1
|
Muralitharan RV, Masre SF, Basri DF, Ghazali AR. Pterostilbene and resveratrol: Exploring their protective mechanisms against skin photoaging - A scoping review. Biochem Biophys Rep 2025; 42:102011. [PMID: 40290806 PMCID: PMC12022656 DOI: 10.1016/j.bbrep.2025.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Prolonged ultraviolet (UV) exposure depletes the skin's endogenous antioxidants, leading to photoaging. Exogenous antioxidants are essential to counter this, with stilbenes such as pterostilbene and resveratrol emerging as promising candidates due to their antioxidant, anti-inflammatory and anti-cancer properties. The current scoping review presents an overview of the evidence on the effects of pterostilbene and resveratrol on skin photoaging. A literature search was conducted using PubMed, Scopus, and Web of Science databases in April 2025. Original research articles that investigated the effects of pterostilbene and resveratrol on skin photoaging in cells, animals, or humans were included. 9 eligible articles were included in this review. The findings suggest that resveratrol significantly improves skin photoaging, while preliminary evidence indicates that pterostilbene may offer advantages over resveratrol. However, due to the limited research on pterostilbene, further studies are required to confirm its efficacy. Key considerations in establishing valid in vitro and in vivo models, alongside macroscopic and histologic features of photoaging, were also discussed. In conclusion, while resveratrol shows significant promise in combating skin photoaging, pterostilbene is still in the early exploration phases. Advancing to human trials is crucial to confirm the efficacy of these stilbenes in preventing and treating photoaging.
Collapse
Affiliation(s)
- Raveena Vaidheswary Muralitharan
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Siti Fathiah Masre
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Dayang Fredalina Basri
- Center for Diagnostic, Therapeutic and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Yuan X, Li H, Lee JS, Lee DH. Role of Mitochondrial Dysfunction in UV-Induced Photoaging and Skin Cancers. Exp Dermatol 2025; 34:e70114. [PMID: 40318065 DOI: 10.1111/exd.70114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/09/2025] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Ultraviolet radiation (UVR) is the most detrimental external factor that induces acute photodamage, photoaging and skin cancers, with complex underlying molecular mechanisms initiated mainly by increased DNA damage and reactive oxygen species (ROS) generation. Mitochondria are the main organelles in skin cells that produce ROS and energy and regulate various physiological and pathological signalling pathways. Continuous UVR on human skin can induce mitochondrial DNA mutations and excessive ROS production, creating feedback between each other and subsequently causing a reduction in mitochondrial membrane potential (MMP) and respiratory capacity. Deficiencies in mitochondrial function can induce apoptosis, mitophagy and senescence, resulting in UVR-induced skin photodamage and photoaging. Mitochondrial biogenesis and metabolic pathways play critical roles in the progression of skin cancers, particularly melanoma, which is the most malignant and infrequent type of cancer. In this review, we describe the recent advances in determining the intimate relationship between mitochondrial function and UVR-induced skin damage, suggesting potential molecular candidates and novel chemical/natural components to protect the skin from photoaging and skin cancers via mitochondrial targeting mechanisms.
Collapse
Affiliation(s)
- Xinghua Yuan
- Department of Dermatology, YanBian University Hospital, Yanji, China
| | - Huixin Li
- Department of Dermatology, YanBian University Hospital, Yanji, China
| | - Ji Su Lee
- Department of Dermatology, Seoul National University Hospital, National University College of Medicine, Seoul, Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University Hospital, National University College of Medicine, Seoul, Korea
- Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| |
Collapse
|
3
|
Golubnitschaja O, Sargheini N, Bastert J. Mitochondria in cutaneous health, disease, ageing and rejuvenation-the 3PM-guided mitochondria-centric dermatology. EPMA J 2025; 16:1-15. [PMID: 39991093 PMCID: PMC11842662 DOI: 10.1007/s13167-025-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/25/2025]
Abstract
Association of both intrinsic and extrinsic risk factors leading to accelerated skin ageing is reflected in excessive ROS production and ir/reversible mitochondrial injury and burnout, as abundantly demonstrated by accumulating research data. Due to the critical role of mitochondrial stress in the pathophysiology of skin ageing and disorders, maintained (primary care) and restored (secondary care) mitochondrial health, rejuvenation and homoeostasis are considered the most effective holistic approach to advance dermatological treatments based on systemic health-supportive and stimulating measures. Per evidence, an effective skin anti-ageing protection, wound healing and scarring quality - all strongly depend on the sustainable mitochondrial functionality and well-balanced homoeostasis. The latter can be objectively measured and, if necessary, restored in a systemic manner by pre- and rehabilitation algorithms tailored to individualised patient profiles. The entire spectrum of corresponding innovations in the area includes natural and systemic skin rejuvenation, aesthetic and reconstructive medicine, sustainable skin protection and targeted treatments of skin disorders. Contextually, mitochondria-centric dermatology is instrumental for advanced 3PM-guided approach which makes a good use of predictive multi-level diagnostics and targeted protection of skin against both - the health-to-disease transition and progression of relevant disorders. Cost-effective targeted protection and new treatment avenues focused on sustainable mitochondrial health and physiologic homoeostasis are proposed in the article including in-depth analysis of patient cases and exemplified 3PM-guided care with detailed mechanisms and corresponding expert recommendations presented.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Janine Bastert
- Private Dermatological Clinic, Kirchheimer Str. 71, 70619 Stuttgart, Germany
| |
Collapse
|
4
|
Xu J, Xie M, Liang X, Luo P, Yang X, Zhao J, Bian J, Sun B, Tang Q, Du X, Zou Y, Dai W, He C. The Preventive Effect of Theabrownin from Ya'an Tibetan Tea Against UVB-Induced Skin Photodamage in BALB/c Mice via the MAPK/NF-κB and Nrf2 Signaling Pathways. Foods 2025; 14:600. [PMID: 40002044 PMCID: PMC11854306 DOI: 10.3390/foods14040600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/08/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Ya'an Tibetan tea, renowned as a mysterious tea, has been used as a traditional remedy for disease prevention among ethnic minorities in the Qinghai-Tibet Plateau region, which experiences the highest levels of UVB radiation in the world, for over 1000 years. Theabrownin (TB) from Ya'an Tibetan tea exhibits various health benefits. In this study, the preventive effects of TB on UVB-induced skin damage were investigated. The results showed that TB pretreatment significantly alleviated visible skin damage, epidermal hyperplasia, and collagen destruction in BALB/c mice. The mechanism of action involved increasing the mRNA and protein levels of Nrf2 and enhancing SOD enzyme activity, thereby reducing MDA content and improving the body's antioxidant capacity. TB also inhibited the protein synthesis of inflammatory factors such as TNF-α, IL-1β, and IL-6, as well as the expression of NF-κB mRNA and protein, thereby reducing skin inflammation. Furthermore, it suppressed the overexpression of p38 MAPK, ERK, and AP-1 mRNA and protein, along with the downstream MMP-1 protein, to prevent collagen destruction in the skin. Additionally, TB pretreatment prevented cell apoptosis by reducing Caspase-3 overexpression. These results suggest that TB can prevent UVB-induced photodamage and exert its preventive effects in a dose-dependent manner by downregulating the MAPK/NF-κB signaling pathway while promoting the Nrf2 signaling pathway in the skin. Consequently, TB holds promising potential for future applications in skin photodamage prevention and skin health promotion.
Collapse
Affiliation(s)
- Jingyi Xu
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Mingji Xie
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Xing Liang
- Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - Peida Luo
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Xinyao Yang
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Jing Zhao
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Jinlin Bian
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Bo Sun
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
| | - Qian Tang
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Xiao Du
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Yao Zou
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| | - Weidong Dai
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Chunlei He
- Tea Department of College of Horticulture Science, Sichuan Agricultural University, Chengdu 611130, China; (J.X.); (M.X.); (P.L.); (X.Y.); (J.Z.); (J.B.); (B.S.); (Q.T.); (X.D.); (Y.Z.)
- Sichuan Key Laboratory of Refined Sichuan Tea, Chengdu 611130, China
| |
Collapse
|
5
|
Hao KX, Zhong RF, Zhang J, Shen CY, Xu XL, Jiang JG. Comparison of polysaccharides from stem barks and flowers of Magnolia officinalis: Compositional characterization, hypoglycemic and photoprotection activities. Int J Biol Macromol 2024; 283:137766. [PMID: 39557265 DOI: 10.1016/j.ijbiomac.2024.137766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/26/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
The extraction of polysaccharides from stem barks and flowers of Magnolia officinalis were optimized using response surface methodology and the maximum yields were 4.12 ± 0.06 % and 5.5 ± 0.08 %, respectively. Three homogeneous polysaccharides including MOBP-I, MOBP-II and MOFP-I were further purified and their compositional characterization were compared. Molecular weights of MOBP-I, MOBP-II and MOFP-I were 5.9 × 103, 6.8 × 103 and 3.9 × 104 Da, respectively. Gas chromatography (GC) analysis suggested that MOBP-I, MOBP-II and MOFP-I were composed of rhamnose, arabinose, mannose, glucose and galactose at different ratios and exhibited different appearance and glycosidic linkages. MOFP-I but not MOBP-I and MOBP-II had three helix structures. MOBP-I, MOBP-II and MOFP-I showed significant hypoglycemic and photoprotection capacities with different efficacy. MOBP-I had greater hypoglycemic activity, as evidenced by the increased α-glucosidase inhibition activity and glucose consumption in insulin-resistant HepG2 cells. MOBP-II and MOFP-I were more powerful in reversing ultraviolet-B (UVB)-irradiated photoaging of HaCaT cells. The difference of polysaccharides compositions might explain for their bioactivity discrepancy.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Rui-Fang Zhong
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Jie Zhang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China
| | - Chun-Yan Shen
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xi-Lin Xu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Vikram A, Patel SK, Singh A, Pathania D, Ray RS, Upadhyay AK, Dwivedi A. Natural autophagy activators: A promising strategy for combating photoaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155508. [PMID: 38901286 DOI: 10.1016/j.phymed.2024.155508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Photodamage to the skin stands out as one of the most widespread epidermal challenges globally. Prolonged exposure to sunlight containing ultraviolet radiation (UVR) instigates stress, thereby compromising the skin's functionality and culminating in photoaging. Recent investigations have shed light on the importance of autophagy in shielding the skin from photodamage. Despite the acknowledgment of numerous phytochemicals possessing photoprotective attributes, their potential to induce autophagy remains relatively unexplored. PURPOSE Diminished autophagy activity in photoaged skin underscores the potential benefits of restoring autophagy through natural compounds to enhance photoprotection. Consequently, this study aims to highlight the role of natural compounds in safeguarding against photodamage and to assess their potential to induce autophagy via an in-silico approach. METHODS A thorough search of the literature was done using several databases, including PUBMED, Science Direct, and Google Scholar, to gather relevant studies. Several keywords such as Phytochemical, Photoprotection, mTOR, Ultraviolet Radiation, Reactive oxygen species, Photoaging, and Autophagy were utilized to ensure thorough exploration. To assess the autophagy potential of phytochemicals through virtual screening, computational methodologies such as molecular docking were employed, utilizing tools like AutoDock Vina. Receptor preparation for docking was facilitated using MGLTools. RESULTS The initiation of structural and functional deterioration in the skin due to ultraviolet radiation (UVR) or sunlight-induced reactive oxygen species/reactive nitrogen species (ROS/RNS) involves the modulation of various pathways. Natural compounds like phenolics, flavonoids, flavones, and anthocyanins, among others, possess chromophores capable of absorbing light, thereby offering photoprotection by modulating these pathways. In our molecular docking study, these phytochemicals have shown binding affinity with mTOR, a negative regulator of autophagy, indicating their potential as autophagy modulators. CONCLUSION This integrated review underscores the photoprotective characteristics of natural compounds, while the in-silico analysis reveals their potential to modulate autophagy, which could significantly contribute to their anti-photoaging properties. The findings of this study hold promise for the advancement of cosmeceuticals and therapeutics containing natural compounds aimed at addressing photoaging and various skin-related diseases. By leveraging their dual benefits of photoprotection and autophagy modulation, these natural compounds offer a multifaceted approach to combatting skin aging and related conditions.
Collapse
Affiliation(s)
- Apeksha Vikram
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Sunil Kumar Patel
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Arshwinder Singh
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India
| | - Diksha Pathania
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Ratan Singh Ray
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala-147004 Punjab, India.
| | - Ashish Dwivedi
- Photobiology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan 31, Mahatma Gandhi Marg, Lucknow-226001 Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002 Uttar Pradesh, India.
| |
Collapse
|
7
|
Xia Y, Zhang H, Wu X, Xu Y, Tan Q. Resveratrol activates autophagy and protects from UVA-induced photoaging in human skin fibroblasts and the skin of male mice by regulating the AMPK pathway. Biogerontology 2024; 25:649-664. [PMID: 38592565 PMCID: PMC11217112 DOI: 10.1007/s10522-024-10099-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/15/2024] [Indexed: 04/10/2024]
Abstract
Skin photoaging is mostly caused by ultraviolet A (UVA), although active medications to effectively counteract UVA-induced photoaging have not yet been created. Resveratrol, a naturally occurring polyphenol found in the skin of grapes, has been shown to have various biological functions such as anti-inflammatory and antioxidant characteristics. However, the role of resveratrol in UVA-induced photoaging has not been clarified. We investigated the mechanism of action of resveratrol by UVA irradiation of human skin fibroblasts (HSF) and innovatively modified a mouse model of photoaging. The results demonstrated that resveratrol promoted AMP-activated protein kinase (AMPK) phosphorylation to activate autophagy, reduce reactive oxygen species (ROS) production, inhibit apoptosis, and restore normal cell cycle to alleviate UVA-induced photoaging. In addition, subcutaneous injection of resveratrol not only improved the symptoms of roughness, erythema, and increased wrinkles in the skin of UVA photodamaged mice, but also alleviated epidermal hyperkeratosis and hyperpigmentation, reduced inflammatory responses, and inhibited collagen fiber degradation. In conclusion, our studies proved that resveratrol can treat UVA-induced photoaging and elucidated the possible molecular mechanisms involved, providing a new therapeutic strategy for future anti-aging.
Collapse
Affiliation(s)
- Yangmin Xia
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hao Zhang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiangyi Wu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Ye Xu
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
8
|
Yue Z, Liu H, Liu M, Wang N, Ye L, Guo C, Zheng B. Cornus officinalis Extract Enriched with Ursolic Acid Ameliorates UVB-Induced Photoaging in Caenorhabditis elegans. Molecules 2024; 29:2718. [PMID: 38930783 PMCID: PMC11206114 DOI: 10.3390/molecules29122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as the antisolvent to separate the components containing UA from the crude extract of Cornus officinalis. The effect of COE on UVB damage was assessed using Caenorhabditis elegans. The results showed that COE could increase the lifespan and enhance the antioxidant enzyme activity of C. elegans exposed to UVB while decreasing the reactive oxygen species (ROS) level. At the same time, COE upregulated the expression of antioxidant-related genes and promoted the migration of SKN-1 to the nucleus. Moreover, COE inhibited the expression of the skn-1 downstream gene and the extension of the lifespan in skn-1 mutants exposed to UVB, indicating that SKN-1 was required for COE to function. Our findings indicate that COE mainly ameliorates the oxidative stress caused by UVB in C. elegans via the SKN-1/Nrf2 pathway.
Collapse
Affiliation(s)
- Zengwang Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Han Liu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Manqiu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Ning Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Lin Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| |
Collapse
|
9
|
Sharma P, Dhiman T, Negi RS, OC A, Gupta K, Bhatti JS, Thareja S. A comprehensive review of the molecular mechanisms driving skin photoaging and the recent advances in therapeutic interventions involving natural polyphenols. SOUTH AFRICAN JOURNAL OF BOTANY 2024; 166:466-482. [DOI: 10.1016/j.sajb.2024.01.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
10
|
Hajialiasgary Najafabadi A, Soheilifar MH, Masoudi-Khoram N. Exosomes in skin photoaging: biological functions and therapeutic opportunity. Cell Commun Signal 2024; 22:32. [PMID: 38217034 PMCID: PMC10785444 DOI: 10.1186/s12964-023-01451-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/19/2023] [Indexed: 01/14/2024] Open
Abstract
Exosomes are tiny extracellular vesicles secreted by most cell types, which are filled with proteins, lipids, and nucleic acids (non-coding RNAs, mRNA, DNA), can be released by donor cells to subsequently modulate the function of recipient cells. Skin photoaging is the premature aging of the skin structures over time due to repeated exposure to ultraviolet (UV) which is evidenced by dyspigmentation, telangiectasias, roughness, rhytides, elastosis, and precancerous changes. Exosomes are associated with aging-related processes including, oxidative stress, inflammation, and senescence. Anti-aging features of exosomes have been implicated in various in vitro and pre-clinical studies. Stem cell-derived exosomes can restore skin physiological function and regenerate or rejuvenate damaged skin tissue through various mechanisms such as decreased expression of matrix metalloproteinase (MMP), increased collagen and elastin production, and modulation of intracellular signaling pathways as well as, intercellular communication. All these evidences are promising for the therapeutic potential of exosomes in skin photoaging. This review aims to investigate the molecular mechanisms and the effects of exosomes in photoaging.
Collapse
Affiliation(s)
- Amirhossein Hajialiasgary Najafabadi
- Department of Quantitative and Computational Biology, Max Planck Institute for Multidisciplinary Sciences, 37077, Goettingen, Germany
- Department of Pathology, Research Group Translational Epigenetics, University of Goettingen, 37075, Goettingen, Germany
| | | | - Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Role of PI3K-AKT Pathway in Ultraviolet Ray and Hydrogen Peroxide-Induced Oxidative Damage and Its Repair by Grain Ferments. Foods 2023; 12:foods12040806. [PMID: 36832881 PMCID: PMC9957031 DOI: 10.3390/foods12040806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
UV and external environmental stimuli can cause oxidative damage to skin cells. However, the molecular mechanisms involved in cell damage have not been systematically and clearly elucidated. In our study, an RNA-seq technique was used to determine the differentially expressed genes (DEGs) of the UVA/H2O2-induced model. Gene Oncology (GO) clustering and the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analysis were performed to determine the core DEGs and key signaling pathway. The PI3K-AKT signaling pathway was selected as playing a part in the oxidative process and was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). We selected three kinds of Schizophyllum commune fermented actives to evaluate whether the PI3K-AKT signaling pathway also plays a role in the resistance of active substances to oxidative damage. Results indicated that DEGs were mainly enriched in five categories: external stimulus response, oxidative stress, immunity, inflammation, and skin barrier regulation. S. commune-grain ferments can effectively reduce cellular oxidative damage through the PI3K-AKT pathway at both the cellular and molecular levels. Some typical mRNAs (COL1A1, COL1A2, COL4A5, FN1, IGF2, NR4A1, and PIK3R1) were detected, and the results obtained were consistent with those of RNA-seq. These results may give us a common set of standards or criteria for the screen of anti-oxidative actives in the future.
Collapse
|
12
|
Bioactive Peptides from Skipjack Tuna Cardiac Arterial Bulbs (II): Protective Function on UVB-Irradiated HaCaT Cells through Antioxidant and Anti-Apoptotic Mechanisms. Mar Drugs 2023; 21:md21020105. [PMID: 36827146 PMCID: PMC9962892 DOI: 10.3390/md21020105] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The aim of this study was to investigate the protective function and mechanism of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from skipjack tuna cardiac arterial bulbs on skin photoaging using UVB-irradiated HaCaT cell model. The present results indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) had significant cytoprotective effect on UVB-irradiated HaCaT cells (p < 0.001). Hoechst 33342 staining showed that apoptosis of UV-irradiated HaCaT cells could be significantly reduced by the treatment of TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM); JC-1 staining showed that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could protect HaCaT cells from apoptosis by restoring mitochondrial membrane potential (MMP); Furthermore, TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could significantly down-regulate the ratio of Bax/Bcl-2 and reduce the expression level of the apoptosis-executing protein Caspase-3 by decreasing the expression of protein Caspase-8 and Caspase-9 (p < 0.05). The action mechanism indicated that TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) could up-regulate the expression levels of Nrf2, NQO1 and HO-1 (p < 0.05), which further increased the activity of downstream proteases (SOD, CAT and GSH-Px), and scavenged reactive oxygen species (ROS) and decreased the intracellular levels of malondialdehyde (MDA). In addition, molecular docking indicated that TCP3 (PKK) and TCP6 (YEGGD) could competitively inhibit the Nrf2 binding site because they can occupy the connection site of Nrf2 by binding to the Kelch domain of Keap1 protein. TCP9 (GPGLM) was inferred to be non-competitive inhibition because it could not bind to the active site of the Kelch domain of Keap1 protein. In summary, the antioxidant peptides TCP3 (PKK), TCP6 (YEGGD) and TCP9 (GPGLM) from cardiac arterial bulbs of skipjack tuna can effectively protect HaCaT cells from UVB-irradiated damage and can be used in the development of healthy and cosmetic products to treat diseases caused by UV radiation.
Collapse
|
13
|
Zemheri-Navruz F, Ince S, Arslan-Acaroz D, Acaroz U, Demirel HH, Demirkapi EN. Resveratrol alleviates pyraclostrobin-induced lipid peroxidation, oxidative stress, and DNA damage in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6414-6423. [PMID: 35996050 DOI: 10.1007/s11356-022-22613-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Pyraclostrobin (Pyra) is a fungicide in the strobilurin class and has proven to be very toxic to organisms primarily aquatic species. Resveratrol (Res) is a phytoalexin that exhibits multiple bioactivities as anti-oxidative, anti-inflammatory, cardiovascular protective, and anti-aging and is found in plant species such as mulberry, peanut, and grape. This study aimed to determine the protective effect of Res against Pyra-induced lipid peroxidation, oxidative stress, and DNA damage in rats. For this purpose, a total of 48 male rats divided into 6 groups - 8 in each group - were exposed to 30 mg/kg Pyra by oral gavage once a day for 30 days and to three different concentrations of Res (5, 10, and 20 mg/kg) together with Pyra. Pyra administration increased liver enzyme parameters and malondialdehyde (MDA) levels whereas decreased glutathione (GSH) levels and activities of superoxide dismutase (SOD) and catalase (CAT). Also, Pyra treatment increased pro-apoptotic (Bax), apoptotic (Caspase-3, Caspase-8, and Caspase-9), pro-inflammatory (NFκB), cancer (CYP2E1), and cell regulatory (p53) gene expressions and decreased anti-apoptotic (Bcl-2) gene expression in the liver. Furthermore, DNA damage in blood and histopathological changes in the liver and kidney were observed with Pyra administration. In contrast, Res administrations in a dose-dependent manner improved Pyra-induced lipid peroxidation, oxidative and DNA damages, expression levels of these genes in the liver, and histopathological changes in the liver and kidney. Consequently, the treatment of Res, known for its anti-oxidant and protective properties, exhibited a protective effect on Pyra-induced lipid peroxidation, oxidant/anti-oxidant status, gene expressions, and DNA damage in rats.
Collapse
Affiliation(s)
- Fahriye Zemheri-Navruz
- Department of Molecular Biology and Genetics, Faculty of Science, Bartın University, 07400, Bartın, Turkey.
| | - Sinan Ince
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Damla Arslan-Acaroz
- Bayat Vocational School, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Ulas Acaroz
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| | - Hasan Huseyin Demirel
- Department of Laboratory and Veterinary Health, Bayat Vocational School, Afyon Kocatepe University, 03780, Afyonkarahisar, Turkey
| | - Ezgi Nur Demirkapi
- Department of Physiology, Faculty of Veterinary Medicine, Afyon Kocatepe University, 03200, Afyonkarahisar, Turkey
| |
Collapse
|
14
|
Zou X, Zou D, Li L, Yu R, Li X, Du X, Guo J, Wang K, Liu W. Multi-omics analysis of an in vitro photoaging model and protective effect of umbilical cord mesenchymal stem cell-conditioned medium. Stem Cell Res Ther 2022; 13:435. [PMID: 36056394 PMCID: PMC9438153 DOI: 10.1186/s13287-022-03137-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/14/2022] [Indexed: 01/10/2023] Open
Abstract
Background Skin ageing caused by long-term ultraviolet (UV) irradiation is a complex biological process that involves multiple signalling pathways. Stem cell-conditioned media is believed to have anti-ageing effects on the skin. The purpose of this study was to explore the biological effects of UVB irradiation and anti-photoaging effects of human umbilical cord mesenchymal stem cell-conditioned medium (hUC-MSC-CM) on HaCaT cells using multi-omics analysis with a novel cellular photoaging model.
Methods A cellular model of photoaging was constructed by irradiating serum-starved HaCaT cells with 20 mJ/cm2 UVB. Transcriptomics and proteomics analyses were used to explore the biological effects of UVB irradiation on photoaged HaCaT cells. Changes in cell proliferation, apoptosis, and migration, the cell cycle, and expression of senescence genes and proteins were measured to assess the protective effects of hUC-MSC-CM in the cellular photoaging model. Results The results of the multi-omics analysis revealed that UVB irradiation affected various biological functions of cells, including cell proliferation and the cell cycle, and induced a senescence-associated secretory phenotype. hUC-MSC-CM treatment reduced cell apoptosis, inhibited G1 phase arrest in the cell cycle, reduced the production of reactive oxygen species, and promoted cell motility. The qRT-PCR results indicated that MYC, IL-8, FGF-1, and EREG were key genes involved in the anti-photoaging effects of hUC-MSC-CM. The western blotting results demonstrated that C-FOS, C-JUN, TGFβ, p53, FGF-1, and cyclin A2 were key proteins involved in the anti-photoaging effects of hUC-MSC-CM. Conclusion Serum-starved HaCaT cells irradiated with 20 mJ/cm2 UVB were used to generate an innovative cellular photoaging model, and hUC-MSC-CM demonstrates potential as an anti-photoaging treatment for skin. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03137-y.
Collapse
Affiliation(s)
- Xiaocang Zou
- Academy of Military Medical Sciences, Academy of Military Sciences, Beijing, 100850, China.,Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Dayang Zou
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Linhao Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Renfeng Yu
- The People's Liberation Army 965 Hospital, JiLin, 132000, China
| | - XianHuang Li
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - Xingyue Du
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China
| | - JinPeng Guo
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - KeHui Wang
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| | - Wei Liu
- Center for Disease Control and Prevention of PLA, 20 Dongdajie Street, Fengtai District, Beijing, 100071, China.
| |
Collapse
|
15
|
He H, Xiong L, Jian L, Li L, Wu Y, Qiao S. Role of mitochondria on UV-induced skin damage and molecular mechanisms of active chemical compounds targeting mitochondria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112464. [PMID: 35597147 DOI: 10.1016/j.jphotobiol.2022.112464] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/07/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are the principal place of energy metabolism and ROS production, leading to mtDNA being especially sensitive to the impacts of oxidative stress. Our review aims to elucidate and update the mechanisms of mitochondria in UV-induced skin damage. The mitochondrial deteriorative response to UV manifests morphological and functional alterations, including mitochondrial fusion and fission, mitochondrial biogenesis, mitochondrial energy metabolism and mitophagy. Additionally, we conclude the effect and molecular mechanisms of active chemical components to protect skin from UV-induced damage via mitochondrial protection which have been described in the last five years, showing prospective prospects in cosmetics as new therapeutic targets.
Collapse
Affiliation(s)
- Hailun He
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China
| | - Lidan Xiong
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, China; Sichuan Engineering Technology Research Center of Cosmetic, Chengdu, China
| | - Linge Jian
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Liangman Li
- Orthopedics Department, the First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| | - Shuai Qiao
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China; National joint Engineering Research Center for Theranostics of Immunological Skin Diseases, The First Hospital of China Medical University and Key Laboratory of Immunodermatology, Ministry of Health and Ministry of Education, Shenyang, China.
| |
Collapse
|
16
|
Wang Y, Wu J, Wang D, Yang R, Liu Q. Traditional Chinese Medicine Targeting Heat Shock Proteins as Therapeutic Strategy for Heart Failure. Front Pharmacol 2022; 12:814243. [PMID: 35115946 PMCID: PMC8804377 DOI: 10.3389/fphar.2021.814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/21/2021] [Indexed: 11/13/2022] Open
Abstract
Heart failure (HF) is the terminal stage of multifarious heart diseases and is responsible for high hospitalization rates and mortality. Pathophysiological mechanisms of HF include cardiac hypertrophy, remodeling and fibrosis resulting from cell death, inflammation and oxidative stress. Heat shock proteins (HSPs) can ameliorate folding of proteins, maintain protein structure and stability upon stress, protect the heart from cardiac dysfunction and ameliorate apoptosis. Traditional Chinese medicine (TCM) regulates expression of HSPs and has beneficial therapeutic effect in HF. In this review, we summarized the function of HSPs in HF and the role of TCM in regulating expression of HSPs. Studying the regulation of HSPs by TCM will provide novel ideas for the study of the mechanism and treatment of HF.
Collapse
Affiliation(s)
- Yanchun Wang
- Shenyang the Tenth People’s Hospital, Shenyang, China
| | - Junxuan Wu
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Dawei Wang
- Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| | - Rongyuan Yang
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| | - Qing Liu
- The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine-Zhuhai Hospital, Zhuhai, China
- *Correspondence: Qing Liu, ; Dawei Wang, ; Rongyuan Yang,
| |
Collapse
|
17
|
Eckersley A, Ozols M, O'Connor C, Bell M, Sherratt MJ. Predicting and characterising protein damage in the extracellular matrix. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
18
|
Ha SK, Kang MC, Lee S, Darlami O, Shin D, Choi I, Kim KH, Kim SY. Generation of Stilbene Glycoside with Promising Cell Rejuvenation Activity through Biotransformation by the Entomopathogenic Fungus Beauveria bassiana. Biomedicines 2021; 9:555. [PMID: 34067529 PMCID: PMC8156121 DOI: 10.3390/biomedicines9050555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022] Open
Abstract
A stilbene glycoside (resvebassianol A) (1) with a unique sugar unit, 4-O-methyl-D-glucopyranose, was identified through biotransformation of resveratrol (RSV) by the entomopathogenic fungus Beauveria bassiana to obtain a superior RSV metabolite with enhanced safety. Its structure, including its absolute configurations, was determined using spectroscopic data, HRESIMS, and chemical reactions. Microarray analysis showed that the expression levels of filaggrin, HAS2-AS1, and CERS3 were higher, while those of IL23A, IL1A, and CXCL8 were lower in the resvebassianol A-treated group than in the RSV-treated group, as confirmed by qRT-PCR. Compound 1 exhibited the same regenerative and anti-inflammatory effects as RSV with no cytotoxicity in skin keratinocytes and TNF-α/IFN-γ-stimulated HIEC-6 cells, suggesting that compound 1 is a safe and stable methylglycosylated RSV. Our findings suggest that our biotransformation method can be an efficient biosynthetic platform for producing a broad range of natural glycosides with enhanced safety.
Collapse
Affiliation(s)
- Sang Keun Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea;
- Divison of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Min Cheol Kang
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
- Division of Life Sciences, Korea Polar Research Institute, KIOST, Incheon 21990, Korea
| | - Om Darlami
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Dongyun Shin
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| | - Inwook Choi
- Division of Food Functionality Research, Korea Food Research Institute, Wanju 55365, Korea;
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea; (M.C.K.); (O.D.); (D.S.)
| |
Collapse
|
19
|
Hecker A, Schellnegger M, Hofmann E, Luze H, Nischwitz SP, Kamolz LP, Kotzbeck P. The impact of resveratrol on skin wound healing, scarring, and aging. Int Wound J 2021; 19:9-28. [PMID: 33949795 PMCID: PMC8684849 DOI: 10.1111/iwj.13601] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 03/31/2021] [Indexed: 12/14/2022] Open
Abstract
Resveratrol is a well‐known antioxidant that harbours many health beneficial properties. Multiple studies associated the antioxidant, anti‐inflammatory, and cell protective effects of resveratrol. These diverse effects of resveratrol are also potentially involved in cutaneous wound healing, scarring, and (photo‐)aging of the skin. Hence, this review highlighted the most relevant studies involving resveratrol in wound healing, scarring, and photo‐aging of the skin. A systematic review was performed and the database PubMed was searched for suitable publications. Only original articles in English that investigated the effects of resveratrol in wound healing, scarring, and (photo‐)aging of the skin were analysed. The literature search yielded a total of 826 studies, but only 41 studies met the inclusion criteria. The included studies showed promising results that resveratrol might be a feasible treatment approach to support wound healing, counteract excessive scarring, and even prevent photo‐aging of the skin. Resveratrol represents an interesting and promising novel therapy regime but to confirm resveratrol‐associated effects, more evidence based in vitro and in vivo studies are needed.
Collapse
Affiliation(s)
- Andrzej Hecker
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Marlies Schellnegger
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Elisabeth Hofmann
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Hanna Luze
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Sebastian Philipp Nischwitz
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Lars-Peter Kamolz
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Petra Kotzbeck
- COREMED-Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, Graz, Austria.,Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| |
Collapse
|
20
|
Miao L, Daozhou L, Ying C, Qibing M, Siyuan Z. A resveratrol-loaded nanostructured lipid carrier hydrogel to enhance the anti-UV irradiation and anti-oxidant efficacy. Colloids Surf B Biointerfaces 2021; 204:111786. [PMID: 33984613 DOI: 10.1016/j.colsurfb.2021.111786] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Exposure to ultraviolet (UV) irradiation leads to the generation of reactive oxygen species (ROS) and DNA damage in skin tissue, which can further result in skin cancers. Using sunscreens is one of the most popular and the most effective method to resist UV irradiation. Resveratrol (RES) shows high absorbance in UV region and significant anti-oxidant effects. However, RES is easily degraded by UV irradiation, resulting in the decrease of bioactivity and the limitation of its application in the pharmaceutical preparations of skin. In this paper, a nanostructured lipid carrier gel loaded with RES (RES-NLC-gel) was prepared to improve the stability of RES and the accumulation of RES in the epidermis. Moreover, RES-NLC-gel could scavenge free radical effectively and protect human keratinocyte from UV irradiation by inhibiting the generation of ROS, decreasing the protein expression of cleaved caspase-3 and Bax and increasing the protein expression of Bcl-2. When mice skin was pretreated with RES-NLC-gel, there were less erythema, wrinkles and scabs on mice skin. The epidermal thickness of mice skins obviously reduced in dose-dependent manner. The activities of catalase (CAT), glutathione peroxidase (GPx) and superoxide dismutase (SOD) in mice skin tissue significantly increased. Thus, RES-NLC-gel exhibited an obvious anti-UV irradiation and anti-oxidant activity in vivo. RES-NLC-gel displayed great application potential in protecting skin from UV irradiation.
Collapse
Affiliation(s)
- Liu Miao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Liu Daozhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Cheng Ying
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Mei Qibing
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhou Siyuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China; Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
21
|
Shi X, Shang F, Zhang Y, Wang R, Jia Y, Li K. Persimmon oligomeric proanthocyanidins alleviate ultraviolet B-induced skin damage by regulating oxidative stress and inflammatory responses. Free Radic Res 2020; 54:765-776. [PMID: 33108915 DOI: 10.1080/10715762.2020.1843651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Skin damage can be induced by excessive ultraviolet B (UV-B) irradiation. This study aimed to investigate the potential protective activity of persimmon oligo-proanthocyanidins (P-OPC) against UV-B induced human keratinocyte cells (HaCaT cells) and skin damage and its underlying mechanisms in vitro and in vivo. P-OPC was shown to inhibit the production of intracellular reactive oxygen species (ROS) induced by UVB radiation in both HaCaT cells and mouse skin tissues by increasing the activity of the antioxidant enzyme system [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH)]. Furthermore, P-OPC was found to suppress cell apoptosis and the production of inflammatory cytokines, TNF-α, and IL-6. Overall, P-OPC could protect skin tissues from UV-B-induced damage by suppressing oxidant stress, acute inflammation, and cell apoptosis via regulating MAPK and NF-κB signalling pathways. These results indicate the potential of P-OPC as a photochemo-protective agent against UV-B induced skin damage.
Collapse
Affiliation(s)
- Xin Shi
- Institute of Food Science and Engineering, Hezhou University, Hezhou, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Feifei Shang
- Institute of Food Science and Engineering, Hezhou University, Hezhou, China
| | - Yajie Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruifeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yangyang Jia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kaikai Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China.,Ministry of Education, Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Wuhan, China
| |
Collapse
|
22
|
Oliveira MB, Valentim IB, Rocha TS, Santos JC, Pires KS, Tanabe EL, Borbely KS, Borbely AU, Goulart MO. Schinus terebenthifolius Raddi extracts: From sunscreen activity toward protection of the placenta to Zika virus infection, new uses for a well-known medicinal plant. INDUSTRIAL CROPS AND PRODUCTS 2020; 152:112503. [PMID: 32346222 PMCID: PMC7186214 DOI: 10.1016/j.indcrop.2020.112503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 05/02/2023]
Abstract
Schinus terebinthifolius Raddi is a well-known medicinal plant native of South America. This species has demonstrated important biological activities such as antihypertensive and vasodilator, antimicrobial, anti-inflammatory and antioxidant. However, no studies have been, so far, reported with the fruits of S. terebinthifolius as a protector of the placenta against Zika virus infection and as sunscreen agents. The present study aimed to investigate new uses for the ethanolic fruit extracts of S. terebinthifolius, from fruits'peel (STPE) and from the whole fruits (STWFE). Zika virus (ZIKV) has been linked to several fetal malformations, such as microcephaly and other central nervous system abnormalities. Thus, the potential of these natural extracts against ZIKV infection was evaluated, using an in vitro method. The photoprotective potential, determined by spectrometry, along with phenolic content, antioxidant capacity, and chemical composition of both extracts were also evaluated. The chemical composition of the extracts was evaluated by HPLC-UV / vis. The cytotoxicity of peel and whole fruit extracts in vero E6 cell lines, in placental cell lines and placental explant cultures were evaluated by the MTT assay. The infectivity of placental cells and explants was evaluated by qRT-PCR and the effects of extracts on ZIKV infection were investigated using HTR-8/SVneo cells, pre-treated with 100 μg mL-1 of STWFE for 1 h, and infected with MR766 (AD) or PE243 (EH) ZIKV strains. STFE and STWFE were well-tolerated by both placental-derived trophoblast cell line HTR-8/SVneo as well as by term placental chorionic villi explants, which indicate absence of cytotoxicity in all analysed concentrations. Two strains of ZIKV were tested to access if pre-treatment of trophoblast cells with the STWFE would protect them against infection. Flow cytometry analysis revealed that STWFE extract greatly reduced ZIKV infection. The extracts were also photoprotective with SPF values equivalent to the standard, benzophenone-3. The formulations prepared in different concentrations of the extracts (5-10 %) had shown maximum SPF values of 32.21. STWFE represents a potential natural mixture to be used in pregnancy in order to restrain placental infection by ZIKV and might potentially protect fetus against ZIKV-related malformations. The extracts exhibited photoprotective activity and some of the phenolic compounds, mainly resveratrol, catechin and epicatechin, are active ingredients in all assayed activities. The development of biotechnological/medical products, giving extra value to products from family farming, is expected, with strong prospects for success.
Collapse
Affiliation(s)
- Monika B.S. Oliveira
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Iara B. Valentim
- Instituto Federal de Educação, Ciência e Tecnologia de Alagoas (IFAL), Rua Mizael Domingues, 75, Centro, CEP 57020-600, Maceió, AL, Brazil
| | - Tauane S. Rocha
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Jaqueline C. Santos
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Keyla S.N. Pires
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Eloiza L.L. Tanabe
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Karen S.C. Borbely
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Universidade Federal de Alagoas (UFAL), Faculdade de Nutrição, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
| | - Alexandre U. Borbely
- Universidade Federal de Alagoas (UFAL), Instituto de Ciências Biológicas e da Saúde, Laboratório de Biologia Celular, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Corresponding auhtors at: Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, 57072-970, Maceió, AL, Brazil.
| | - Marília O.F. Goulart
- Universidade Federal de Alagoas (UFAL), Instituto de Química e Biotecnologia, Av. Lourival Melo Mota, s/n, Tabuleiro do Martins, 57072-970, Maceió, AL, Brazil
- Corresponding auhtors at: Instituto de Química e Biotecnologia, Universidade Federal de Alagoas, Campus A.C. Simões, Tabuleiro dos Martins, 57072-970, Maceió, AL, Brazil.
| |
Collapse
|
23
|
Garg C, Sharma H, Garg M. Skin photo-protection with phytochemicals against photo-oxidative stress, photo-carcinogenesis, signal transduction pathways and extracellular matrix remodeling-An overview. Ageing Res Rev 2020; 62:101127. [PMID: 32721499 DOI: 10.1016/j.arr.2020.101127] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 07/04/2020] [Accepted: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Excessive exposure of skin to UV radiation triggers the generation of oxidative stress, inflammation, immunosuppression, apoptosis, matrix-metalloproteases production, and DNA mutations leading to the onset of photo ageing and photo-carcinogenesis. At the molecular level, these changes occur via activation of several protein kinases as well as transcription pathways, formation of reactive oxygen species, and release of cytokines, interleukins and prostaglandins together. Current therapies available on the market only provide limited solutions and exhibit several side effects. The present paper provides insight into scientific studies that have elucidated the positive role of phytochemicals in counteracting the UV-induced depletion of antioxidant enzymes, increased lipid peroxidation, inflammation, DNA mutations, increased senescence, dysfunctional apoptosis and immune suppression. The contribution of phytochemicals to the downregulation of expression of oxidative-stress sensitive transcription factors (Nrf2, NF-Kb, AP-1 and p53) and protein kinases (MSK, ERK, JNK, p38 MAPK, p90RSK2 and CaMKs) involved in inflammation, apoptosis, immune suppression, extracellular matrix remodelling, senescence, photo ageing and photo-carcinogenesis, is also discussed. Conclusively, several phytochemicals hold potential for the development of a viable solution against UV irradiation-mediated photo ageing, photo-carcinogenesis and related manifestations.
Collapse
|
24
|
Wen S, Zhang J, Yang B, Elias PM, Man MQ. Role of Resveratrol in Regulating Cutaneous Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2416837. [PMID: 32382280 PMCID: PMC7180429 DOI: 10.1155/2020/2416837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/24/2020] [Indexed: 01/09/2023]
Abstract
Protective role of the skin is against external insults and maintenance of electrolyte homeostasis of the body. Cutaneous dysfunction can account for the development of both cutaneous and systemic disorders. Thus, improvements in cutaneous functions can benefit a number of extracutaneous and cutaneous functions. Resveratrol, a natural ingredient, displays multiple benefits for various systems/organs, including the skin. The benefits of resveratrol for cutaneous functions include stimulation of keratinocyte differentiation and antimicrobial peptide expression, inhibition of keratinocyte proliferation and cutaneous inflammation, UV protection, anticancer, antiaging, and inhibition of melanogenesis. The mechanisms of action of resveratrol include activation of sirtuin 1 and nuclear factor erythroid 2-related factor 2, and inhibition of mitogen-activated protein kinase signaling. Evidence suggests that topical resveratrol could be a valuable alternative not only for daily skin care, but also for the prevention and treatment of various cutaneous disorders. This review summarizes the benefits of resveratrol for cutaneous functions.
Collapse
Affiliation(s)
- Si Wen
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Jiechen Zhang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Peter M. Elias
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| | - Mao-Qiang Man
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
- Department of Dermatology, University of California San Francisco and Veterans Affairs Medical Center, San Francisco, CA 94121, USA
| |
Collapse
|
25
|
Wang YS, Zhou SS, Shen CY, Jiang JG. Isolation and identification of four antioxidants from Rhodiola crenulata and evaluation of their UV photoprotection capacity in vitro. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103825] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
26
|
Liu C, Huang X, Wang P, Pan Y, Cao D, Liu YY, Chen AJ. Interference of Hsp27 Results in Apoptosis Induced by Photodamage via Regulation of Subcellular Localization of p21 in Immortalized Human Keratinocytes. Med Sci Monit 2019; 25:7557-7566. [PMID: 31592001 PMCID: PMC6795107 DOI: 10.12659/msm.917164] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Owing to the increased incidence of photodermatosis caused by ultraviolet light in recent years, it is necessary to clarify the mechanisms potential photodamage to the skin and reveal possible therapeutic targets. Heat shock protein 27 (Hsp27) is well known for suppressing apoptosis. The aim of present study was to elucidate possible photoprotective mechanism between Hsp27 and p21 on ultraviolet B (UVB)-induced photodamage. MATERIAL AND METHODS The Hsp27 gene was interfered to assess the expression of its downstream effectors, cell apoptosis, and cell proliferation ability. The cell apoptosis was tested using flow cytometry method. The cell proliferation ability was tested using Cell Counting Kit-8 (CCK-8) assay. The expression of protein was tested using western-blotting method. The expression of mRNA was detected using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The subcellular localization was elucidated using immunofluorescence. RESULTS Hsp27 knockdown decreased cell viability and increased the incidence of UVB-induced apoptosis. Compared with control group, activation of phosphorylated-Akt (p-Akt)-dependent pathway resulted in the nuclear accumulation of p21 and suppression of cell proliferation, while promoting apoptosis in Hsp27 knockdown group. In addition, Hsp27 knockdown increased p53 expression and the Bax: Bcl-2 ratio, which further accelerated the apoptotic process. CONCLUSIONS These findings complemented the mechanism of skin photodamage and demonstrated the photoprotective mechanisms of Hsp27 in HaCaT cells, which might implicate a potential therapeutic target of photodamage and photodermatosis.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Xin Huang
- Prescriptions Department, College of Traditional Chinese Medicine, Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Ping Wang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Yun Pan
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Di Cao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Yi-Yi Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| | - Ai-Jun Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China (mainland)
| |
Collapse
|
27
|
Önay Uçar E, Şengelen A. Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones 2019; 24:763-775. [PMID: 31073903 PMCID: PMC6629732 DOI: 10.1007/s12192-019-01004-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/12/2019] [Accepted: 05/01/2019] [Indexed: 12/13/2022] Open
Abstract
GBM cells can easily gain resistance to conventional therapy, and therefore treatment of glioblastoma multiforme (GBM) is difficult. One of the hallmark proteins known to be responsible for this resistance is heat shock protein 27 (Hsp27) which has a key role in the cell survival. Resveratrol, a natural compound, exhibits antitumor effects against GBM, but there are no reports regarding its effect on Hsp27 expression in gliomas. The aim of the present study was to asses the effect of resveratrol on Hsp27 expression and apoptosis in non-transfected and transfected U-87 MG human glioblastoma cells. In order to block the Hsp27 expression, siRNA transfection was performed. Non-transfected and transfected cells were treated with either 10 or 15 μM resveratrol. The effects of resveratrol were compared with quercetin, a well-known Hsp27 inhibitor. Resveratrol was found to induce apoptosis more effectively than quercetin. Our data showed that resveratrol induces dose- and time-dependent cell death. We also determined that silencing of Hsp27 with siRNA makes the cells more vulnerable to apoptosis upon resveratrol treatment. The highest effect was observed in the 15 μM resveratrol and 25 nM siRNA combination group (suppressed Hsp27 expression by 93.4% and induced apoptosis by 101.2%). This study is the first report showing that resveratrol reduces Hsp27 levels, and siRNA-mediated Hsp27 silencing enhances the therapeutic effects of resveratrol in glioma cells. Our results suggest that resveratrol administration in combination with Hsp27 silencing has a potential to be used as a candidate for GBM treatment.
Collapse
Affiliation(s)
- Evren Önay Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
28
|
Liu Y, Huang X, Wang P, Pan Y, Cao D, Liu C, Chen A. The effects of HSP27 against UVB-induced photoaging in rat skin. Biochem Biophys Res Commun 2019; 512:435-440. [PMID: 30902393 DOI: 10.1016/j.bbrc.2019.03.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 11/26/2022]
Abstract
Skin photoaging refers to the phenomenon of skin aging or accelerated aging as a result of long-term UV exposure. Ultraviolet radiation can lead to DNA damage, cell apoptosis, cell growth inhibition and carcinogenic effects. Evidence suggests that hsp27 can protect cells from apoptosis induced by various stimuli in vivo and in vitro. However, modulation in hsp27 expression toward skin protection against UVB treatment has not been investigated clearly. In this study, we aimed to investigate the effects of hsp27 against UVB-induced photoaging in rat skin and to explore the underlying mechanisms. In the present study, we identified that the level of hsp27 increased after UVB irradiation induced chronic photoaging rat model. In order to investigate the function of hsp27 in UVB-induced skin photoaging, we used adeno-associated virus (AAV) to specificity reduce the expression of hsp27 in rat skin. In contrast to UVB group, we found that collagen fibers were disorganized and elastic fibers were thickened and twisted in UVB-AAV group. In the UVB-AAV group, reduced hsp27 enhanced the oxidative stress. Aging markers (SA-β-Gal staining and the protein levels of p16, p53, p21) were significantly changed in the hsp27 decreased group. However, in hsp27 deletion group, the expression of antiapoptotic factor bcl-2 was decreased, while the apoptosis factor bax was increased after UVB irradiation. These findings suggested that hsp27 was involved in oxidative stress, aging and apoptosis of skin after UV exposure. Management the expression of hsp27 can be used as a potential intervention method to alleviate UVB-induced skin damage.
Collapse
Affiliation(s)
- Yiyi Liu
- Department of Dermatology, The First Affliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Xin Huang
- Prescriptions Department, College of Traditional Chinese Medicine, Chongqing Medical University, Yuzhong, Chongqing, China
| | - Ping Wang
- Department of Dermatology, The First Affliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Yun Pan
- Department of Dermatology, The First Affliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Di Cao
- Department of Dermatology, The First Affliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Chuan Liu
- Department of Dermatology, The First Affliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China
| | - Aijun Chen
- Department of Dermatology, The First Affliated Hospital of Chongqing Medical University, Yuzhong, Chongqing, China.
| |
Collapse
|
29
|
Ye Y, You L, Deng Q, Li X, Zhao M. Preparation, structure identification and the anti-photoaging activity of peptide fraction OP-Ia from Ostrea rivularis. RSC Adv 2019; 9:44-51. [PMID: 35521595 PMCID: PMC9059480 DOI: 10.1039/c8ra08137a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/04/2018] [Indexed: 01/01/2023] Open
Abstract
The purpose of the present study is to evaluate the preparation and the structure of fraction OP-Ia and its protective effect against UV-induced photoaging through the MAPKs signaling pathway. Fractions OP-Ia and OP-Ib were prepared by enzymatic hydrolysis and purified by ultrafiltration (5 kDa) and gel chromatography (Sephadex G-25). The reducing power and superoxide radical scavenging ability were evaluated, which showed that OP-Ia had stronger antioxidant activity than OP-Ib. Next, ten peptides were identified in OP-Ia by UPLC-MS/MS. The mechanism of the anti-photoaging activity for fraction OP-Ia was investigated through the MAPKs pathway based on the HaCaT cell line. Fraction OP-Ia could inhibit the generation of ROS and the decline of cell viability induced by UV radiation, meanwhile downregulate the expression of IL-1β, IL-8, c-Jun, c-Fos, p65 NF-κB and p38 MAPK genes. Overall, the results showed that the fraction OP-Ia could be a potent component of functional foods with UV protection property. OP-Ia could reduce ROS generation and cell viability declination induced by UV, and downregulate the expressions of IL-1β, IL-8, c-Jun, c-Fos, p65 and p38 genes.![]()
Collapse
Affiliation(s)
- Yuhui Ye
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Lijun You
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Qihui Deng
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Xiong Li
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Mouming Zhao
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| |
Collapse
|
30
|
Klotho prevents DEX-induced apoptosis in MC3T3-E1 osteoblasts through the NF-κB signaling pathway. Biochem Biophys Res Commun 2018; 507:355-361. [PMID: 30442365 DOI: 10.1016/j.bbrc.2018.11.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
Dexamethasone (DEX) is a commonly used anti-inflammatory drug and an immunosuppressive drug used in clinical practice to treat a variety of diseases. Glucocorticoid-induced osteoporosis (GIOP) is a consequence of high dose, or a long-term low dose use of glucocorticoids (GCs). These treatment regimens can cause a variety of bone-related adverse effects, leading to increased osteoblast and bone cell apoptosis. Evidence suggests that klotho (KL) can inhibit GIOP. It is unknown whether KL attenuates DEX-induced apoptosis in MC3T3-E1 cells or the underlying mechanisms involved. In the present study, we found that MC3T3-E1 cells pretreated with DEX led to the up-regulation of cleaved-caspase-3, and down-regulation of caspase-3, which were inhibited by KL transfection. Furthermore, flow cytometry and western blot analysis revealed that the NFκB inhibitor pyrrolidine dithiocarbamate (PDTC) could restore the DEX-induced caspase-3 decrease and inhibit the DEX-induced cleaved caspase-3 increase. We observed that DEX stimulated the degradation of IκBα(NFκB inhibitor α) and the translocation of NFκB, which were suppressed by KL transfection. These findings therefore, indicate a protective role for KL against osteoblastic cell apoptosis induced by DEX, via the NF-κB signaling pathway.
Collapse
|