1
|
Shim K, Jo H, Jeoung D. Cancer/Testis Antigens as Targets for RNA-Based Anticancer Therapy. Int J Mol Sci 2023; 24:14679. [PMID: 37834126 PMCID: PMC10572814 DOI: 10.3390/ijms241914679] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
In the last few decades, RNA-based drugs have emerged as a promising candidate in the treatment of various diseases. The introduction of messenger RNA (mRNA) as a vaccine or therapeutic agent enables the production of almost any functional protein/peptide. The key to applying RNA therapy in clinical trials is developing safe and effective delivery systems. Exosomes and lipid nanoparticles (LNPs) have been exploited as promising vehicles for drug delivery. This review discusses the feasibility of exosomes and LNPs as vehicles for mRNA delivery. Cancer/testis antigens (CTAs) show restricted expression in normal tissues and widespread expression in cancer tissues. Many of these CTAs show expression in the sera of patients with cancers. These characteristics of CTAs make them excellent targets for cancer immunotherapy. This review summarizes the roles of CTAs in various life processes and current studies on mRNAs encoding CTAs. Clinical studies present the beneficial effects of mRNAs encoding CTAs in patients with cancers. This review highlight clinical studies employing mRNA-LNPs encoding CTAs.
Collapse
Affiliation(s)
| | | | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea; (K.S.); (H.J.)
| |
Collapse
|
2
|
Gao Y, Guan L, Jia R, Xiao W, Han Y, Li Y, Tang P, Yu Z, Zhang H. High expression of PPFIA1 in human esophageal squamous cell carcinoma correlates with tumor metastasis and poor prognosis. BMC Cancer 2023; 23:417. [PMID: 37158817 PMCID: PMC10169376 DOI: 10.1186/s12885-023-10872-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND PTPRF interacting protein alpha 1 (PPFIA1) is reportedly related to the occurrence and progression of several kinds of malignancies. However, its role in esophageal squamous cell carcinoma (ESCC) is unclear. This current study investigated the prognostic significance and biological functions of PPFIA1 in ESCC. METHODS Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), and Gene Expression Omnibus (GEO) were used to investigate PPFIA1 expression in esophageal cancer. The relationship between PPFIA1 expression and clinicopathological characteristics and patient survival was evaluated in GSE53625 dataset, and verified in the cDNA array based on qRT-PCR and tissue microarray (TMA) dataset based on immunohistochemistry. The impact of PPFIA1 on the migration and invasion of cancer cells were investigated by wound-healing and transwell assays, respectively. RESULTS The expression of PPFIA1 was obviously increased in ESCC tissues versus adjacent esophageal tissues according to online database analyses (all P < 0.05). High PPFIA1 expression was closely related to several clinicopathological characteristics, including tumor location, histological grade, tumor invasion depth, lymph node metastasis, and tumor-node-metastasis (TNM) stage. High PPFIA1 expression was related to worse outcomes and was identified as an independent prognostic factor of overall survival in ESCC patients (GSE53625 dataset, P = 0.019; cDNA array dataset, P < 0.001; TMA dataset, P = 0.039). Downregulation of PPFIA1 expression can significantly reduce the migration and invasion ability of ESCC cells. CONCLUSION PPFIA1 is related to the migration and invasion of ESCC cells, and can be used as a potential biomarker to evaluate the prognosis of ESCC patients.
Collapse
Affiliation(s)
- Yongyin Gao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, China
| | - Lizhao Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Jia
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China
| | - Wanyi Xiao
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, China
| | - Youming Han
- Binhai Hospital of Tianjin Medical University General Hospital, Tianjin, 300456, China
| | - Yue Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, China
| | - Peng Tang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, China.
| | - Zhentao Yu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and PeKing Union Medical College, Shenzhen, 518116, China.
| | - Hongdian Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin, 300060, China.
| |
Collapse
|
3
|
Wang J, Zhao J, Hu P, Gao L, Tian S, He Z. Long Non-coding RNA HOTAIR in Central Nervous System Disorders: New Insights in Pathogenesis, Diagnosis, and Therapeutic Potential. Front Mol Neurosci 2022; 15:949095. [PMID: 35813070 PMCID: PMC9259972 DOI: 10.3389/fnmol.2022.949095] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 01/17/2023] Open
Abstract
Central nervous system (CNS) disorders, such as ischemic stroke, neurodegenerative diseases, multiple sclerosis, traumatic brain injury, and corresponding neuropathological changes, often lead to death or long-term disability. Long non-coding RNA (lncRNA) is a class of non-coding RNA with a transcription length over 200 nt and transcriptional regulation. lncRNA is extensively involved in physiological and pathological processes through epigenetic, transcription, and post-transcriptional regulation. Further, dysregulated lncRNA is closely related to the occurrence and development of human diseases, including CNS disorders. HOX Transcript antisense RNA (HOTAIR) is the first discovered lncRNA with trans-transcriptional regulation. Recent studies have shown that HOTAIR may participate in the regulation of the occurrence and development of CNS disorders. In addition, HOTAIR has the potential to become a new biomarker for the diagnosis and prognosis assessment of CNS disorders and even provide a new therapeutic target for CNS disorders. Here, we reviewed the research results of HOTAIR in CNS disorders to provide new insights into the pathogenesis, diagnostic value, and therapeutic target potential of HOTAIR in human CNS disorders.
Collapse
Affiliation(s)
- Jialu Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiuhan Zhao
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Pan Hu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shen Tian
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenwei He
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Zhenwei He,
| |
Collapse
|
4
|
Sun Z, Zhao X, Zhang M, Li N, Zhao Y, Chen C, Li J, Guo Y, Feng Q. MicroRNA‑126 protects SH‑SY5Y cells from ischemia/reperfusion injury‑induced apoptosis by inhibiting RAB3IP. Mol Med Rep 2021; 25:62. [PMID: 34935056 PMCID: PMC8767549 DOI: 10.3892/mmr.2021.12578] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/29/2021] [Indexed: 11/30/2022] Open
Abstract
MicroRNA (miR)-126 is known to inhibit inflammatory responses in various inflammatory-related diseases, but its role during the cerebral ischemia/reperfusion (I/R) injury remains unknown. The present study aimed to examine the interaction between miR-126 and RAB3A interacting protein (RAB3IP), and explore its potential protective effects during I/R injury. The human neuroblastoma cell line SH-SY5Y was cultured in an oxygen-glucose deprivation/reoxygenation (OGD/R) environment to simulate I/R injury to assess miR-126 expression and cell viability. SH-SY5Y cells cultured in normal conditions were used as a negative control (NC) group. SH-SY5Y cells were transfected with a miR-126 mimic or an NC mimic, then cultured in OGD/R conditions; in rescue experiments, SH-SY5Y cells were co-transfected with RAB3IP overexpression or NC plasmid together with mimic-NC or mimic-miR, and then maintained in an OGD/R environment to evaluate miR-126, RAB3IP expression, cell viability and apoptosis. Cell viability was reduced in the Model group compared with the NC group, suggesting the successful construction of the OGD/R model. miR-126 expression was downregulated in the Model group compared with the NC group. However, following transfection with mimic-miR, cell viability increased compared with the mimic-NC group. Annexin V and PI staining and Hoechst/PI assays also indicated that apoptosis was reduced in the mimic-miR group compared with the mimic-NC group. RAB3IP expression was reduced following mimic-miR transfection. In rescue experiments, miR-126 negatively regulated RAB3IP expression; by contrast, RAB3IP did not affect that of miR-126. In addition, RAB3IP overexpression attenuated the protective effect of miR-126 on OGD/R-induced apoptosis. These findings suggest that miR-126 protects against cerebral I/R injury by targeting RAB3IP.
Collapse
Affiliation(s)
- Zhumei Sun
- Department of Clinical Medicine, North China University of Science and Technology, Tangshan, Hubei 063210, P.R. China
| | - Xu Zhao
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hubei 063000, P.R. China
| | - Meihang Zhang
- Department of Clinical Medicine, North China University of Science and Technology, Tangshan, Hubei 063210, P.R. China
| | - Ning Li
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hubei 063000, P.R. China
| | - Yanning Zhao
- Department of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hubei 063210, P.R. China
| | - Changxiang Chen
- Department of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hubei 063210, P.R. China
| | - Jianmin Li
- Department of Clinical Medicine, North China University of Science and Technology, Tangshan, Hubei 063210, P.R. China
| | - Yanjuan Guo
- Department of Neurosurgery, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hubei 063000, P.R. China
| | - Qiang Feng
- Department of Cardiology, Handan Central Hospital, Handan, Hubei 056001, P.R. China
| |
Collapse
|
5
|
Manoochehri H, Asadi S, Tanzadehpanah H, Sheykhhasan M, Ghorbani M. CDC25A is strongly associated with colorectal cancer stem cells and poor clinical outcome of patients. GENE REPORTS 2021; 25:101415. [DOI: 10.1016/j.genrep.2021.101415] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Gallardo Martin E, Cousillas Castiñeiras A. Vitamin D modulation and microRNAs in gastric cancer: prognostic and therapeutic role. Transl Cancer Res 2021; 10:3111-3127. [PMID: 35116620 PMCID: PMC8797897 DOI: 10.21037/tcr-20-2813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/10/2020] [Indexed: 12/11/2022]
Abstract
Gastric adenocarcinoma arises after a complex interaction between the host and environmental factors. Tumor location and TNM are the tools that currently guide treatment decisions. Surgery is the only curative treatment, but relapse is common. After relapse or advanced staged disease survival is poor and systemic treatment has modestly improved survival. An association between sun exposure, vitamin D status and gastric cancer (GC) incidence and mortality has been reported. The molecular differences of the histological subtypes and the new molecular classifications account for the great heterogeneity of this disease and are the basis for the discovery of new therapeutic targets. New prognostic and predictive factors are essential and microRNAs (miRNAs) are endogenous small non-coding RNA molecules with a great potential for diagnosis, prognosis and treatment of cancer. There are hundreds of miRNAs with altered expression in tumor gastric tissue when compared to normal gastric tissue. Many of these miRNAs are associated with clinicopathological variables and survival in patients with GC. Furthermore, the expression of some of these miRNAs with prognostic importance in CG is influenced by vitamin D and others are mediators of some of the actions of this vitamin. This review aims to update the evidence on several miRNAs with prognostic value and therapeutic potential in GC, whose expression may be influenced by vitamin D or may regulate vitamin D signaling.
Collapse
Affiliation(s)
- Elena Gallardo Martin
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| | - Antia Cousillas Castiñeiras
- Medical Oncology Department in Complejo Hospitalario Universitario de Pontevedra, University Hospital of Pontevedra, CP 36001 Pontevedra, Spain
| |
Collapse
|
7
|
Lin Q, Hou S, Dai Y, Jiang N, Lin Y. LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson's disease through RAB3IP. Biol Chem 2020; 400:1217-1228. [PMID: 30738012 DOI: 10.1515/hsz-2018-0431] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/31/2019] [Indexed: 01/17/2023]
Abstract
Parkinson's disease (PD) is a common neurological disorder characterized by dopaminergic (DA) neuron degeneration and death in the midbrain, and the long noncoding RNA HOTAIR has been shown to affect disease progression in PD. In this study, we aimed to further illustrate the molecular mechanism of HOTAIR in PD. Bioinformatics analysis was utilized to determine the potential downstream targets of HOTAIR in PD. Luciferase assay and the RNA Binding Protein Immunoprecipitation (RIP) assay were used to validate the existence of binding sites between competing endogenous RNAs (ceRNAs). Real-time quantitative polymerase chain reaction (qRT-PCR) and Western blotting indicated that HOTAIR and RAB3IP increased while miR-126-5p decreased in PD cells and PD mice. Additionally, the CCK-8 assay and flow cytometric analysis indicated that the knockdown of HOTAIR and RAB3IP and the overexpression of miR-126-5p significantly increased cell proliferation and reduced apoptosis in PD cells. Furthermore, the results of in vivo experiments suggested that knockdown of HOTAIR expression increased the number of TH-positive cells and the number of α-synuclein-positive cells decreased while reducing the apoptosis rate among DA neurons. Our study confirmed that HOTAIR promotes PD progression by regulating miR-126-5p and RAB3IP in a ceRNA-dependent manner and further clarified how HOTAIR works in PD.
Collapse
Affiliation(s)
- Qiuyu Lin
- Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, Jilin, China.,Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Sen Hou
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yuyin Dai
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Nan Jiang
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yingjie Lin
- Department of Organic Chemistry, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, Jilin, China
| |
Collapse
|
8
|
Mu L, Yu W, Su H, Lin Y, Sui W, Yu X, Qin C. Relationship between the expressions of PD-L1 and tumour-associated fibroblasts in gastric cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1036-1042. [PMID: 30983436 DOI: 10.1080/21691401.2019.1573741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have focused on the changes of tumour cells in immune escape, and less is known about the effect of tumour microenvironment (TME) on immune escape. Tumour-associated fibroblasts (TAF) is an important part of the TME and has special physiological and biochemical characteristics, but the specific mechanism has not been clarified. In order to investigate the effect of TAF on the expression of PD-L1 in gastric cancer cells, gastric cancer cell lines MNK45, SGC7901 were non-contact co-culturing with TAF 1, 3 and 7 d via transwell. PD-L1 mRNA and protein expression were detected using qRT-PCR and FCM. Then, 95 cases of gastric cancer tissues were selected and evaluated PD-L1 and TAF expressions by immunohistochemical examination. The results showed that the mRNA and protein expression of PD-L1 in the experiment group were significantly higher than that in the control group. PD-L1 expression was associated with massive lymphocyte infiltration, diffuse/mixed histology and intratumoral TAFs in gastric cancers. In conclusion, TAFs promoted the growth in gastric cancer cell lines by increased the PD-L1 expression.
Collapse
Affiliation(s)
- Linsong Mu
- a Department of General Surgery , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , 250021 , China.,b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Wentao Yu
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Hailong Su
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Yang Lin
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Wu Sui
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Xiang Yu
- b Department of General Surgery , The Affiliated Yantai Yuhuangding Hospital of Qingdao University , Yantai , 264000 , China
| | - Chengkun Qin
- c Department of Hepatological Surgery , Shandong Provincial Hospital affiliated to Shandong University , Jinan , 250021 , China
| |
Collapse
|
9
|
Guo W, Chen Z, Chen Z, Yu J, Liu H, Li T, Lin T, Chen H, Zhao M, Li G, Hu Y. Promotion of Cell Proliferation through Inhibition of Cell Autophagy Signalling Pathway by Rab3IP is Restrained by MicroRNA-532-3p in Gastric Cancer. J Cancer 2018; 9:4363-4373. [PMID: 30519341 PMCID: PMC6277663 DOI: 10.7150/jca.27533] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022] Open
Abstract
Background: RAB3A-interacting protein (Rab3IP) is known to be involved in cancer; however, its function during the proliferation of gastric cancer (GC) cells remains unknown. Therefore, this study aimed to explore the potential function of Rab3IP in GC. Methods: The expression of Rab3IP and its clinical pathology value were determined by quantitative real-time PCR and immunohistochemistry. Rab3IP (knockdown and overexpression) and light chain 3 (LC3) lentiviruses were transfected into GC cells, and cell proliferation was measured using cell counting kit-8, plate clone formation, flow cytometry, and tumorigenesis assays. Cell autophagy was measured using a confocal laser scanning microscope and by western blotting. Luciferase reporter assay was performed to analyse the regulation of Rab3IP by microRNA-532-3p (miR-532-3p). Results: Overexpression of Rab3IP in GC samples enhanced the cell proliferation ability, but decreased the number of autophagosomes and expression of LC3-II and sequestosome-1 (SQSTM1 or p62) markers. Furthermore, we found that miR-532-3p can bind to the 3'UTR region of RAB3IP and inhibit the proliferation ability of GC cells. Further, the expression of miR-532-3p negatively correlated with that of Rab3IP. Conclusions: Our study elucidates the central role of Rab3IP in inducing proliferation of GC cells through its involvement in autophagy. miR-532-3p directly targets Rab3IP and represses its function, thereby demonstrating a novel regulatory link in GC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou 510515, China
| | - Yanfeng Hu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou 510515, China
| |
Collapse
|