1
|
Elmorsy EA, Youssef ME, Abdel-Hamed MR, Amer MM, Elghandour SR, Alkhamiss AS, Mohamed NB, Khodeir MM, Elsisi HA, Alsaeed TS, Kamal MM, Ellethy AT, Elesawy BH, Saber S. Activation of AMPK/SIRT1/FOXO3a signaling by BMS-477118 (saxagliptin) mitigates chronic colitis in rats: uncovering new anti-inflammatory and antifibrotic roles. Front Pharmacol 2024; 15:1456058. [PMID: 39359253 PMCID: PMC11445602 DOI: 10.3389/fphar.2024.1456058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
Ulcerative colitis (UC) is a debilitating chronic disease marked by persistent inflammation and intestinal fibrosis. Despite the availability of various treatments, many patients fail to achieve long-term remission, underscoring a significant unmet therapeutic need. BMS-477118, a reversible inhibitor of dipeptidyl peptidase 4 (DPP4), has demonstrated anti-inflammatory properties in preclinical and clinical studies with minimal adverse effects compared to other antidiabetic agents. However, the potential benefits of BMS-477118 in chronic UC have not yet been explored. In this study, we aimed to investigate the effects of BMS-477118 in rats subjected to chronic dextran sodium sulfate (DSS) administration. Our findings indicate that BMS-477118 activates the interconnected positive feedback loop involving AMPK, SIRT1, and FOXO3a, improving histological appearance in injured rat colons. BMS-477118 also reduced fibrotic changes associated with the chronic nature of the animal model, alleviated macroscopic damage and disease severity, and improved the colon weight-to-length ratio. Additionally, BMS-477118 prevented DSS-induced weight loss and enhanced tight junction proteins. These effects, in conjunction with reduced oxidative stress and its potential anti-inflammatory, antiapoptotic, and autophagy-inducing properties, fostered prolonged survival in rats with chronic UC. To conclude, BMS-477118 has the potential to activate the AMPK/SIRT1/FOXO3a signaling pathway in inflamed colons. These results suggest that the AMPK/SIRT1/FOXO3a pathway could be a new therapeutic target for UC. Further research is mandatory to explore the therapeutic possibilities of this pathway. Additionally, continued studies on the therapeutic potential of BMS-477118 and other DPP4 inhibitors are promising for creating new treatments for various conditions, including UC in diabetic patients.
Collapse
Affiliation(s)
- Elsayed A. Elmorsy
- Department of Pharmacology and Therapeutics, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mahmoud E. Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Mohamed R. Abdel-Hamed
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Maha M. Amer
- Department of Anatomy, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sahar R. Elghandour
- Department of Anatomy and Histology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abdullah S. Alkhamiss
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Nahla B. Mohamed
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mostafa M. Khodeir
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam A. Elsisi
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Saudi Arabia
- Department of Clinical Pharmacology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Thamir Saad Alsaeed
- Department of Biology and Immunology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Manal M. Kamal
- Department of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
- Department of Physiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Abousree T. Ellethy
- Department of Oral and Medical Basic Sciences, Biochemistry Division, College of Dentistry, Qassim University, Buraidah, Saudi Arabia
| | - Basem H. Elesawy
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
2
|
Tian L, Chen J, Yang M, Chen L, Qiu J, Jiang Y, Tan X, Qian Q, Liang X, Dou X. Xiezhuo Tiaozhi formula inhibits macrophage pyroptosis in the non-alcoholic fatty liver disease by targeting the SIRT1 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155776. [PMID: 38851104 DOI: 10.1016/j.phymed.2024.155776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a challenging disease to interfere with and represents a potential long-term risk factor for hepatic fibrosis and liver cancer. The Xiezhuo Tiaozhi (XZTZ) formula, a water extract from crude herbs, has been widely used as an anti-NAFLD agent through clinical observation. However, the underlying pharmacological mechanisms of the XZTZ formula and its impact on the potential pathways against NAFLD have not been elucidated. PURPOSE Our study aims to investigate the pharmacological effects and underlying regulatory mechanisms of the XZTZ formula to treat NAFLD. METHODS The possible active components and pharmacological mechanisms of the XZTZ formula against NAFLD were identified using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) and molecular docking. To further explore the potential mechanisms, forty-eight 6-week-old male C57BL/6 J mice were given individual attention with high-fat and high-sugar diet (HFHSD) or relevant control (Ctrl) diets for 16 weeks to successfully construct a NAFLD mouse model. Subsequently, the levels of serum biochemicals, pathological changes in the liver, and pyroptosis levels were assessed in mice to investigate the therapeutic effects of the XZTZ formula. Further, LPS-induced RAW264.7 cells and Immortalized Mouse Kupffer cells (ImKC) were used to verify the potential mechanisms of the XZTZ formula against NAFLD in vitro. RESULTS We identified 7 chemical compounds and 2 potential therapeutic targets as plausible therapeutic points for the treatment of NAFLD using the XZTZ formula. Subsequent histopathological analysis revealed marked hepatic steatosis and lipid accumulation in the HFHSD mice liver, while conditions were effectively ameliorated by administration of the XZTZ formula. Additionally, our work demonstrated that the XZTZ formula could attenuate M1 polarization, promote M2 polarization, and suppress pyroptosis via the SIRT1 pathway in tissue samples. Moreover, validation performed through LPS-induced RAW264.7 and ImKC cells by showing that silencing SIRT1 weaken the effects of the XZTZ formula on relative pyroptosis affirmed that its role was associated with the SIRT1 pathway in macrophage. CONCLUSION These findings suggest that the XZTZ formula alleviated hepatic steatosis and lipid accumulation in NAFLD mice. These ameliorations are associated with mechanisms involving the attenuation of M1 polarization, promotion of M2 polarization, and anti-pyroptosis effects through the SIRT1 pathway.
Collapse
Affiliation(s)
- Lulu Tian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Meiqi Yang
- Liaoning University of Traditional Chinese Medicine Xinglin College, Shenyang, Liaoning, China
| | - Lin Chen
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yuwei Jiang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiaolong Tan
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qianyu Qian
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xiao Liang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Wang X, Li Y, Pu X, Liu G, Qin H, Wan W, Wang Y, Zhu Y, Yang J. Macrophage-related therapeutic strategies: Regulation of phenotypic switching and construction of drug delivery systems. Pharmacol Res 2024; 199:107022. [PMID: 38043691 DOI: 10.1016/j.phrs.2023.107022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Macrophages, as highly phenotypic plastic immune cells, play diverse roles in different pathological conditions. Changing and controlling the phenotypes of macrophages is considered a novel potential therapeutic intervention. Meanwhile, specific transmembrane proteins anchoring on the surface of the macrophage membrane are relatively conserved, supporting its functional properties, such as inflammatory chemotaxis and tumor targeting. Thus, a series of drug delivery systems related to specific macrophage membrane proteins are commonly used to treat chronic inflammatory diseases. This review summarizes macrophages-based strategies for chronic diseases, discusses the regulation of macrophage phenotypes and their polarization processes, and presents how to design and apply the site-specific targeted drug delivery systems in vivo based on the macrophages and their derived membrane receptors. It aims to provide a better understanding of macrophages in immunoregulation and proposes macrophages-based targeted therapeutic approaches for chronic diseases.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yixuan Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xueyu Pu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Guiquan Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Honglin Qin
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Weimin Wan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan Zhu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Cui Y, Chen J, Zhang Z, Shi H, Sun W, Yi Q. The role of AMPK in macrophage metabolism, function and polarisation. J Transl Med 2023; 21:892. [PMID: 38066566 PMCID: PMC10709986 DOI: 10.1186/s12967-023-04772-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitous sensor of energy and nutritional status in eukaryotic cells. It plays a key role in regulating cellular energy homeostasis and multiple aspects of cell metabolism. During macrophage polarisation, AMPK not only guides the metabolic programming of macrophages, but also counter-regulates the inflammatory function of macrophages and promotes their polarisation toward the anti-inflammatory phenotype. AMPK is located at the intersection of macrophage metabolism and inflammation. The metabolic characteristics of macrophages are closely related to immune-related diseases, infectious diseases, cancer progression and immunotherapy. This review discusses the structure of AMPK and its role in the metabolism, function and polarisation of macrophages. In addition, it summarises the important role of the AMPK pathway and AMPK activators in the development of macrophage-related diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Junhua Chen
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Zhao Zhang
- Department of General Surgery, Dongguan Huangjiang Hospital, Dongguan, 523061, Guangdong, China
| | - Houyin Shi
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Weichao Sun
- Department of Bone Joint and Bone Oncology, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
- The Central Laboratory, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China.
| | - Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Cao Y, Wo M, Xu C, Fei X, Jin J, Shan Z. An AMPK agonist suppresses the progress of colorectal cancer by regulating the polarization of TAM to M1 through inhibition of HIF-1α and mTOR signal pathway. J Cancer Res Ther 2023; 19:1560-1567. [PMID: 38156922 DOI: 10.4103/jcrt.jcrt_2670_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 07/17/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVE This study aimed to evaluate the impact of an adenosine monophosphate-activated protein kinase (AMPK) agonist, metformin (MET), on the antitumor effects of macrophages and to determine the underlying mechanism involved in the process. MATERIALS AND METHODS M0 macrophages were derived from phorbol-12-myristate-13-acetate-stimulated THP-1 cells. RESULTS The levels of tumor necrosis factor-alpha (TNF-α) and human leukocyte antigen-DR (HLA-DR) were decreased in macrophages incubated with HCT116 cells, whereas those of arginase-1 (Arg-1), CD163, and CD206 were elevated; these effects were reversed by MET. The transfection of small interfering (si) RNA abrogated the influence of MET on the expression of the M1/M2 macrophage biomarkers. MET significantly suppressed the proliferation and migration abilities of HCT116 cells incubated with M0 macrophages; these actions were reversed by siRNA transfection against AMPK. The hypoxia-inducible factor 1-alpha (HIF-1α), phosphorylated protein kinase B (p-AKT), and phosphorylated mammalian target of rapamycin (p-mTOR) levels were reduced by the introduction of MET and promoted by siRNA transfection against AMPK. In addition, the levels of HIF-1α, p-AKT, and p-mTOR suppressed by MET were markedly increased following the transfection of siRNA against AMPK. CONCLUSION These findings indicate that MET can repress the progression of colorectal cancer by transforming tumor-associated macrophages to the M1phenotype via inhibition of the HIF-1α and mTOR signaling pathways.
Collapse
Affiliation(s)
- Yuanyuan Cao
- Department of Laboratory Medicine, Hangzhou Cancer Hospital, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Shangcheng, China
| | - Mingyi Wo
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| | - Chan Xu
- Department of Laboratory Medicine, Affiliated Third Hospital of Zhejiang Traditional Chinese Medicine University, Xihu, Hangzhou, Zhejiang, China
| | - Xianming Fei
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| | - Juan Jin
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| | - Zhiming Shan
- Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Zhejiang Center for Clinical Laboratory, Gongshu, China
| |
Collapse
|
6
|
Chaterjee O, Sur D. Artificially induced in situ macrophage polarization: An emerging cellular therapy for immuno-inflammatory diseases. Eur J Pharmacol 2023; 957:176006. [PMID: 37611840 DOI: 10.1016/j.ejphar.2023.176006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Macrophages are the mature form of monocytes that have high plasticity and can shift from one phenotype to another by the process of macrophage polarization. Macrophage has several vital pharmacological tasks like eliminating microorganism invasion, clearing dead cells, causing inflammation, repairing damaged tissues, etc. The function of macrophages is based on their phenotype. M1 macrophages are mostly responsible for the body's immune responses and M2 macrophages have healing properties. Inappropriate activation of any one of the phenotypes often leads to ROS-induced tissue damage and affects wound healing and angiogenesis. Therefore, maintaining tissue macrophage homeostasis is necessary. Studies are being done to find techniques for macrophage polarization. But, the process of macrophage polarization is very complex as it involves multiple signalling pathways involving innate immunity. Thus, identifying the right pathways for macrophage polarization is essential to apply the polarizing technique for the treatment of various inflammatory diseases where macrophage physiology influences the disease pathology. In this review, we highlighted the various techniques so far used to change macrophage plasticity. We believe that soon macrophage targeting therapeutics will hit the market for the management of inflammatory disease. Hence this review will help macrophage researchers choose suitable methods and materials/agents to polarize macrophages artificially in various disease models.
Collapse
Affiliation(s)
- Oishani Chaterjee
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India
| | - Debjeet Sur
- Division of Pharmacology, Guru Nanak Institute of Pharmaceutical Science & Technology, Panihati, Kolkata, 700114, India.
| |
Collapse
|
7
|
Huang X, Ji Q, She CY, Cheng Y, Zhou JR, Wu QM. Ophiopogonin D ameliorates non‑alcoholic fatty liver disease in high‑fat diet‑induced obese mice by improving lipid metabolism, oxidative stress and inflammatory response. Exp Ther Med 2023; 26:418. [PMID: 37602303 PMCID: PMC10433434 DOI: 10.3892/etm.2023.12116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/17/2023] [Indexed: 08/22/2023] Open
Abstract
Lipid metabolic disorders, oxidative stress and inflammation in the liver are key steps in the progression of non-alcoholic fatty liver disease (NAFLD). Ophiopogonin D (OP-D), the main active ingredient of Ophiopogon japonicus, exhibits several pharmacological activities such as antioxidant and anti-inflammatory activities. Therefore, the current study aimed to explore the role of OP-D in NAFLD in a high-fat diet (HFD)-induced obesity mouse model. To investigate the effect of OP-D on NAFLD in vivo, a NAFLD mouse model was established following feeding mice with HFD, then the mice were randomly treated with HFD or HFD + OP-D for 4 weeks. Subsequently, primary mouse hepatocytes were isolated, and enzyme-linked immunosorbent assay, reverse transcription-quantitative PCR western blotting and immunofluorescence analysis were used for assessment to explore the direct effect of OP-D in vitro. The results of the present study indicated that OP-D could ameliorate NAFLD in HFD-induced obese mice by regulating lipid metabolism and antioxidant and anti-inflammatory responses. Additionally, OP-D treatment decreased lipogenesis and inflammation levels in vitro, suggesting that the NF-κB signaling pathway may be involved in the beneficial effects of OP-D on NAFLD.
Collapse
Affiliation(s)
- Xi Huang
- Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430064, P.R. China
| | - Qi Ji
- Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430064, P.R. China
| | - Chen-Yi She
- Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430064, P.R. China
| | - Yi Cheng
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei 430064, P.R. China
| | - Jian-Rong Zhou
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510000, P.R. China
| | - Qing-Ming Wu
- Medical College, Wuhan University of Science and Technology, Wuhan, Hubei 430065, P.R. China
| |
Collapse
|
8
|
Tozihi M, Shademan B, Yousefi H, Avci CB, Nourazarian A, Dehghan G. Melatonin: a promising neuroprotective agent for cerebral ischemia-reperfusion injury. Front Aging Neurosci 2023; 15:1227513. [PMID: 37600520 PMCID: PMC10436333 DOI: 10.3389/fnagi.2023.1227513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Cerebral ischemia-reperfusion (CIR) injury is initiated by the generation of reactive oxygen species (ROS), which leads to the oxidation of cellular proteins, DNA, and lipids as an initial event. The reperfusion process impairs critical cascades that support cell survival, including mitochondrial biogenesis and antioxidant enzyme activity. Failure to activate prosurvival signals may result in increased neuronal cell death and exacerbation of CIR damage. Melatonin, a hormone produced naturally in the body, has high concentrations in both the cerebrospinal fluid and the brain. However, melatonin production declines significantly with age, which may contribute to the development of age-related neurological disorders due to reduced levels. By activating various signaling pathways, melatonin can affect multiple aspects of human health due to its diverse range of activities. Therefore, understanding the underlying intracellular and molecular mechanisms is crucial before investigating the neuroprotective effects of melatonin in cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Majid Tozihi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behrouz Shademan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Faculty of Medicine, EGE University, Izmir, Türkiye
| | - Alireza Nourazarian
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
9
|
Frankowski R, Kobierecki M, Wittczak A, Różycka-Kosmalska M, Pietras T, Sipowicz K, Kosmalski M. Type 2 Diabetes Mellitus, Non-Alcoholic Fatty Liver Disease, and Metabolic Repercussions: The Vicious Cycle and Its Interplay with Inflammation. Int J Mol Sci 2023; 24:ijms24119677. [PMID: 37298632 DOI: 10.3390/ijms24119677] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The prevalence of metabolic-related disorders, such as non-alcoholic fatty liver disease (NAFLD) and type 2 diabetes mellitus (DM2), has been increasing. Therefore, developing improved methods for the prevention, treatment, and detection of these two conditions is also necessary. In this study, our primary focus was on examining the role of chronic inflammation as a potential link in the pathogenesis of these diseases and their interconnections. A comprehensive search of the PubMed database using keywords such as "non-alcoholic fatty liver disease", "type 2 diabetes mellitus", "chronic inflammation", "pathogenesis", and "progression" yielded 177 relevant papers for our analysis. The findings of our study revealed intricate relationships between the pathogenesis of NAFLD and DM2, emphasizing the crucial role of inflammatory processes. These connections involve various molecular functions, including altered signaling pathways, patterns of gene methylation, the expression of related peptides, and up- and downregulation of several genes. Our study is a foundational platform for future research into the intricate relationship between NAFLD and DM2, allowing for a better understanding of the underlying mechanisms and the potential for introducing new treatment standards.
Collapse
Affiliation(s)
- Rafał Frankowski
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Mateusz Kobierecki
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Andrzej Wittczak
- Students' Research Club, Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | | | - Tadeusz Pietras
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| | - Kasper Sipowicz
- Department of Interdisciplinary Disability Studies, The Maria Grzegorzewska University in Warsaw, 02-353 Warsaw, Poland
| | - Marcin Kosmalski
- Department of Clinical Pharmacology, Medical University of Lodz, 90-153 Lodz, Poland
| |
Collapse
|
10
|
Méndez-Sánchez N, Pal SC, Córdova-Gallardo J. How far are we from an approved drug for nonalcoholic steatohepatitis? Expert Opin Pharmacother 2023; 24:1021-1038. [PMID: 37092896 DOI: 10.1080/14656566.2023.2206953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/21/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Metabolic-associated fatty liver disease (MAFLD) previously known but still debatable, as nonalcoholic fatty liver disease (NAFLD) is one of the main causes of chronic liver disease and subsequent cirrhosis worldwide, accounting for around 30% of liver diseases. The change in its nomenclature has been brought about by the novel discoveries regarding its pathogenesis, in which metabolic dysfunction plays the most important role. It is widely known that for every disease, the treatment should always be targeted toward the underlying etiology and pathogenesis. AREAS COVERED MAFLD/NAFLD pathogenesis is heterogeneous, and includes multiple gene polymorphisms, presence of insulin resistance, as well as concomitant diseases that contribute to the disease onset and progression. As a result of this, even though lifestyle modification (owing to metabolic abnormalities) is the first line of treatment, multiple drugs have been tested to target each of the known pathways leading to MAFLD/NAFLD and progression of steatohepatitis. We aim to review the most relevant information regarding previous and ongoing research and recommendations regarding treatment of MAFLD/NAFLD. EXPERT OPINION Combination therapies associated to weight loss and exercise will be the optimal approach for these patients. It is important to evaluate each patient to select the specific combination according to patient characteristics.
Collapse
Affiliation(s)
- Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jacqueline Córdova-Gallardo
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
- Department of Hepatology, Service of Surgery, General Hospital "Dr. Manuel Gea González", Mexico City, Mexico
| |
Collapse
|
11
|
Bidirectional Regulation of Sodium Acetate on Macrophage Activity and Its Role in Lipid Metabolism of Hepatocytes. Int J Mol Sci 2023; 24:ijms24065536. [PMID: 36982619 PMCID: PMC10051801 DOI: 10.3390/ijms24065536] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are important metabolites of the intestinal flora that are closely related to the development of non-alcoholic fatty liver disease (NAFLD). Moreover, studies have shown that macrophages have an important role in the progression of NAFLD and that a dose effect of sodium acetate (NaA) on the regulation of macrophage activity alleviates NAFLD; however, the exact mechanism of action remains unclear. This study aimed to assess the effect and mechanism of NaA on regulating the activity of macrophages. RAW264.7 and Kupffer cells cell lines were treated with LPS and different concentrations of NaA (0.01, 0.05, 0.1, 0.5, 1, 1.5, 2, and 5 mM). Low doses of NaA (0.1 mM, NaA-L) significantly increased the expression of inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin 1 beta (IL-1β); it also increased the phosphorylation of inflammatory proteins nuclear factor-κB p65 (NF-κB p65) and c-Jun (p < 0.05), and the M1 polarization ratio of RAW264.7 or Kupffer cells. Contrary, a high concentration of NaA (2 mM, NaA-H) reduced the inflammatory responses of macrophages. Mechanistically, high doses of NaA increased intracellular acetate concentration in macrophages, while a low dose had the opposite effect, consisting of the trend of changes in regulated macrophage activity. Besides, GPR43 and/or HDACs were not involved in the regulation of macrophage activity by NaA. NaA significantly increased total intracellular cholesterol (TC), triglycerides (TG), and lipid synthesis gene expression levels in macrophages and hepatocytes at either high or low concentrations. Furthermore, NaA regulated the intracellular AMP/ATP ratio and AMPK activity, achieving a bidirectional regulation of macrophage activity, in which the PPARγ/UCP2/AMPK/iNOS/IκBα/NF-κB signaling pathway has an important role. In addition, NaA can regulate lipid accumulation in hepatocytes by NaA-driven macrophage factors through the above-mentioned mechanism. The results revealed that the mode of NaA bi-directionally regulating the macrophages further affects hepatocyte lipid accumulation.
Collapse
|
12
|
Amin SN, Sakr HI, El Gazzar WB, Shaltout SA, Ghaith HS, Elberry DA. Combined saline and vildagliptin induced M2 macrophage polarization in hepatic injury induced by acute kidney injury. PeerJ 2023; 11:e14724. [PMID: 36815993 PMCID: PMC9933746 DOI: 10.7717/peerj.14724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/19/2022] [Indexed: 02/15/2023] Open
Abstract
Acute kidney injury (AKI) is a prevalent medical condition accompanied by mutual affection of other organs, including the liver resulting in complicated multiorgan malfunction. Macrophages play a vital role during tissue injury and healing; they are categorized into "classically activated macrophages" (M1) and "alternatively activated macrophages" (M2). The present study investigated and compared the conventional fluid therapy vs Dipeptidyl peptidase 4 inhibitor (DPP-4i) vildagliptin on the liver injury induced by AKI and evaluated the possible molecular mechanisms. Thirty rats comprised five groups (n = 6 rats/group): control, AKI, AKI+saline (received 1.5 mL of normal saline subcutaneous injection), AKI+vildagliptin (treated with oral vildagliptin 10 mg/kg), AKI+saline+vildagliptin. AKI was induced by intramuscular (i.m) injection of 50% glycerol (5 ml/kg). At the end of the work, we collected serum and liver samples for measurements of serum creatinine, blood urea nitrogen (BUN), alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrotic factor-α (TNF-α), and interleukin-10 (IL-10). Liver samples were processed for assessment of inducible nitric oxide synthase (iNOS) as a marker for M1, arginase 1 (Arg-1) as an M2 marker, c-fos, c-Jun, mitogen-activated protein kinase (MAPK), activator protein 1 (AP-1), and high-mobility-group-box1 (HMGB1) protein. The difference was insignificant regarding the relative expression of AP-1, c-Jun, c-fos, MAPK, and HMGB between the AKI+saline group and the AKI+Vildagliptin group. The difference between the same two groups concerning the hepatic content of the M1 marker (iNOS) and the M2 marker Arg-1 was insignificant. However, combined therapy produced more pronounced changes in these markers, as the difference in their relative expression between the AKI+saline+Vildagliptin group and both the AKI+saline group and the AKI+Vildagliptin group was significant. Accordingly, we suggest that the combined saline and vildagliptin hepatoprotective effect involves the downregulation of the MAPK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Shaimaa N. Amin
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hader I. Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt,Department of Medical Physiology, Medicine Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Walaa B. El Gazzar
- Department of Anatomy, Physiology, and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Sherif A. Shaltout
- Department of Pharmacology, Public health, and Clinical Skills, Faculty of Medicine, The Hashemite University, Zarqa, Jordan,Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | | | - Dalia A. Elberry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Guo Z, Fan X, Yao J, Tomlinson S, Yuan G, He S. The role of complement in nonalcoholic fatty liver disease. Front Immunol 2022; 13:1017467. [PMID: 36248852 PMCID: PMC9562907 DOI: 10.3389/fimmu.2022.1017467] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a leading cause of chronic liver diseases globally. NAFLD includes a range of hepatic manifestations, starting with liver steatosis and potentially evolving towards nonalcoholic steatohepatitis, cirrhosis or even hepatocellular carcinoma. Although the pathogenesis of NAFLD is incompletely understood, insulin resistance and lipid metabolism disorder are implicated. The complement system is an essential part of the immune system, but it is also involved in lipid metabolism. In particular, activation of the alternative complement pathway and the production of complement activation products such as C3a, C3adesArg (acylation stimulating protein or ASP) and C5a, are strongly associated with insulin resistance, lipid metabolism disorder, and hepatic inflammation. In this review, we briefly summarize research on the role of the complement system in NAFLD, aiming to provide a basis for the development of novel therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Xiude Fan
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jianni Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Phillips BE, Lantier L, Engman C, Garciafigueroa Y, Singhi A, Trucco M, Mantzoros C, Wasserman D, Giannoukakis N. Improvement in insulin sensitivity and prevention of high fat diet-induced liver pathology using a CXCR2 antagonist. Cardiovasc Diabetol 2022; 21:130. [PMID: 35831885 PMCID: PMC9277870 DOI: 10.1186/s12933-022-01564-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/28/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Liver pathology (LP) characteristic of non-alcoholic fatty acid disease (NAFLD)/non-alcoholic steatohepatitis (NASH) is a prevalent co-morbidity of type 2 diabetes (T2D). Accumulating evidence indicates that neutrophils driving insulin resistance (IR), including hepatic IR, precipitate T2D-associated NAFLD/NASH. We hypothesized that targeting neutrophil accumulation into insulin-sensitive tissues in mice using a CXCR2 antagonist under T2D-precipitating high fat diet (HFD) could improve insulin sensitivity and prevent the progression towards liver pathology reminiscent of NAFLD/NASH. METHODS Mice were age-matched and on standard rodent chow prior to 1:1 randomization into control and HFD formulated with the CXCR2 antagonist AZD5069 or with biologically inactive substitute. They were monitored for metabolic changes including insulin sensitivity using the hyperinsulinemic-euglycemic clamp and hepatic histopathologic evaluation in H&E-stained sections as well as via immunofluorescence microscopy of liver sections for leukocyte markers, collagen 1A1 formation, α-smooth muscle actin (SMA), and galectin-3 expression, for 16 weeks. Statistical tests used to determine significant differences among study groups and outcomes include Student's t-test, one-way ANOVA, repeated measures two-way ANOVA, and Fisher's exact test, depending on the analytical question. RESULTS Compared to mice on HFD, mice in the AZD5069-formulated HFD exhibited improved insulin sensitivity, a modest reduction in weight gain, and a significant improvement in LP and markers related to NAFLD/NASH. Mice in the AZD5069-formulated HFD also exhibited reduced neutrophil accumulation into the liver at the end of the 16 week study period. CONCLUSIONS These results show, for the first time, the effectiveness of a selective CXCR2 antagonist to improve insulin sensitivity, concomitantly preventing the progression towards LP characteristic of NAFLD/NASH. This represents a novel approach to target IR and developing LP under T2D-susceptible conditions using a single agent. Furthermore, our data extend the growing evidence in support of neutrophils as a leukocyte population that imprints and maintains a chronic inflammatory state in the progression of dysregulated metabolism in liver-specific co-morbid conditions.
Collapse
Affiliation(s)
- Brett E. Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University., Nashville, TN 37232 USA
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Aatur Singhi
- Department of Pathology, School of Medicine, Room A616.2, UPMC Presbyterian, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| | - Christos Mantzoros
- Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, USA
- Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA USA
| | - David Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University., Nashville, TN 37232 USA
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, 11th Floor South Tower, 320 East North Avenue, Pittsburgh, PA S15212 USA
| |
Collapse
|
15
|
Yang X, Deng Y, Tu Y, Feng D, Liao W. Nobiletin mitigates NAFLD via lipophagy and inflammation. Food Funct 2022; 13:10186-10199. [DOI: 10.1039/d2fo01682f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), an increasingly serious health issue in the world, was characterized as lipid metabolic disorder without a satisfactory treatment. Nobiletin (NOB), a citrus flavonoid, was considered...
Collapse
|
16
|
Wang Q, Xie X, Zhang D, Mao F, Wang S, Liao Y. Saxagliptin enhances osteogenic differentiation in MC3T3-E1 cells, dependent on the activation of AMP-activated protein kinase α (AMPKα)/runt-related transcription factor-2 (Runx-2). Bioengineered 2022; 13:431-439. [PMID: 35258398 PMCID: PMC8805826 DOI: 10.1080/21655979.2021.2008667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a metabolic bone disease commonly observed in the elderly, and its pathogenesis is associated with declined osteogenic differentiation. Osteogenic differentiation could be facilitated by the activation of the AMP-activated protein kinase (AMPK) pathway. Saxagliptin, an anti-diabetic agent with inhibitory effects against dipeptidyl peptidase 4 (DPP-4), has been recently reported to induce the activation of the AMPK pathway. The present study proposes to explore the function and mechanism of Saxagliptin in osteogenic differentiation. Osteogenic differentiation induction medium (ODIM) was utilized to induce osteogenic differentiation in MC3T3-E1 cells. Significantly increased mineral nodule formation, elevated alkaline phosphatase (ALP) activity, and upregulated expression of osteogenic marker genes activating transcription factor-4 (ATF-4), osteopontin (OPN), and type I collagen (Col1) were observed in ODIM-cultured MC3T3-E1 cells, all of which were further enhanced by the introduction of Saxagliptin. The elevated expression level of runt-related transcription factor-2 (Runx-2), an important transcriptional factor involved in the progression of osteogenic differentiation, in ODIM-cultured MC3T3-E1 cells was further promoted by Saxagliptin. The AMPK pathway in ODIM-cultured MC3T3-E1 cells was significantly activated by Saxagliptin, and the functions of Saxagliptin in promoting osteogenic differentiation were abolished by compound C, the inhibitor of the AMPK pathway. Conclusively, Saxagliptin enhanced osteogenic differentiation in MC3T3-E1 cells, dependent on the activation of AMPKα/RUNX-2.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedics, The 5th People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Xiaoxing Xie
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dehua Zhang
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| | - Feng Mao
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| | - Shaobo Wang
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| | - Yi Liao
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| |
Collapse
|
17
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
18
|
Wang L, Lu Q, Gao W, Yu S. Recent advancement on development of drug-induced macrophage polarization in control of human diseases. Life Sci 2021; 284:119914. [PMID: 34453949 DOI: 10.1016/j.lfs.2021.119914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022]
Abstract
Macrophages, an important part of human immune system, possess a high plasticity and heterogeneity (macrophage polarization) as classically activated macrophages (M1) and alternatively activated macrophages (M2), which exert pro-inflammatory/anti-tumor and anti-inflammatory/pro-tumor effects, respectively. Thus, drug development in induction of macrophage polarization could be used to treat different human diseases. This review summarizes the recent advancement on modulation of macrophage polarization and its related molecular mechanisms induced by a number of agents. Research on the anti-inflammatory drugs to regulate the macrophage polarization accounts for a large proportion in the field and types of diseases investigated could include atherosclerosis, enteritis, nephritis, and the nervous system and skeletal diseases, while study of the anti-tumor agents to modify macrophage polarization is a novel area of research. Future study of the molecular mechanisms by which the different agents regulate the macrophage polarization could lead to an effective control of various human diseases, including inflammation and cancers.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China; School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Lu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, China
| | - Wenwen Gao
- Department of Pharmacy, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250013, China
| | - Shuwen Yu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pharmacy, Qilu Hospital of Shandong University, Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
19
|
Zhu Y, Ruan S, Shen H, Guan Q, Zhai L, Yang Y. Oridonin regulates the polarized state of Kupffer cells to alleviate nonalcoholic fatty liver disease through ROS-NF-κB. Int Immunopharmacol 2021; 101:108290. [PMID: 34717194 DOI: 10.1016/j.intimp.2021.108290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Oridonin (Ori) is a kind of diterpenoid small molecule, but its role in nonalcoholic fatty liver disease (NAFLD) has not been reported yet. This study aimed to explore the pharmacological function of Ori in liver protection through the reactive oxygen species (ROS)-mediated polarization of Kupffer cells (KCs). In the present work, KCs were adopted for study in vitro. To be specific, LPS and IFN-γ were utilized to induce M1 polarization, then the influence of Ori intervention on the expression of inflammatory factors IL-1β, IL-6 and TNF-α was detected by enzyme-linked immunosorbent assay (ELISA), that of CD86 and P65 was measured through fluorescence staining, that of p-P65 and p-P50 was detected by Western blotting (WB) assay, and ROS expression was measured by using the DCFH-DA probe. The C57BL/6J mice were fed with the high fat diet (HFD) to construct the NAFLD model, and intervened with Ori. The blood glucose (BG), body weight (BW), food intake and water intake of mice were monitored; meanwhile, glucose and insulin tolerance tests were conducted. The liver tissues of mice were subjected to H&E staining and oil red O staining. Moreover, the serum ALT, AST and TG levels in mice were monitored, the CD86 and CD206 levels were measured through histochemical staining, the expression of inflammatory factors was detected by ELISA, and the p-P65 and p-P50 protein levels were detected by WB assay. Ori suppressed the M1 polarization of KCs, reduced the levels of inflammatory factors, and decreased the expression of ROS, p-P65 and p-P50. In animal experiments, Ori improved lipid deposition and liver injury in the liver tissues of NAFLD mice, increased the proportion of M2 cells (up-regulated CD206 expression), reduced that of M1 cells (down-regulated CD86 expression), and decreased the serum ALT, AST and TG levels. This study discovered that Ori suppressed ROS production and regulated the M1 polarization of KCs, thus protecting the liver in NAFLD.
Collapse
Affiliation(s)
- Yu Zhu
- Department of critical medicine, The Second Affiliated Hospital of Jiaxing University, China
| | - Shuiliang Ruan
- Department of Gastroenterology, The Second Affiliated Hospital of Jiaxing University, China
| | - Heping Shen
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China
| | - Qiaobing Guan
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China
| | - Liping Zhai
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China.
| | - Yi Yang
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, China.
| |
Collapse
|
20
|
Arab HH, Ashour AM, Gad AM, Mahmoud AM, Kabel AM. Activation of AMPK/mTOR-driven autophagy and inhibition of NLRP3 inflammasome by saxagliptin ameliorate ethanol-induced gastric mucosal damage. Life Sci 2021; 280:119743. [PMID: 34166711 DOI: 10.1016/j.lfs.2021.119743] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
AIMS Saxagliptin, a selective/potent dipeptidyl peptidase-4 inhibitor, has revealed remarkable anti-inflammatory features in murine models of nephrotoxicity, hepatic injury, and neuroinflammation. However, its potential effect on ethanol-induced gastric mucosal injury has not been examined. Hence, the present work investigated the prospect of saxagliptin to attenuate ethanol-evoked gastric injury, with emphasis on the AMPK/mTOR-driven autophagy and NLRP3/ASC/caspase-1 pathway. MATERIALS AND METHODS In ethanol-induced gastropathy, the gastric tissues were examined by immunohistochemistry, immunoblotting, histopathology, and ELISA. KEY FINDINGS The results demonstrated that saxagliptin (10 mg/kg; by gavage) suppressed the gastric pathological signs (area of gastric ulcer and ulcer index scores), histopathologic aberrations/damage scores, without provoking hypoglycemia in rats. These protective features were attributed to the enhancement of gastric mucosal autophagy flux, as proven with increased expression of LC3-II and Beclin 1, decreased accumulation of p62 SQSTM1, and activation of the autophagy-linked AMPK/mTOR pathway by increasing the expression of p-AMPK/AMPK and decreasing the expression of the autophagy suppressor p-mTOR/mTOR signal. In tandem, saxagliptin counteracted the ethanol-induced pro-apoptotic events by downregulating Bax, upregulating Bcl2 protein, and lowering the Bax/Bcl2 ratio. Equally important, saxagliptin suppressed the NLRP3 inflammasome in the gastric tissue by lowering the expression of NLRP3, ASC, and nuclear NF-κBp65, decreasing the activity of caspase-1, and diminishing the IL-1β levels. In the same regard, saxagliptin suppressed the mucosal oxidative stress by lowering lipid peroxide levels, increasing GSH and GPx antioxidants, and activating Nrf2/HO-1 pathway. SIGNIFICANCE Saxagliptin may be a promising intervention against ethanol-evoked gastropathy by activating AMPK/mTOR-driven autophagy and inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt; Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
21
|
Zhang C, Huang L, Xiong J, Xie L, Ying S, Jia Y, Yao Y, Song X, Zeng Z, Yuan J. Isoalantolactone inhibits pancreatic cancer proliferation by regulation of PI3K and Wnt signal pathway. PLoS One 2021; 16:e0247752. [PMID: 33661942 PMCID: PMC7932101 DOI: 10.1371/journal.pone.0247752] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS Isoalantolactone (IATL) is one of multiple isomeric sesquiterpene lactones and is isolated from inula helenium. IATL has multiple functions such as antibacterial, antihelminthic and antiproliferative activities. IATL also inhibits pancreatic cancer proliferation and induces apoptosis by increasing ROS production. However, the detailed mechanism of IATL-mediated pancreatic cancer apoptosis remains largely unknown. METHODS In current study, pancreatic carcinoma cell lines (PANC-1, AsPC-1, BxPC-3) and a mouse xenograft model were used to determine the mechanism of IATL-mediated toxic effects. RESULTS IATL (20μM) inhibited pancreatic adenocarcinoma cell lines proliferation in a time-dependent way; while scratch assay showed that IATL significantly inhibited PANC-1 scratch closure (P<0.05); Invasion assays indicated that IATL significantly attenuated pancreatic adenocarcinoma cell lines invasion on matrigel. Signal analysis showed that IATL inhibited pancreatic adenocarcinoma cell proliferation by blocking EGF-PI3K-Skp2-Akt signal axis. Moreover, IATL induced pancreatic adenocarcinoma cell apoptosis by increasing cytosolic Caspase3 and Box expression. This apoptosis was mediated by inhibition of canonical wnt signal pathway. Finally, xenograft studies showed that IATL also significantly inhibited pancreatic adenocarcinoma cell proliferation and induced pancreatic adenocarcinoma cell apoptosis in vivo. CONCLUSIONS IATL inhibits pancreatic cancer proliferation and induces apoptosis on cellular and in vivo models. Signal pathway studies reveal that EGF-PI3K-Skp2-Akt signal axis and canonical wnt pathway are involved in IATL-mediated cellular proliferation inhibition and apoptosis. These studies indicate that IATL may provide a future potential therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chaoxiong Zhang
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Lei Huang
- Department of Gastroenterology, Chengdu First People’s Hospital, Chengdu, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Linshen Xie
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Shi Ying
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - You Jia
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Yuqin Yao
- Research Center for Occupational Respiratory Disease, West China Fourth Hospital, Sichuan University, Chengdu, China
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Xuejiao Song
- Healthy Food Evaluation Center, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhenguo Zeng
- Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Yuan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
22
|
Wang G, Wu B, Zhang L, Jin X, Wang K, Xu W, Zhang B, Wang H. The protective effects of trelagliptin on high-fat diet-induced nonalcoholic fatty liver disease in mice. J Biochem Mol Toxicol 2021; 35:e22696. [PMID: 33421258 DOI: 10.1002/jbt.22696] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) occurs in patients with type 2 diabetes mellitus (T2DM). Trelagliptin is an important member of the Gliptins family, which has been recently licensed for the treatment of T2DM. However, the pharmacological function of trelagliptin in NAFLD has not been previously reported. In this study, we aimed to investigate the roles of trelagliptin in the development of NAFLD in a mouse model. To induce NAFLD disease, C57BL/6 mice were fed a high-fat diet for 10 weeks. Our results indicate that trelagliptin reduced plasma lipid levels in NAFLD mice by reducing triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Treatment with trelagliptin exhibited an improvement in insulin resistance. More important, trelagliptin improved liver function by reducing alanine transaminase, aspartate transaminase, lactate dehydrogenase, and total bile acid. In addition, trelagliptin ameliorated oxidative stress in the liver of NAFLD mice by reducing malondialdehyde and increasing the levels of reduced glutathione and superoxide dismutase activity. Also, the enzyme-linked immunosorbent assay results indicate that trelagliptin-treated mice displayed anti-inflammatory properties by reducing the levels of interleukin 1β (IL-1β), IL-6, and tumor necrosis factor-α. Hematoxylin and eosin and Oil red O staining show that trelagliptin treatment ameliorates liver tissue damage and hepatic lipid deposition. Mechanistically, we found that the administration of trelagliptin reduced the activity of hepatic nuclear factor-κB but increased the activity of AMP-activated protein kinase. These findings suggest that trelagliptin might become a promising therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Guang Wang
- Department of Intensive Care Unit, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Bing Wu
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin, China
| | - Lening Zhang
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xuefei Jin
- Department of Urology, China-Japan Union Hospital of Jilin University, Jilin Key Laboratory Of Urologic Oncology, Jilin University, Changchun, Jilin, China
| | - Kun Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Bo Zhang
- Department of Pediatric Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Heyuan Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
23
|
Kjær MB, George J, Kazankov K, Grønbæk H. Current perspectives on the pathophysiology of metabolic associated fatty liver disease: are macrophages a viable target for therapy? Expert Rev Gastroenterol Hepatol 2021; 15:51-64. [PMID: 32878486 DOI: 10.1080/17474124.2020.1817740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Metabolic associated fatty liver disease (MAFLD) is a new nomenclature for fatty liver replacing nonalcoholic fatty liver disease (NAFLD). MAFLD has emerged as the leading cause of liver-related morbidity and mortality with increasing incidence due to its close association with the global epidemic of obesity and type 2 diabetes mellitus. Macrophages play a key role in MAFLD development and progression of steatohepatitis and fibrosis. Therefore, targeting macrophages may be a new therapeutic approach for MAFLD and MAFLD with steatohepatitis. AREAS COVERED We provide a comprehensive review of the significant role of macrophages in MAFLD. Further, we evaluate the current status of lifestyle interventions and pharmacological treatments with a focus on effects mediated through direct or indirect targeting of macrophages. EXPERT OPINION Targeting macrophages holds promise as a treatment option for the management of MAFLD and steatohepatitis. Improved stratification of patients according to MAFLD phenotype would contribute to more adequate design enhancing the yield of clinical trials ultimately leading to personalized medicine for patients with MAFLD. Furthermore, reflecting the multifactorial pathogenesis of MAFLD, combination therapies based on the various pathophysiological driver events including as pertinent to this review, macrophage recruitment, polarization and action, present an intriguing target for future investigation.
Collapse
Affiliation(s)
- Mikkel Breinholt Kjær
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney , Sydney, Australia
| | - Konstantin Kazankov
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital , Aarhus, Denmark
| |
Collapse
|
24
|
TRPM7 modulates macrophage polarization by STAT1/STAT6 pathways in RAW264.7 cells. Biochem Biophys Res Commun 2020; 533:692-697. [PMID: 33153718 DOI: 10.1016/j.bbrc.2020.10.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/25/2022]
Abstract
Macrophages, diversity and plasticity immune cells, participate in immune response and maintain homeostasis through M1/M2 phenotype transformation. Transient receptor potential melastatin 7 (TRPM7) is a widely expressed divalent cation channel with protein serine/threonine kinase activity, which has recently been found to affect macrophage proliferation and function. This study aimed to identify the role of TRPM7 in macrophage polarization. Our results suggested that TRPM7 was highly expressed in M1-type macrophages rather than M2-type macrophages. Interestingly, we detected that M1-type macrophages decreased while M2-type macrophages enhanced through blockade of TRPM7, which manifest as decreased TNF-α, iNOS and elevated Arg-1, CD206. Furthermore, blockade of TRPM7 could inhibit STAT1 phosphorylation and promote STAT6 phosphorylation. In conclusion, TRPM7 could regulate macrophage polarization via STAT1/STAT6 pathways. Taken together, it is suggested that TRPM7 might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases.
Collapse
|
25
|
Chen J, Deng X, Liu Y, Tan Q, Huang G, Che Q, Guo J, Su Z. Kupffer Cells in Non-alcoholic Fatty Liver Disease: Friend or Foe? Int J Biol Sci 2020; 16:2367-2378. [PMID: 32760204 PMCID: PMC7378652 DOI: 10.7150/ijbs.47143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing all around the world and it may become the primary cause of terminal liver disease in adults and children in the next few decades. However, the pathogenesis of NAFLD is complex, and the Food and Drug Administration (FDA) has not approved any drugs for its treatment. Kupffer cells are the key cells regulating immunity in the liver, and the effect of their unique polarization on NAFLD has received increasing attention. Kupffer cells mainly reside in the lumen of hepatic sinusoids and account for 80% to 90% of colonized macrophages in the human body. They are phagocytic cells with the capacity for self-renewal that rarely migrate from their niche in the liver, and play a crucial role in regulating and maintaining homeostasis. Upon liver damage, Kupffer cells will be activated, releasing a good deal of inflammatory cytokines and chemokines. This review summarizes the multiple roles of Kupffer cells in the pathogenesis of NAFLD, the role of infiltrating macrophages in the pathogenesis of NAFLD is also briefly discussed, and aims to provide a theoretical basis for designing an NAFLD treatment strategy with Kupffer cells as the therapeutic target.
Collapse
Affiliation(s)
- Jiajia Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaoyi Deng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongjian Liu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiuhua Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China.,Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Guidong Huang
- Department of Pharmacy, Affiliated Hospital of Guilin Medical University; 15# Lequn Road, Guilin, Guangxi Zhuang Autonomous Region 54101, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech CO., LTD 5F, No.10 Yongsheng Road, Yonghe Econoic region, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Centre of Integrated Chinese and Western Medicine, Guangdong TCM Key Laboratory for Metabolic Diseases, Key Laboratory of Modulating Liver to Treat Hyperlipemia SATCM, Level 3 Laboratory of Lipid Metabolism SATCM, Institute of Chinese Medicinal Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
26
|
Ye W, Wang J, Lin D, Ding Z. The immunomodulatory role of irisin on osteogenesis via AMPK-mediated macrophage polarization. Int J Biol Macromol 2019; 146:25-35. [PMID: 31843619 DOI: 10.1016/j.ijbiomac.2019.12.028] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/18/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
Bone healing is thought to be closely related to macrophages. Irisin, a cleaved hormone-like myokine, is well known to participate in immunoregulation and regulates bone metabolism. However, whether irisin could influence osteogenesis by affecting macrophage polarization is remain unknown. Here, the present study aims to investigate the potential immunomodulatory role of irisin on macrophages polarization and its subsequent impact on osteogenesis. We demonstrated that irisin increased cell viability without toxic effect in both Raw264.7 macrophages and MC3T3-E1 cells. Furthermore, irisin treatment polarized M0 and M1 macrophages towards M2 phenotype, with increased expression of CD206-APC, ARG-1 and TGF-β1, and decreased expression of CD86-PE and TNF-α. In addition, the direct co-cultured test of Raw264.7 macrophages and pre-osteoblastic MC3T3-E1 cells showed that irisin-treated M0 and M1 macrophages promoted osteogenesis with obvious formation of mineralized particles. Interestingly, irisin exposure robustly activated AMPK-α signaling, as manifested by increased expression of phosphorylated AMPK-α. Knockdown of AMPK-α by siRNA significantly suppressed the phosphorylation of AMPK-α, abrogated irisin-induced polarization of M2 phenotype, and inhibited the osteogenic ability of Raw264.7 macrophages. Taken together, our findings showed that irisin-induced M2 polarization enhanced osteogenesis in osteoblasts, and this effect might be associated with activation of AMPK.
Collapse
Affiliation(s)
- Wenbin Ye
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Jiangze Wang
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Dasheng Lin
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China; Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig Maximilians University, Munich, Germany.
| | - Zhenqi Ding
- Department of Orthopaedic Surgery, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China.
| |
Collapse
|
27
|
Liu Q, Zhu P, Liu S, Tang M, Wang Y, Tian Y, Jin Z, Li D, Yan D. NMAAP1 Maintains M1 Phenotype in Macrophages Through Binding to IP3R and Activating Calcium-related Signaling Pathways. Protein Pept Lett 2019; 26:751-757. [PMID: 31618170 DOI: 10.2174/0929866526666190503105343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND NMAAP1 plays a role in regulating macrophage differentiation to the M1 type and exerting antitumoral functions. It is not clear what role and mechanism NMAAP1 does play in the reversal of macrophages from M1 to M2. METHODS We detected the typing of macrophages with high or low expression of NMAAP1 by QPCR and ELISA, and detected the colocalization of NMAAP1 and endogenous IP3R by laser confocal microscopy, and detected the protein expression in cells by Western-blotting. RESULTS Our study found that knockdown NMAAP1 in RAW264.7 cells induced macrophage polarization to the M2 type and up-regulation of NMAAP1 in RAW264.7 cells maintain M1 Phenotype even in the presence of IL-4, a stronger inducer of the M2 type. Additionally, Coimmunoprecipitation revealed a protein-protein interaction between NMAAP1 and IP3R and then activates key molecules in the PKC-dependent Raf/MEK/ERK and Ca2+/CaM/CaMKII signaling pathways. Activation of PKC (Thr638/641), ERK1/2 (Thr202/Tyr204) and CaMKII (Thr286) is involved in the regulation of cell differentiation. CONCLUSION NMAAP1 interacts with IP3R, which in turn activates the PKC-dependent Raf/MEK/ERK and Ca2+/CaM/CaMKII signaling pathways. These results provide a new explanation of the mechanism underlying M1 differentiation.
Collapse
Affiliation(s)
- Qihui Liu
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China.,Biomedical Transformation Research Institute, Jinan University, Guangzhou, China
| | - Pei Zhu
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China
| | - Shanshan Liu
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China
| | - Mengyan Tang
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China
| | - Yuanxin Wang
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China
| | - Yuan Tian
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Sciences, Jilin University, Changchun, China
| | - Zheng Jin
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China
| | - Dongmei Yan
- Department of Immunology, College of basic Medical sciences, Jilin University, Changchun, China
| |
Collapse
|
28
|
Helal MG, Megahed NA, Abd Elhameed AG. Saxagliptin mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4. Life Sci 2019; 239:117017. [PMID: 31678284 DOI: 10.1016/j.lfs.2019.117017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/13/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
Saxagliptin (Saxa), a dipeptidyl dipeptidase-4 (DPP-4) inhibitor, is widely used for the treatment of type 2 diabetes mellitus. It has been documented to have immunomodulatory and anti-inflammatory actions. Our objective was to delineate the protective effect and the underlying mechanism of Saxa-in comparison with Dexamethasone (Dexa) - in airway inflammation induced by ovalbumin (OVA) in mice. METHODS Mice were OVA-sensitized and challenged for the induction of acute asthma. Mice were orally administrated Saxa or Dexa. Total and differential cell counts, lactate dehydrogenase (LDH) and total protein concentrations were assessed in bronchoalveolar lavage fluid (BALF). The toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-kB), reduced glutathione (GSH), and total nitrate/nitrite products (NOx) levels as well as myeloperoxidase (MPO) activity in lung tissues were measured. Histopathological examination of the lung specimens was carried out using the hematoxylin and eosin (H & E) staining. RESULTS Histopathological examination revealed that both Saxa and Dexa ameliorated OVA-induced inflammatory changes and significantly reduced total and differential leukocyte counts, LDH and total protein level in BALF upon comparison with OVA group. In addition, both treatments significantly mitigated OVA-induced oxidative stress as evidenced by diminished lung NOx level and MPO activity and elevated GSH level. The elevation of TLR4 and NF-kB levels in lung tissue were ameliorated by Saxa and Dexa administration. CONCLUSION Saxa had marked antiasthmatic effect in OVA-induced allergic asthma through modulation of TLR4 and NF-κB signaling. Also, Saxa may represent a promising therapeutic agent for acute allergic asthma.
Collapse
Affiliation(s)
- Manar G Helal
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt.
| | | | - Ahmed G Abd Elhameed
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
29
|
Wu J, Gao FX, Wang C, Qin M, Han F, Xu T, Hu Z, Long Y, He XM, Deng X, Ren DL, Dai TY. IL-6 and IL-8 secreted by tumour cells impair the function of NK cells via the STAT3 pathway in oesophageal squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:321. [PMID: 31324197 PMCID: PMC6642486 DOI: 10.1186/s13046-019-1310-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
Background Recurrence and metastasis are the leading causes of tumour-related death in patients with oesophageal squamous cell carcinoma (ESCC). Tumour-infiltrating natural killer cells (NK cells) display powerful cytotoxicity to tumour cells and play a pivotal role in tumour therapy. However, the phenotype and functional regulation of NK cells in oesophageal squamous cell carcinoma (ESCC) remains largely unknown. Methods Single cell suspensions from blood and tissue samples were isolated by physical dissociation and filtering through a 70 μm cell strainer. Flow cytometry was applied to profile the activity and function of NK cells, and an antibody chip experiment was used to identify and quantitate cytokine levels. We studied IL-6 and IL-8 function in primary oesophageal squamous carcinoma and NK cell co-cultures in vitro and by a xenograft tumour model in vivo. Western blotting was used to quantitate STAT3 (signal transducer and activator of transcription 3) and p-STAT3 levels. Finally, we performed an IHC array to analyse IL-6/IL-8 (interleukin 6/interleukin 8) expression in 103 pairs of tumours and matched adjacent tissues of patients with ESCC to elucidate the correlation between IL-6 or IL-8 and clinical characteristics. Results The percentages of NK cells in both peripheral blood and tumour tissues from patients with ESCC were significantly increased in comparison with those in the controls and correlated with the clinical characteristics. Furthermore, the decrease in activating receptors and increase in inhibitory receptors on the surface of tumour-infiltrating NK cells was confirmed by flow cytometry. The level of granzyme B, the effector molecule of tumour-infiltrating NK cells, was also decreased. Mechanistically, primary ESCC cells activated the STAT3 signalling pathway on NK cells through IL-6 and IL-8 secretion, leading to the downregulation of activating receptors (NKp30 and NKG2D) on the surface of NK cells. An ex vivo study showed that blockade of STAT3 attenuated the IL-6/IL-8-mediated impairment of NK cell function. Moreover, the expression of IL-6 or IL-8 in tumour tissues was validated by immunohistochemistry to be positively correlated with tumour progression and poor survival, respectively. Conclusions Tumour cell-secreted IL-6 and IL-8 impair the activity and function of NK cells via STAT3 signalling and contribute to oesophageal squamous cell carcinoma malignancy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1310-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Wu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Feng-Xia Gao
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Chao Wang
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Mei Qin
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China
| | - Fei Han
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Tao Xu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Zhi Hu
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Yang Long
- Experimental Medicine Center, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Xue-Mei He
- Experimental Medicine Center, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China
| | - Xin Deng
- Drug Discovery Research Center, Southwest Medical University, Luzhou, Sichuan, China.,Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, The School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - De-Lian Ren
- Department of Immunology, Basic Medicine College, South West Medical University, Luzhou, Sichuan, China.
| | - Tian-Yang Dai
- Department of Thoracic Surgery, The Affiliated Hospital of South West Medical University, Luzhou, Sichuan, China.
| |
Collapse
|