Geriatrics, The First Hospital of Jilin University
| | - Yonggang Wang
- Department of Cardiovascular Center, The First Hospital of Jilin University
| | - Jian Kong
- Department of Geriatrics, The First Hospital of Jilin University
| |
Collapse
|
9
|
Fan D, Kassiri Z. Biology of Tissue Inhibitor of Metalloproteinase 3 (TIMP3), and Its Therapeutic Implications in Cardiovascular Pathology. Front Physiol 2020; 11:661. [PMID: 32612540 PMCID: PMC7308558 DOI: 10.3389/fphys.2020.00661] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/19/2022] Open
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) is unique among the four TIMPs due to its extracellular matrix (ECM)-binding property and broad range of inhibitory substrates that includes matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and ADAM with thrombospondin motifs (ADAMTSs). In addition to its metalloproteinase-inhibitory function, TIMP3 can interact with proteins in the extracellular space resulting in its multifarious functions. TIMP3 mRNA has a long 3' untranslated region (UTR) which is a target for numerous microRNAs. TIMP3 levels are reduced in various cardiovascular diseases, and studies have shown that TIMP3 replenishment ameliorates the disease, suggesting a therapeutic potential for TIMP3 in cardiovascular diseases. While significant efforts have been made in identifying the effector targets of TIMP3, the regulatory mechanism for the expression of this multi-functional TIMP has been less explored. Here, we provide an overview of TIMP3 gene structure, transcriptional and post-transcriptional regulators (transcription factors and microRNAs), protein structure and partners, its role in cardiovascular pathology and its application as therapy, while also drawing reference from TIMP3 function in other diseases.
Collapse
Affiliation(s)
- Dong Fan
- Department of Pathology, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zamaneh Kassiri
- Department of Physiology, University of Alberta, Edmonton, AB, Canada.,Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Berezin AE, Berezin AA. Extracellular Endothelial Cell-Derived Vesicles: Emerging Role in Cardiac and Vascular Remodeling in Heart Failure. Front Cardiovasc Med 2020; 7:47. [PMID: 32351973 PMCID: PMC7174683 DOI: 10.3389/fcvm.2020.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/10/2020] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles play a pivotal role in numerous physiological (immune response, cell-to-cell cooperation, angiogenesis) and pathological (reparation, inflammation, thrombosis/coagulation, atherosclerosis, endothelial dysfunction) processes. The development of heart failure is strongly associated with endothelial dysfunction, microvascular inflammation, alteration in tissue repair, and cardiac and vascular remodeling. It has been postulated that activated endothelial cell-derived vesicles are not just transfer forms of several active molecules (such as regulatory peptides, coagulation factors, growth factors, active molecules, hormones that are embedded onto angiogenesis, tissue reparation, proliferation, and even prevention from ischemia/hypoxia), but are instead involved in direct myocardial and vascular damage due to regulation of epigenetic responses of the tissue. These responses are controlled by several factors, such as micro-RNAs, that are transferred inside extracellular vesicles from mother cells to acceptor cells and are transductors of epigenetic signals. Finally, it is not a uniform opinion whether different phenotypes of heart failure are the result of altered cardiac and vascular reparation due to certain epigenetic responses, which are yielded by co-morbidities, such as diabetes mellitus and obesity. The aim of the review is to summarize knowledge regarding the role of various types of extracellular endothelial cell-derived vesicles in the regulation of cardiac and vascular remodeling in heart failure.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| |
Collapse
|
11
|
Deng Y, Wang J, Xie G, Zeng X, Li H. Circ-HIPK3 Strengthens the Effects of Adrenaline in Heart Failure by MiR-17-3p - ADCY6 Axis. Int J Biol Sci 2019; 15:2484-2496. [PMID: 31595165 PMCID: PMC6775314 DOI: 10.7150/ijbs.36149] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023] Open
Abstract
Overactivation of β-adrenergic receptor (β-AR) can improve cardiac function temporarily but promotes the development and mortality of heart failure (HF) in the long run. CircRNA, a member of noncoding RNAs, can tolerate digestion of exonuclease and be a chronic stimulator to cell. But the relationship of circRNA with HF remains a puzzle and needs to be explored. Here, we found that circ-HIPK3 affected the concentration of Ca2+ in cytoplasm by miR-17-3p through ADCY6 (Adenylate cyclase type 6). The increase of ADCY6 caused by circ-HIPK3 was ameliorated by miR-17-3p overexpression and vice versa, implicating the existence of circ-HIPK3 - miR-17-3p - ADCY6 axis. And further assays showed that the level of circ-HIPK3 in heart was upregulated by adrenaline via transcription factor CREB1 (cAMP responsive element-binding protein 1). Experiments in vivo showed downregulation of circ-HIPK3 can alleviate fibrosis and maintain cardiac function post MI in mice. In conclusion, the increased circ-HIPK3 can be a helper for adrenaline but was harmful for heart in the long run and might be an ideal therapeutic target of HF.
Collapse
Affiliation(s)
- Yunfei Deng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of Urology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guojin Xie
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaochen Zeng
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongli Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Serum Extracellular Vesicles Retard H9C2 Cell Senescence by Suppressing miR-34a Expression. J Cardiovasc Transl Res 2018; 12:45-50. [DOI: 10.1007/s12265-018-9847-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/18/2018] [Indexed: 12/11/2022]
|
13
|
Zhong Z, Hou J, Zhang Q, Zhong W, Li B, Li C, Liu Z, Yang M, Zhao P. Circulating microRNA expression profiling and bioinformatics analysis of dysregulated microRNAs of patients with coronary artery disease. Medicine (Baltimore) 2018; 97:e11428. [PMID: 29979444 PMCID: PMC6076134 DOI: 10.1097/md.0000000000011428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
MicroRNs (miRNAs) are small non-coding RNAs that modulate the expression of protein-coding genes at the post-transcription level and their dysregulated expression has been implicated in cardiovascular diseases. Circulating miRNAs have been widely recommended as potential biomarkers for many diseases including coronary artery disease. In this study, the miRNA expression profiles of 6 normal coronary artery (NCA), 12 patients with coronary artery disease including 6 unstable angina (UA) patients and 6 ST-segment elevation myocardial infarction (STEMI) patients were determined by small RNA sequencing. The differential expression of miRNAs was verified via using quantitative reverse transcription polymerase chain reaction (qRT-PCR). We further performed bioinformatics analysis for the differentially expressed miRNAs. The results showed that 60 miRNAs were up-regulated and 26 miRNAs were down-regulated in the UA group and 49 miRNAs were up-regulated and 62 miRNAs were down-regulated in the UA group when compared with the NCA group. Among them, both of UA group and STEMI group shared 38 dysregulated miRNAs (28 up-regulated and 10 down-regulated) versus NCA group. ROC curves analysis showed that miR-142-3p and miR-17-5p might server as potential biomarkers for the detection and diagnosis of UA and STEMI. Bioinformatics functional predictions showed that the differential expressed miRNAs were closely related with the pathological process of coronary artery disease. We comprehensively analyzed profile expression of circulating miRNAs of patients with coronary artery disease. Our study suggested that miR-142-3p and miR-17-5p might be potential targets for follow-up research in evaluating biomarkers of coronary artery disease.
Collapse
Affiliation(s)
- Zhixiong Zhong
- Center for Cardiovascular Diseases
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
| | - Jingyuan Hou
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, P.R. China
| | - Qifeng Zhang
- Center for Cardiovascular Diseases
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
| | - Wei Zhong
- Center for Cardiovascular Diseases
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
| | - Bin Li
- Center for Cardiovascular Diseases
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
| | - Cunren Li
- Center for Cardiovascular Diseases
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
| | - Zhidong Liu
- Center for Cardiovascular Diseases
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
| | - Min Yang
- Center for Cardiovascular Diseases
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
| | - Pingsen Zhao
- Center for Precision Medicine, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Guangdong Provincial Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases
- Clinical Core Laboratory, Meizhou People's Hospital (Huangtang Hospital), Meizhou Hospital Affiliated to Sun Yat-sen University
- Meizhou Municipal Engineering and Technology Research Center for Molecular Diagnostics of Major Genetic Disorders, Meizhou, P.R. China
| |
Collapse
|