1
|
Qian S, He Y, Li R, Sun P, Zhang X, Pan L, Xu Z, Feng Z, Lian R, Yu L. Polymeric immunoglobulin receptor (pIgR) in cancer progression: a critical role and potential therapeutic target. Apoptosis 2025:10.1007/s10495-025-02116-x. [PMID: 40415061 DOI: 10.1007/s10495-025-02116-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2025] [Indexed: 05/27/2025]
Abstract
Polymeric immunoglobulin receptor (pIgR) is a crucial receptor that primarily mediates the transcytosis of immunoglobulins A and M across epithelial cells, emerging as an essential participant in modulating both mucosal immunity and innate immunity. Recently, pIgR dysregulation in cancer has garnered widespread attention. It exhibits distinct mechanisms and effects across various cancer types with significant clinical value as a biomarker for malignant tumor diagnosis and prognosis evaluation. Recent therapeutic advances have revealed promising strategies, including dimeric IgA-based approaches targeting intracellular oncogenic drivers through pIgR-mediated transcytosis, small molecule modulators such as bufalin, and targeting EV-pIgR with neutralizing antibodies. Integrating these approaches with conventional therapies presents opportunities for enhanced treatment efficacy. Specifically, blocking EV-pIgR with neutralizing antibodies, when integrated with conventional hepatocellular carcinoma therapies such as sorafenib or other therapeutic agents, or a dIgA-targeting approach combined with immune checkpoint inhibitors, may enhance treatment efficacy. This review also addresses current challenges and future directions in pIgR-targeted cancer therapy, emphasizing the need for a deeper understanding of pIgR's regulatory mechanisms. These insights reveal that pIgR is an emerging therapeutic target with significant potential for the development of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Shaoju Qian
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Yeqing He
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Ruixue Li
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Panpan Sun
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Xingyi Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Lin Pan
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
| | - Zhishan Xu
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China
| | - Rong Lian
- Department of Otolaryngology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| | - Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, People's Republic of China.
- Xinxiang Engineering Technology Research Center of Immune Checkpoint Drug for Liver-Intestinal Tumors, Henan, 453003, China.
- Xinxiang Key Laboratory of Tumor Vaccine and Immunotherapy, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
2
|
Wang M, Wang W, Guo L, Tan S, Xue H, Wang Y, Cao X, Chang M, Shi K, Nie Y, Yang Y, Sha Z. Seaweed residue hydrolysate enhances the intestinal health, immunity and disease resistance in northern snakehead (Channa argus). FISH & SHELLFISH IMMUNOLOGY 2025; 157:110115. [PMID: 39793910 DOI: 10.1016/j.fsi.2025.110115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/22/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Seaweed residue hydrolysate (SRH), produced by the acid hydrolysis of seaweed processing residues, is rich in bioactive compounds. The development and utilization of SRH as an aquatic immune enhancer not only achieves high-value utilization of waste but also promotes green and healthy aquaculture. In this study, northern snakehead (Channa argus) juveniles fed a compound feed supplemented with SRH (treatment group) exhibited a significant enhancement in intestinal microbial diversity and the proliferation of beneficial bacteria after eight weeks. After Edwardsiella tarda infection, the survival of the treatment group (70 %) was significantly higher than that in the control group (30 %). Histological analysis revealed that SRH alleviated tissue damage incurred by bacterial infection. Compared to the control group, the treatment group demonstrated an increase in the activities of non-specific immune enzymes and antioxidant enzymes, as well as a decrease in malondialdehyde (MDA). Furthermore, SRH influenced intestinal gene expression, with differentially expressed genes (DEGs) being enriched in various immune-related pathways, including cAMP, intestinal immune network for IgA production, and NF-κB signaling pathways. The present study has elucidated the potential efficacy of SRH in mitigating oxidative stress, enhancing the immunity and disease resistance of northern snakehead, providing valuable insights into the high-value utilization of SRH as a sustainable and eco-friendly immune enhancer in aquaculture.
Collapse
Affiliation(s)
- Minmin Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Wenwen Wang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Lei Guo
- Research Center for High-Value Utilization of Waste Biomass, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Suxu Tan
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Hongtao Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Ya Wang
- Weishan Fishery Development Service Center, Jining, 277600, China
| | - Xiao Cao
- Weishan Fishery Development Service Center, Jining, 277600, China
| | - Mengyang Chang
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Kunpeng Shi
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yanzhao Nie
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yingming Yang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Zhenxia Sha
- Institute of Aquatic Biotechnology, College of Life Sciences, Qingdao University, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
3
|
Xing Y, Wang W, Cheng Y, Hu D, Du J, He R, Lv X, Yang Y. Network pharmacology and metabolomics elucidate the underlying effects and mechanisms of maackiain against endometrial cancer. Biochem Biophys Res Commun 2025; 742:151119. [PMID: 39657356 DOI: 10.1016/j.bbrc.2024.151119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/12/2024]
Abstract
Endometrial carcinoma (EC), a prevalent gynecological cancer, is characterized by rising incidence and mortality rates, highlighting the need for novel treatments to improve patient outcomes. Maackiain (MA) is a natural compound isolated from common herbal medicines, that has been reported to have anti-cancer effects. However, the underlying roles and mechanisms concerning EC remain unclear. This study focused on deeply exploring the potential roles and mechanisms of MA against EC by network pharmacology, experimentally validated, metabolomics, and molecular docking. A total of 86 potential targets of MA against EC were identified by network pharmacology. In vitro experiments further confirmed network pharmacology' predictions. In addition to suppressing EC cell proliferation, MA also paused the cell cycle at the G2/M phase in a dose-dependent manner. This effect is accompanied by increased p21 and phospho-p53 expression, as well as reduced expression of CDK1 and CCNB1. Furthermore, cell metabolomics analysis revealed that 285 metabolites were changed after MA administration, which majorly affects glycerophospholipid metabolism, nucleotide metabolism, choline metabolism in cancer, and purine metabolism. Combination network pharmacology, metabolomics, and molecular docking, PLA2G10, PDE4D, and PDE5A were found to be potential targets for therapeutic intervention. These findings underlined that MA has anti-EC potential by modulating multiple targets including PLA2G10, PDE4D, and PDE5A, inhibiting EC cell proliferation, inducing G2/M phase arrest, and causing metabolic shifts. This study provides theoretical support for advanced experimental research on its clinical applications.
Collapse
Affiliation(s)
- Yijuan Xing
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Wenhua Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Yuemei Cheng
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Dan Hu
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Junhong Du
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China
| | - Xiao Lv
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Yongxiu Yang
- Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Gansu Provincial Clinical Research Center for Gynecological Oncology, Lanzhou, 730000, Gansu, China; Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
4
|
Lehle J, Soleimanpour M, Mokhtari S, Ebrahimi D. Viral infection, APOBEC3 dysregulation, and cancer. Front Genet 2024; 15:1489324. [PMID: 39764440 PMCID: PMC11701051 DOI: 10.3389/fgene.2024.1489324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/26/2024] [Indexed: 03/06/2025] Open
Abstract
Viral infection plays a significant role in the development and progression of many cancers. Certain viruses, such as Human Papillomavirus (HPV), Epstein-Barr Virus (EBV), and Hepatitis B and C viruses (HBV, HCV), are well-known for their oncogenic potential. These viruses can dysregulate specific molecular and cellular processes through complex interactions with host cellular mechanisms. One such interaction involves a family of DNA mutators known as APOBEC3 (Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 3). The primary function of these cytidine deaminases is to provide protection against viral infections by inducing viral mutagenesis. However, induction and dysregulation of A3 enzymes, driven by viral infection, can inadvertently lead to cellular DNA tumorigenesis. This review focuses on the current knowledge regarding the interplay between viral infection, A3 dysregulation, and cancer, highlighting the molecular mechanisms underlying this relationship.
Collapse
Affiliation(s)
- Jake Lehle
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Mohadeseh Soleimanpour
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Samira Mokhtari
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Diako Ebrahimi
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Department of Microbiology, Immunology, and Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, United States
- Department Molecular Microbiology and Immunology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
5
|
Tang Y, Luo J, Qin L, Tang C, Qiu C, Li J, Qin L. Network Pharmacology and Molecular Docking-Based Screening of Immunotherapeutic Targets for HuaChanSu Against Breast Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01305-4. [PMID: 39565543 DOI: 10.1007/s12033-024-01305-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/10/2024] [Indexed: 11/21/2024]
Abstract
Breast cancer has emerged as the primary cause of mortality stemming from malignancies among women. HuaChanSu has demonstrated efficacy in suppressing the progression of various malignancies. However, the specific immune targets and pathways influenced by HuaChanSu within mammary tumors remain elusive. This study is designed to uncover potent monomers and pivotal targets associated with HuaChanSu's anti-breast cancer Immunotherapy. The genes pertinent to HuaChanSu and breast cancer were acquired individually from publicly available databases. Interaction analysis using Cytoscape was conducted on common genes to determine the most suitable targets and crucial constituents of HuaChanSu's Immunotherapy against breast cancer. Following this, molecular docking was employed to validate ligand and receptor binding interactions. Lastly, the identified core genes underwent assessment of immune infiltration. The intersection of HuaChanSu and BC targets yielded a total of 49 differentially expressed genes. Bufalin emerged as the most potent constituent in Immunotherapy. Immunoassay data demonstrated significant correlations (r > 0.03, p < 0.05) between S100B, MMP9, FOS, EGFR, KIT, MME, and immune infiltration within BC. Molecular docking further corroborated the effective binding of Bufalin with immune-related genes. Through network pharmacological validation, we propose the extraction of Bufalin, a monomeric constituent of Huachansu, to exert immunomodulatory effects aimed at inhibiting the progression of breast cancer. Most of the target genes (S100B, BIRC5, MMP9, FOS, EGFR, KIT, and MME) are common targets for immunotherapy.
Collapse
Affiliation(s)
- Yujun Tang
- Guangxi Medical University, Nanning, China
| | - Jie Luo
- Guangxi Medical University, Nanning, China
- HengyangMedicaSchool, University of South China, HengYang, China
| | | | | | - Caixin Qiu
- Guangxi Medical University, Nanning, China
| | - Jiehua Li
- Guangxi Medical University, Nanning, China.
| | | |
Collapse
|
6
|
Bi M, Gao K, Bai B, Tian Z. Benchmark N-glycoproteomics study of common differential tissue and serum N-glycoproteins of patients with hepatocellular carcinoma. Anal Chim Acta 2024; 1322:343066. [PMID: 39182988 DOI: 10.1016/j.aca.2024.343066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]
Abstract
For hepatocellular carcinoma (HCC), N-glycosylation has been proved to be widely involved in various aspects of the disease, including development, metastasis, subtyping, diagnosis and prognosis. The common practice is to discover biomarkers in situ of cancer occurrence (i.e., cancer vs. adjacent tissues) yet to clinically monitor in sera because of non-invasiveness. This study benchmarks N-glycoproteomics characterization of common differential tissue and serum N-glycoproteins of patients with HCC. Differential N-glycosylation in matched tissue and serum samples from the same patients were quantitatively characterized at the intact N-glycopeptide molecular level, and 29 common N-glycoproteins were found. Subcellular localization analysis was carried out to confirm the tissue originality. Secreted N-glycoprotein APOH was up-regulated, and transmembrane and intracellular N-glycoproteins including OSMR, GAT2, CSF-1 and MAGI3 were down-regulated.
Collapse
Affiliation(s)
- Ming Bi
- School of Chemical Science & Engineering, Tongji University, Shanghai, 200092, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bing Bai
- Department of Laboratory Medicine, Center of precision Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, 210008, China.
| | - Zhixin Tian
- School of Chemical Science & Engineering, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
7
|
Ruishi X, Linyi X, Yunfan B, Wenbo Y, Xiaoying Z, Xiaoxue F, Difu Z, Xintian L, Ming Z, Haoming L. New perspectives on chemokines in hepatocellular carcinoma therapy: a critical pathway for natural products regulation of the tumor microenvironment. Front Immunol 2024; 15:1456405. [PMID: 39206194 PMCID: PMC11349538 DOI: 10.3389/fimmu.2024.1456405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary neoplasms of the liver and one of the most common solid tumors in the world. Its global incidence is increasing and it has become the third leading cause of cancer-related deaths. There is growing evidence that chemokines play an important role in the tumor microenvironment, regulating the migration and localization of immune cells in tissues and are critical for the function of the immune system. This review comprehensively analyses the expression and activity of chemokines in the TME of HCC and describes their interrelationship with hepatocarcinogenesis and progression. Special attention is given to the role of chemokine-chemokine receptors in the regulation of immune cell accumulation in the TME. Therapeutic strategies targeting tumor-promoting chemokines or the induction/release of beneficial chemokines are reviewed, highlighting the potential value of natural products in modulating chemokines and their receptors in the treatment of HCC. The in-depth discussion in this paper provides a theoretical basis for the treatment of HCC. It is an important reference for new drug development and clinical research.
Collapse
Affiliation(s)
- Xie Ruishi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xu Linyi
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bai Yunfan
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Wenbo
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhang Xiaoying
- The First Hospital of Jilin University, Changchun, China
| | - Fang Xiaoxue
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Difu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lan Xintian
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zhu Ming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Luo Haoming
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
8
|
Feng K, Zhou S, Sheng Y, Lu K, Li C, Liu W, Kong H, Liu H, Mu Y, Zhang L, Zhang Q, Wang J. Disulfidptosis-Related LncRNA Signatures for Prognostic Prediction in Kidney Renal Clear Cell Carcinoma. Clin Genitourin Cancer 2024; 22:102095. [PMID: 38833825 DOI: 10.1016/j.clgc.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION BACKGROUND Disulfidptosis is a prevalent apoptotic mechanism, intrinsically linked to cancer prognosis. However, the specific involvement of disulfidptosis-related long non-coding RNA (DRLncRNAs) in Kidney renal clear cell carcinoma (KIRC) remains incompletely understood. This study aims to elucidate the potential prognostic significance of disulfidptosis-related LncRNAs in KIRC. MATERIALS AND METHODS Expression profiles and clinical data of KIRC patients were retrieved from the TCGA database to discern differentially expressed DRLncRNAs correlated with overall survival. Cox univariate analysis, Lasso Regression, and Cox multivariate analysis were used to construct a clinical prediction model. RESULTS Six signatures, namely FAM83C.AS1, AC136475.2, AC121338.2, AC026401.3, AC254562.3, and AC000050.2, were established to evaluate overall survival (OS) in the context of Kidney renal clear cell carcinoma (KIRC) in this study. Survival analysis and ROC curves demonstrated the strong predictive performance of the associated signature. The nomogram exhibited accurate prognostic predictions for overall patient survival, offering substantial clinical utility. Gene set enrichment analysis revealed that risk signals were enriched in various immune-related pathways. Furthermore, the risk features exhibited significant correlations with immune cells, immune function, immune cell infiltration, and immune checkpoints. CONCLUSION This study has unveiled, for the first time, six disulfdptosis-related LncRNA signatures, laying a solid foundation for enhanced and precise prognostic predictions in KIRC.
Collapse
Affiliation(s)
- Kunlun Feng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Shanshan Zhou
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, China
| | - Yawen Sheng
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ke Lu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Chenghua Li
- International Office, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wenhui Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hui Kong
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Haoxiang Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Mu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lu Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Qingxiang Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| | - Jingwen Wang
- The second affiliated hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
9
|
Zhang X, Lu X, Shi J, Li Y, Li Y, Tao R, Huang L, Tang Y, Zhu X, Li M, Gao Y, Feng H, Yu Z. Bufalin suppresses hepatocellular carcinogenesis by targeting M2 macrophage-governed Wnt1/β-catenin signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155395. [PMID: 38340578 DOI: 10.1016/j.phymed.2024.155395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/28/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
BACKGROUND The interplay of tumor-associated macrophages (TAMs) and tumor cells plays a key role in the development of hepatocellular carcinoma (HCC) and provides an important target for HCC therapy. The communication between them is still on the investigation. Bufalin, the active component derived from the traditional Chinese medicine (TCM) Chansu, has been evidenced to possess anti-HCC activity by directly suppressing tumor cells, while its immunomodulatory effect on the tumor microenvironment (TME) is unclear. PURPOSE To explore the mechanism of M2 TAM-governed tumor cell proliferation and the inhibitory effect of bufalin on HCC growth by targeting M2 macrophages. METHODS Morphology and marker proteins were detected to evaluate macrophage polarization via microscopy and flow cytometry. Cellular proliferation and malignant transformation of HCC cells cultured with macrophage conditioned medium (CM) or bufalin-primed M2-CM, were assessed by cell viability, colony formation and soft agar assays. Regulations of gene transcription and protein expression and release were determined by RT-qPCR, immunoblotting, immunoprecipitation, ELISA and immunofluorescence. Tumorigenicity upon bufalin treatment was verified in orthotopic and diethylnitrosamine-induced HCC mouse model. RESULTS In this study, we first verified that M2 macrophages secreted Wnt1, which acted as a mediator to trigger β-catenin activation in HCC cells, leading to cellular proliferation. Bufalin suppressed HCC cell proliferation and malignant transformation by inhibiting Wnt1 release in M2 macrophages, and dose-dependently inhibited HCC progression in mice. Mechanistically, bufalin specially targeted to block Wnt1 transcription, thus inactivating β-catenin signaling cascade in HCC cells and leading to tumor regression in HCC mouse model. CONCLUSION These results clearly reveal a novel potential of bufalin to suppress HCC through immunomodulation, and shed light on a new M2 macrophage-based modality of HCC immunotherapy, which additively enhances direct tumor-inhibitory efficacy of bufalin.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaona Lu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jia Shi
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuyao Li
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yue Li
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ru Tao
- Department of Nursing, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lingying Huang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Tang
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Zhu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Man Li
- Laboratoy of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yueqiu Gao
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
10
|
Mei Q, Chen P, Lv Y, Zheng L, Liu D, Zhang M, Liu W, Li P. Elevated of NDUFA4L2 expression in colon adenocarcinoma is correlated with an unfavorable prognosis and increased immune cell infiltration. Heliyon 2024; 10:e25462. [PMID: 38352787 PMCID: PMC10861987 DOI: 10.1016/j.heliyon.2024.e25462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/25/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
Background Colon adenocarcinoma (COAD) is a prevalent malignancy worldwide, yet, its underlying pathogenesis and genetic characteristics are still unclear. Previous studies have suggested that NADH dehydrogenase 1 alpha subcomplex subunit 4-like 2 (NDUFA4L2) may affect tumor progression across various cancers. However, this effect on COAD has rarely been reported. Thus, this study investigated NDUFA4L2's prognostic and diagnostic relevance and explored its potential connection with immune cell infiltration in COAD. Methods To achieve this, RNA sequencing data from Cancer Genome Atlas (TCGA) was analyzed to assess NDUFA4L2's prognostic value in COAD, and factors relevant to the prognosis of COAD, including NDUFA4L2, were scrutinized using Kaplan-Meier analyses as well as univariate and multivariate Cox regression. A nomogram model was created to project prognosis based on the results of multivariate Cox analysis. Furthermore, gene set enrichment analysis (GSEA) was employed to pinpoint key NDUFA4L2-related pathways, and single-sample GSEA (ssGSEA) on TCGA data was employed to investigate the connections of NDUFA4L2 with cancer immune infiltrations. Results Our findings revealed significant associations of high NDUFA4L2 expression with poor overall survival, progression-free interval, and disease-specific survival of COAD patients. GSEA indicated close links of NDUFA4L2 with several signaling pathways implicated in tumorigenesis, including extracellular matrix receptor interaction, the intestinal immune network for immunoglobulin A production, natural killer (NK) cell-mediated cytotoxicity, pathways in cancer, cell adhesion molecules, mitogen-activated protein kinase signaling pathway, Hedgehog signaling pathway, transforming growth factor beta signaling pathway, and chemokine signaling pathway. Additionally, ssGSEA identified a positive link between increased NDUFA4L2 expression and higher infiltration degree of various immune cells, such as immature dendritic cells, macrophages, NK cells and dendritic cells. Conclusions Collectively, our findings demonstrate the association of increased NDUFA4L2 expression with adverse prognosis and heightened immune cell infiltration in COAD patients.
Collapse
Affiliation(s)
- Qingbu Mei
- Department of Medical Genetics, Qiqihar Medical University, Qiqihar 161006, China
| | - Ping Chen
- Department of Cell Biology, Qiqihar Medical University, Qiqihar 161006, China
| | - Ying Lv
- Department of Basic Medical Research Center, Qiqihar Medical University, Qiqihar 161006, China
| | - Lihong Zheng
- Department of Medical Genetics, Qiqihar Medical University, Qiqihar 161006, China
| | - Dan Liu
- Department of Medical Genetics, Qiqihar Medical University, Qiqihar 161006, China
| | - Minglong Zhang
- Department of Medical Genetics, Qiqihar Medical University, Qiqihar 161006, China
| | - Wanquan Liu
- Department of Medical Genetics, Qiqihar Medical University, Qiqihar 161006, China
| | - Penghui Li
- Department of Medical Genetics, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
11
|
Long C, Li G, Meng Y, Huang X, Chen J, Liu J. Weighted gene co-expression network analysis identifies the prognosis-related models of left- and right-sided colon cancer. Medicine (Baltimore) 2023; 102:e33390. [PMID: 37144998 PMCID: PMC10158920 DOI: 10.1097/md.0000000000033390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/08/2023] [Indexed: 05/06/2023] Open
Abstract
Left-sided colon cancer (LC) and right-sided colon cancer (RC) are 2 essentially different diseases, and the potential mechanisms regulating them remain unidentified. In this study, we applied weighted gene co-expression network analysis (WGCNA) to confirm a yellow module, mainly enriched in metabolism-related signaling pathways related to LC and RC. Based on the RNA-seq data of colon cancer in The Cancer Genome Atlas (TCGA) and GSE41258 dataset with their corresponding clinical information, a training set (TCGA: LC: n = 171; RC: n = 260) and a validation set (GSE41258: LC: n = 94; RC: n = 77) were divided. Least absolute shrinkage and selection operator (LASSO) penalized COX regression analysis identified 20 prognosis-related genes (PRGs) and helped constructed 2 risk (LC-R and RC-R) models in LC and RC, respectively. The model-based risk scores accurately performed in risk stratification for colon cancer patients. The high-risk group of the LC-R model showed associations with ECM-receptor interaction, focal adhesion, and PI3K-AKT signaling pathway. Interestingly, the low-risk group of the LC-R model showed associations with immune-related signaling pathways like antigen processing and presentation. On the other hand, the high-risk group of the RC-R model showed enrichment for cell adhesion molecules and axon guidance signaling pathways. Furthermore, we identified 20 differentially expressed PRGs between LC and RC. Our findings provide new insights into the difference between LC and RC, and uncover the potential biomarkers for the treatment of LC and RC.
Collapse
Affiliation(s)
- Chenyan Long
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Gang Li
- School of Public Health, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Yongsheng Meng
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Xiaoliang Huang
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jianhong Chen
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| | - Jungang Liu
- Division of Colorectal & Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, Guangxi Zhuang Autonomous Region, The People’s Republic of China
| |
Collapse
|
12
|
Zhang H, Bao M, Liao D, Zhang Z, Tian Z, Yang E, Luo P, Jiang X. Identification of INSRR as an immune-related gene in the tumor microenvironment of glioblastoma by integrated bioinformatics analysis. Med Oncol 2023; 40:161. [PMID: 37099121 DOI: 10.1007/s12032-023-02023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Gliomas are the most common malignant tumors in the central nervous system. The tumor microenvironment (TME) plays a crucial role in tumor proliferation, invasion, angiogenesis, and immune escape. However, little is known about TME in gliomas. The purpose of this study was to explore the biomarkers associated with TME in glioblastoma (GBM) to predict immunotherapy effectiveness and prognosis in patients. Based on RNA-seq transcriptome data and clinical features of 1222 samples (113 normal samples and 1109 tumor samples) in The Cancer Genome Atlas (TCGA) database, the ImmuneScore, StromalScore, and ESTIMATEScore were calculated by ESTIMATE algorithm. The differentially expressed genes (DEGs) and differentially mutated genes (DMGs) were determined in the TCGA GBM cohort. Furthermore, gene set enrichment analysis (GSEA) was used to investigate the enrichment pathways of INSRR genes with abnormal expression. The proportion of tumor-infiltrating immune cells (TIICs) was evaluated by CIBERSORT. Frequent mutations of TP53, EGFR, and PTEN occurred in high and low immune scores. The cross-analysis of DEGs and DMGs revealed that INSRR was an immune-related biomarker in the TCGA GBM cohort. According to GSEA, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway with INSRR abnormal expression were IgA-produced intestinal immune network and Alzheimer's disease, oxidative phosphorylation, and Parkinson's disease, respectively. Additionally, INSRR expression was correlated with dendritic cells activated, dendritic cells resting, T cells CD8, and T cell gamma delta. INSRR is associated with the immune microenvironment in GBM and is used as a biomarker to predict immune invasion.
Collapse
Affiliation(s)
- Haofuzi Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Mingdong Bao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Dan Liao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Zhuoyuan Zhang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
- Biochemistry and Molecular Biology, College of Life Science, Northwest University, Xi'an, 710127, Shaanxi Province, China
| | - Zhicheng Tian
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Erwan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China
| | - Peng Luo
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an No. 127, Changle West Road, Xincheng District, Xi'an, Shaanxi Province, China.
| |
Collapse
|
13
|
Pan-Cancer Landscape of NEIL3 in Tumor Microenvironment: A Promising Predictor for Chemotherapy and Immunotherapy. Cancers (Basel) 2022; 15:cancers15010109. [PMID: 36612106 PMCID: PMC9817722 DOI: 10.3390/cancers15010109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
With the aim of enhancing the understanding of NEIL3 in prognosis prediction and therapy administration, we conducted a pan-cancer landscape analysis on NEIL3. The mutation characteristics, survival patterns, and immune features of NEIL3 across cancers were analyzed. Western blotting, qPCR, and immunohistochemistry were conducted to validate the bioinformatics results. The correlation between NEIL3 and chemotherapeutic drugs, as well as immunotherapies, was estimated. NEIL3 was identified as an oncogene with prognostic value in predicting clinical outcomes in multiple cancers. Combined with the neoantigen, tumor mutational burden (TMB), and microsatellite instability (MSI) results, a strong relationship between NEIL3 and the TME was observed. NEIL3 was demonstrated to be closely associated with multiple immune parameters, including infiltrating immunocytes and pro-inflammatory chemokines, which was verified by experiments. More importantly, patients with a higher expression of NEIL3 were revealed to be more sensitive to chemotherapeutic regimens and immune checkpoint inhibitors in selected cancers, implying that NEIL3 may be an indicator for therapeutic administration. Our study indicated NEIL3 has a strong association with the immune microenvironment and phenotypic changes in certain types of cancers, which facilitated the improved understanding of NEIL3 across cancers and highlighted the potential for clinical application of NEIL3 in precision medical stratification.
Collapse
|
14
|
In Silico and In Vivo Evaluation of microRNA-181c-5p's Role in Hepatocellular Carcinoma. Genes (Basel) 2022; 13:genes13122343. [PMID: 36553610 PMCID: PMC9777864 DOI: 10.3390/genes13122343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a fatal disease, accounting for 75-85% of primary liver cancers. The conclusive research on miR-181c-5p's role in hepatocarcinogenesis, whether it has oncogenic effects or acts as a tumor repressor, is limited and fluctuating. Therefore, the current study aimed to elucidate the role of miR-181c-5p in HCC in silico and in vivo. The bioinformatics analysis of miR-181c-5p expression data in HCC using several databases strongly shed light on its involvement in HCC development, but also confirmed the fluctuating data around its role. miR-181c-5p was proven here to have an oncogenic role by increasing HepG2 cells' viability as confirmed by MTT analysis. In addition, miR-181c-5p was upregulated in the HCC positive control group and progressed the HCC development and malignant features by its forced expression in an HCC mouse model by targeted delivery using a LA-PAMAM polyplex. This is indicated by the cancerous gross and histological features, and the significant increase in liver function biomarkers. The functional enrichment bioinformatics analyses of miR-181c-5p-downregulated targets in HCC indicated that miR-181c-5p targets were significantly enriched in multiple pathways and biological processes involved in HCC development. Fbxl3, an example for miR-181c-5p potential targets, downregulation and its correlation with miR-181c-5p were validated by qPCR. In conclusion, miR-181c-5p is upregulated in HCC and has an oncogenic role enhancing HCC progression.
Collapse
|
15
|
Soumoy L, Ghanem GE, Saussez S, Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res 2022; 184:106442. [PMID: 36096424 DOI: 10.1016/j.phrs.2022.106442] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
16
|
Zhang H, Liu Y, Wang B, Wang C. Interleukin 20 receptor subunit beta (IL20RB) predicts poor prognosis and regulates immune cell infiltration in clear cell renal cell carcinoma. BMC Genom Data 2022; 23:58. [PMID: 35883015 PMCID: PMC9327257 DOI: 10.1186/s12863-022-01076-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Emerging evidence has proven the robust role of tumor mutation burden (TMB) and immune cell infiltration (ICI) in cancer immunotherapy. However, the precise effect of TMB and ICI on clear cell renal cell carcinoma (ccRCC) remains elusive and merits further investigation. Therefore, we aim to identify the TMB-related genes in predicting prognosis and to explore the potential mechanisms of the identified Interleukin 20 receptor subunit beta (IL20RB) in ICI in ccRCC. METHOD The relative information of patients with ccRCC was obtained from The Cancer Genome Atlas database (TCGA). Immune-related genes were downloaded from the Immunology Database and Analysis Portal database. Cox regression analysis was used to identify prognosis-related immune genes for ccRCC. The relationship of IL20RB expression levels with clinicopathological parameters was analyzed using the "limma" and "survival" packages. Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC) databases were used as external validation. Quantitative Real-time PCR (qRT-PCR) and western blots were used to validate the expression levels of IL20RB in tumor cells. Cell counting kit-8 (CCK-8) assay and colony formation assay were used to examine the effect of IL20RB on the viability of ccRCC cells. Gene set enrichment analysis (GSEA) was introduced for the analysis of IL20RB-related signaling pathways. Tumor Immune Estimation Resource (TIMER) and Tumor and Immune System Interaction Database (TISIDB) were utilized to determine the correlation of IL20RB expression levels with tumor-infiltrating immune cells (TIICs). RESULTS IL20RB was significantly overexpressed in different ccRCC tissues and cells. High IL20RB expression in ccRCC patients was associated with short overall survival, high tumor grade, and advanced TNM stage. After knockdown of IL20RB with small interfering RNA (siRNA) technology, ccRCC cells' proliferation was significantly attenuated. Moreover, overexpression of IL20RB could increase the infiltration level of several immune cells, especially T follicular helper cells (Tfh), and overexpressed Tfh cells were correlated with poor prognosis in ccRCC. CONCLUSIONS IL20RB may function as an immune-associated therapeutic target for it determines cancer progression and regulates immune cell infiltration in ccRCC.
Collapse
Affiliation(s)
- Haoxun Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yiwen Liu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Bowen Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunyang Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
17
|
Analyzing the Systems Biology Effects of COVID-19 mRNA Vaccines to Assess Their Safety and Putative Side Effects. Pathogens 2022; 11:pathogens11070743. [PMID: 35889989 PMCID: PMC9320269 DOI: 10.3390/pathogens11070743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/25/2022] [Indexed: 01/25/2023] Open
Abstract
COVID-19 vaccines have been instrumental tools in reducing the impact of SARS-CoV-2 infections around the world by preventing 80% to 90% of hospitalizations and deaths from reinfection, in addition to preventing 40% to 65% of symptomatic illnesses. However, the simultaneous large-scale vaccination of the global population will indubitably unveil heterogeneity in immune responses as well as in the propensity to developing post-vaccine adverse events, especially in vulnerable individuals. Herein, we applied a systems biology workflow, integrating vaccine transcriptional signatures with chemogenomics, to study the pharmacological effects of mRNA vaccines. First, we derived transcriptional signatures and predicted their biological effects using pathway enrichment and network approaches. Second, we queried the Connectivity Map (CMap) to prioritize adverse events hypotheses. Finally, we accepted higher-confidence hypotheses that have been predicted by independent approaches. Our results reveal that the mRNA-based BNT162b2 vaccine affects immune response pathways related to interferon and cytokine signaling, which should lead to vaccine success, but may also result in some adverse events. Our results emphasize the effects of BNT162b2 on calcium homeostasis, which could be contributing to some frequently encountered adverse events related to mRNA vaccines. Notably, cardiac side effects were signaled in the CMap query results. In summary, our approach has identified mechanisms underlying both the expected protective effects of vaccination as well as possible post-vaccine adverse effects. Our study illustrates the power of systems biology approaches in improving our understanding of the comprehensive biological response to vaccination against COVID-19.
Collapse
|
18
|
Yu Z, Li Y, Li Y, Zhang J, Li M, Ji L, Tang Y, Zheng Y, Sheng J, Han Q, Li F, Guo J, Wang L, Sun X, Gao Y, Feng H. Bufalin stimulates antitumor immune response by driving tumor-infiltrating macrophage toward M1 phenotype in hepatocellular carcinoma. J Immunother Cancer 2022; 10:jitc-2021-004297. [PMID: 35618286 PMCID: PMC9125767 DOI: 10.1136/jitc-2021-004297] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Background Immunotherapy for hepatocellular carcinoma (HCC) exhibits limited clinical efficacy due to immunosuppressive tumor microenvironment (TME). Tumor-infiltrating macrophages (TIMs) account for the major component in the TME, and the dominance of M2 phenotype over M1 phenotype in the TIMs plays the pivotal role in sustaining the immunosuppressive character. We thus investigate the effect of bufalin on promoting TIMs polarization toward M1 phenotype to improve HCC immunotherapy. Methods The impact of bufalin on evoking antitumor immune response was evaluated in the immunocompetent mouse HCC model. The expression profiling of macrophage-associated genes, surface markers and cytokines on bufalin treatment in vitro and in vivo were detected using flow cytometry, immunofluorescence, western blot analysis, ELISA and RT-qPCR. Cell signaling involved in M1 macrophage polarization was identified via the analysis of gene sequencing, and bufalin-governed target was explored by immunoprecipitation, western blot analysis and gain-and-loss of antitumor immune response. The combination of bufalin and antiprogrammed cell death protein 1 (anti-PD-1) antibody was also assessed in orthotopic HCC mouse model. Results In this study, we showed that bufalin can function as an antitumor immune modulator that governs the polarization of TIMs from tumor-promoting M2 toward tumor-inhibitory M1, which induces HCC suppression through the activation of effector T cell immune response. Mechanistically, bufalin inhibits overexpression of p50 nuclear factor kappa B (NF-κB) factor, leading to the predominance of p65-p50 heterodimers over p50 homodimers in the nuclei. The accumulation of p65-p50 heterodimers activates NF-κB signaling, which is responsible for the production of immunostimulatory cytokines, thus resulting in the activation of antitumor T cell immune response. Moreover, bufalin enhances the antitumor activity of anti-PD-1 antibody, and the combination exerts synergistic effect on HCC suppression. Conclusions These data expound a novel antitumor mechanism of bufalin, and facilitate exploitation of a new potential macrophage-based HCC immunotherapeutic modality.
Collapse
Affiliation(s)
- Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yuyao Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yue Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jinghao Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Man Li
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Longshan Ji
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yifei Tang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yanxi Zheng
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jianguo Sheng
- Department of Ultrasound, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Qiucheng Han
- Department of Ultrasound, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Fu Li
- Department of Hepatopancreatobiliary Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, People's Republic of China
| | - Lingtai Wang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xuehua Sun
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China .,Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yueqiu Gao
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China .,Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
19
|
Tey SK, Wong SWK, Chan JYT, Mao X, Ng TH, Yeung CLS, Leung Z, Fung HL, Tang AHN, Wong DKH, Mak LY, Yuen MF, Sin CF, Ng IOL, Ma SKY, Lee TKW, Cao P, Zhong K, Gao Y, Yun JP, Yam JWP. Patient pIgR-enriched extracellular vesicles drive cancer stemness, tumorigenesis and metastasis in hepatocellular carcinoma. J Hepatol 2022; 76:883-895. [PMID: 34922977 DOI: 10.1016/j.jhep.2021.12.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Extracellular vesicles (EVs) play a pivotal role in connecting tumor cells with their local and distant microenvironments. Herein, we aimed to understand the role (on a molecular basis) patient-derived EVs play in modulating cancer stemness and tumorigenesis in the context of hepatocellular carcinoma (HCC). METHODS EVs from patient sera were isolated, quantified and characterized. The EVs were vigorously tested, both in vitro and in vivo, through various functional assays. Proteomic analysis was performed to identify the functional components of EVs. The presence and level of polymeric immunoglobulin receptor (pIgR) in circulating EVs and tumor and non-tumorous tissues of patients with HCC were determined by ELISA, immunoblotting, immunohistochemistry and quantitative PCR. The functional role and underlying mechanism of EVs with enhanced pIgR expression were elucidated. Blockade of EV-pIgR with neutralizing antibody was performed in nude mice implanted with patient-derived tumor xenografts (PDTXs). RESULTS Circulating EVs from patients with late-stage HCC (L-HCC) had significantly elevated pIgR expression compared to the EVs released by control individuals. The augmenting effect of L-HCC-EVs on cancer stemness and tumorigenesis was hindered by an anti-pIgR antibody. EVs enriched with pIgR consistently promoted cancer stemness and cancerous phenotypes in recipient cells. Mechanistically, EV-pIgR-induced cancer aggressiveness was abrogated by Akt and β-catenin inhibitors, confirming that the role of EV-pIgR depends on the activation of the PDK1/Akt/GSK3β/β-catenin signaling axis. Furthermore, an anti-pIgR neutralizing antibody attenuated tumor growth in mice implanted with PDTXs. CONCLUSIONS This study illustrates a previously unknown role of EV-pIgR in regulating cancer stemness and aggressiveness: EV-pIgR activates PDK1/Akt/GSK3β/β-catenin signaling cascades. The blockade of the intercellular communication mediated by EV-pIgR in the tumor microenvironment may provide a new therapeutic strategy for patients with cancer. LAY SUMMARY The World Health Organization estimates that more than 1 million patients will die from liver cancer, mostly hepatocellular carcinoma (HCC), in 2030. Understanding the underlying mechanism by which HCC acquires aggressive attributes is crucial to improving the diagnosis and treatment of patients. Herein, we demonstrated that nanometer-sized extracellular vesicles released by tumors promote cancer stemness and tumorigenesis. Within these oncogenic vesicles, we identified a key component that functions as a potent modulator of cancer aggressiveness. By inhibiting this functional component of EVs using a neutralizing antibody, tumor growth was profoundly attenuated in mice. This hints at a potentially effective therapeutic alternative for patients with cancer.
Collapse
Affiliation(s)
- Sze Keong Tey
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Samuel Wan Ki Wong
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Janice Yuen Tung Chan
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Xiaowen Mao
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tung Him Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Cherlie Lot Sum Yeung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Zoe Leung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Hui Ling Fung
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Alexander Hin Ning Tang
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Danny Ka Ho Wong
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Chun-Fung Sin
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Irene Oi-Lin Ng
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong
| | - Stephanie Kwai Yee Ma
- State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Terence Kin Wah Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong
| | - Peihua Cao
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kebo Zhong
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Jing Ping Yun
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong; State Key Laboratory of Liver Research (The University of Hong Kong), Hong Kong.
| |
Collapse
|
20
|
Jiang HY, Zheng HM, Xia C, Li X, Wang G, Zhao T, Cui XN, Wang RY, Liu Y. The Research Progress of Bufalin in the Treatment of Hepatocellular Carcinoma. Onco Targets Ther 2022; 15:291-298. [PMID: 35345394 PMCID: PMC8957335 DOI: 10.2147/ott.s333233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest cancers in the world with a five-year survival rate of less than 20%. Nonetheless, selecting an appropriate therapeutic agent to inhibit the development of hepatoma cells is still a challenge. Bufalin, a component of the traditional Chinese medicine Chansu, has been shown to inhibit the proliferation, invasion and metastasis of HCC through various signaling pathways. In addition, bufalin and sorafenib demonstrate a synergistic effect in cancer therapeutics. This review highlighted on several focal signaling pathways involved in the inhibitory effects of bufalin on HCC and its synergistic mechanisms with sorafenib. The immunotherapy effect of bufalin has also been discussed as a novel property.
Collapse
Affiliation(s)
- Han-Yu Jiang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Hui-Min Zheng
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Cheng Xia
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiang Li
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Gang Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Tong Zhao
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China
| | - Xiao-Nan Cui
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, People's Republic of China
| | - Ruo-Yu Wang
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| | - Ying Liu
- Department of Oncology, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, People's Republic of China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian, People's Republic of China
| |
Collapse
|
21
|
Effects of Traditional Chinese Medicine Adjuvant Therapy on the Survival of Patients with Primary Liver Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9810036. [PMID: 35341138 PMCID: PMC8947932 DOI: 10.1155/2022/9810036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/12/2022] [Indexed: 11/18/2022]
Abstract
Aim This study aims to evaluate whether adjuvant traditional Chinese medicine (TCM) can improve the survival of patients with primary liver cancer (PLC). Methods A total of 1,859 patients with PLC at Beijing Ditan Hospital between August 2008 and September 2017 were included. The patients were divided into TCM and control groups according to whether the patients took TCM for ≥3 months. There were 1,111 patients in the TCM group and 748 in the control group. Univariate and multivariate Cox regression analyses were used to analyze the factors affecting the 3-year survival of patients with PLC. To reduce selection bias, 1 : 1 propensity score matching (PSM) was performed between the two groups. The overall survival outcomes were evaluated using the Kaplan-Meier (K-M) survival curve, and the log-rank test was used to compare the differences in survival curves. Results After multivariate Cox regression analysis, TCM was an independent favorable factor for the 3-year survival of patients with PLC (adjusted hazard ratio (aHR) 0.359, 95% confidence interval (CI) 0.292-0.441, P < 0.001). Before and after PSM, the 3-year overall survival rates were 33.3% and 54% in the control group and 79.7% and 69.7% in the TCM group, respectively. The 3-year mortality risk in the TCM group was lower than that in the control group for different PLC subgroups. Conclusions TCM adjuvant therapy increased the 3-year overall survival rate of patients with PLC.
Collapse
|
22
|
Deng J, Xiao W, Wang Z. FAM46C as a Potential Marker for Pan-Cancer Prognosis and Predicting Immunotherapeutic Efficacy. Front Genet 2022; 13:810252. [PMID: 35222533 PMCID: PMC8864238 DOI: 10.3389/fgene.2022.810252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Background:FAM46C is a common mutated gene in tumours. A comprehensive understanding of the relationship between FAM46C expression and pan-cancer can guide clinical prognosis and broaden the immunotherapeutic targets.Methods: Data from The Cancer Genome Atlas and Genotype-Tissue Expression (GTEx) databases were obtained, and gene expression of different tumour types and stages was analysed. Immunohistochemical analysis was performed to detect differences in the FAM46C protein levels in normal and cancerous tissues. The genetic variation of FAM46C was characterised using cBioPortal. The clinical prognostic value of FAM46C and the impact of FAM46C expression levels on the prognosis of patients with different types of cancer were assessed based on Kaplan–Meier and Cox regression analyses. Gene set enrichment analysis (GSEA) was used to analyse the pathways associated with FAM46C. Correlations between FAM46C expression levels and immune infiltration were assessed using the TIMER2 database and CIBERSORT algorithm, and correlations between FAM46C expression and the ESTIMATE, immune and stromal scores were analysed using the ESTIMATE algorithm. In addition, we also analysed the correlation between FAM46C expression and immune activation, suppression genes and immune chemokines.Results: The expression level of FAM46C was correlated with the prognosis of most tumours, and low expression levels often suggested a poor prognosis. FAM46C was positively correlated with the abundance of CD4+ T cells, CD8+ T cells and plasma B lymphocytes in the tumour microenvironment. FAM46C exhibited a strong correlation with immunomodulatory pathways, immunomodulatory factors and immune markers. In addition, high FAM46C expression correlated with tumour mutational burden in acute myeloid leukaemia and microsatellite instability in endometrial cancer.Conclusion: Our study suggests that FAM46C can be a potential prognostic marker for pan-cancer, is closely associated with immune regulation and may be an immune checkpoint to guide future clinical immunotherapy.
Collapse
Affiliation(s)
- Jiehua Deng
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Wei Xiao
- Department of Clinical Medicine, Medical College of Shihezi University, Shihezi, China
| | - Zheng Wang
- Centre of Imaging Diagnosis, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Zheng Wang,
| |
Collapse
|
23
|
Liu Y, Lu X, Zhang Z, Jiang S, Lv H. mPEG-Cholic acid/TPGS mixed micelles for combined delivery of paclitaxel and bufalin to treat hepatocellular carcinoma. Pharm Dev Technol 2022; 27:215-227. [PMID: 35105263 DOI: 10.1080/10837450.2022.2037140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, amphiphilic block copolymer mPEG-cholic acid was synthesized in conjunction with TPGS as stabilizer to prepare multifunctional micelles. The formed polymeric micelles (PCTm) were used for the delivery of paclitaxel (PTX) and bufalin (BF). PEG group could enhance solubility and extend circulation time, while cholic acid groups achieved the liver targeted function. Combinations of these approaches could realize a synergistic therapeutic effect in the treatment of advanced hepatocellular carcinoma. CLSM in vitro results demonstrated that drug capsulation into PCTm could enhance cellular uptake. FCM results confirmed the uptake amount of C6/PCTm was 7.5-fold higher than that of free C6 after incubation for 2 h. Competitive inhibition test proved the Na+-taurocholate co-transporting polypeptide (NTCP) involved in the uptake mechanism of PCTm. Meanwhile, in vivo imaging assays demonstrated that the fluorescence intensity of Cy5.5/PCTm was higher than that of free Cy5.5 on liver and tumor with extended circulation time to 48 h. In addition, in vivo studies confirmed that the combined therapy exhibited the strongest tumor inhibition rate of 82.29% with lower systemic toxicity. Hence, these results indicated that PCTm could provide a promising strategy for targeting hepatocellular carcinoma and achieve the goal of the synergism and attenuation.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoyu Lu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining No. 1 People's Hospital, Jining, Shandong 272000, China
| | - Huixia Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
24
|
Zhao X, Ji Z, Xuan R, Wang A, Li Q, Zhao Y, Chao T, Wang J. Characterization of the microRNA Expression Profiles in the Goat Kid Liver. Front Genet 2022; 12:794157. [PMID: 35082837 PMCID: PMC8784682 DOI: 10.3389/fgene.2021.794157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The liver is the largest digestive gland in goats with an important role in early metabolic function development. MicroRNAs (miRNA) are crucial for regulating the development and metabolism in the goat liver. In the study, we sequenced the miRNAs in the liver tissues of the goat kid to further research their regulation roles in early liver development. The liver tissues were procured at 5-time points from the Laiwu black goats of 1 day (D1), 2 weeks (W2), 4 weeks (W4), 8 weeks (W8), and 12 weeks (W12) after birth, respectively with five goats per time point, for a total of 25 goats. Our study identified 214 differential expression miRNAs, and the expression patterns of 15 randomly selected miRNAs were examined among all five age groups. The Gene ontology annotation results showed that differential expression miRNA (DE miRNA) target genes were significantly enriched in the fatty acid synthase activity, toxin metabolic process, cell surface, and antibiotic metabolic process. The KEGG analysis result was significantly enriched in steroid hormone synthesis and retinol metabolism pathways. Further miRNA-mRNA regulation network analysis reveals 9 differently expressed miRNA with important regulation roles. Overall, the DE miRNAs were mainly involved in liver development, lipid metabolism, toxin related metabolism-related biological process, and pathways. Our results provide new information about the molecular mechanisms and pathways in the goat kid liver development.
Collapse
Affiliation(s)
- Xiaodong Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Rong Xuan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Aili Wang
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization, Weifang University of Science and Technology, Shouguang, China
| | - Qing Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yilin Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| |
Collapse
|
25
|
Wu F, Xu J, Jin M, Jiang X, Li J, Li X, Chen Z, Nie J, Meng Z, Wang G. Development and Verification of a Hypoxic Gene Signature for Predicting Prognosis, Immune Microenvironment, and Chemosensitivity for Osteosarcoma. Front Mol Biosci 2022; 8:705148. [PMID: 35071320 PMCID: PMC8766725 DOI: 10.3389/fmolb.2021.705148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
Objective: Hypoxic tumors contribute to local failure and distant metastases. Nevertheless, the molecular hallmarks of hypoxia remain ill-defined in osteosarcoma. Here, we developed a hypoxic gene signature in osteosarcoma prognoses. Methods: With the random survival forest algorithm, a prognostic hypoxia-related gene signature was constructed for osteosarcoma in the TARGET cohort. Overall survival (OS) analysis, receiver operating characteristic (ROC) curve, multivariate cox regression analysis, and subgroup analysis were utilized for assessing the predictive efficacy of this signature. Also, external validation was presented in the GSE21257 cohort. GSEA was applied for signaling pathways involved in the high- and low-risk samples. Correlation analyses between risk score and immune cells, stromal/immune score, immune checkpoints, and sensitivity of chemotherapy drugs were performed in osteosarcoma. Then, a nomogram was built by integrating risk score, age, and gender. Results: A five-hypoxic gene signature was developed for predicting survival outcomes of osteosarcoma patients. ROC curves confirmed that this signature possessed the well predictive performance on osteosarcoma prognosis. Furthermore, it could be independently predictive of prognosis. Metabolism of xenobiotics by cytochrome P450 and nitrogen metabolism were activated in the high-risk samples while cell adhesion molecules cams and intestinal immune network for IgA production were enriched in the low-risk samples. The low-risk samples were characterized by elevated immune cell infiltrations, stromal/immune scores, TNFRSF4 expression, and sensitivity to cisplatin. The nomogram accurately predicted 1-, 3-, and 5-years survival duration. Conclusion: These findings might offer an insight into the optimization of prognosis risk stratification and individualized therapy for osteosarcoma patients.
Collapse
Affiliation(s)
- Fengfeng Wu
- Department of Orthopedics and Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Juntao Xu
- Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated to Zhejiang Chinese Medical University, Huzhou, China
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Zhuo Chen
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Jiangbo Nie
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Zhipeng Meng
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| | - Guorong Wang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Zhejiang University Huzhou Hospital, Huzhou, China
| |
Collapse
|
26
|
Wanifuchi-Endo Y, Kondo N, Dong Y, Fujita T, Asano T, Hisada T, Uemoto Y, Nishikawa S, Katagiri Y, Kato A, Terada M, Sugiura H, Okuda K, Kato H, Takahashi S, Toyama T. Discovering novel mechanisms of taxane resistance in human breast cancer by whole-exome sequencing. Oncol Lett 2022; 23:60. [PMID: 34992692 PMCID: PMC8721851 DOI: 10.3892/ol.2021.13178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Taxanes are important drugs used in the treatment of breast cancer; however, some cancer types are taxane-resistant. The aim of the present study was to investigate the underlying mechanisms of taxane resistance using whole-exome sequencing (WES). Six patients with breast cancer whose tumors responded well to anthracycline treatment but grew rapidly during neoadjuvant taxane-based chemotherapy, were included in the present study. WES of samples from these patients was carried out to identify somatic mutations of candidate genes thought to affect taxane resistance, and the candidate proteins were structurally modeled. The mRNA and protein expression levels of these candidate genes in other breast cancers treated with taxanes were also examined. Nine variants common to all six patients were identified and two of these [R552P in V-type proton ATPase catalytic subunit A (ATP6V1A) and T114P in apolipoprotein B MRNA editing enzyme catalytic subunit 3F (APOBEC3F)] were selected. The results also showed that, protein-structure visualization suggested that these mutations may cause structural changes. The Kaplan-Meier analyses revealed that higher APT6V1A and APOBEC3F expression levels were significantly associated with poorer disease-free survival (DFS) and overall survival. Moreover, multivariate analysis identified high ATP6V1A mRNA expression as an independent risk factor for poor DFS. Two specific mutations that might affect taxane resistance were identified. Thus, these results suggest that breast cancer patients receiving taxanes who have high ATP6V1A or APOBEC3F expression levels may have shorter survival.
Collapse
Affiliation(s)
- Yumi Wanifuchi-Endo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Naoto Kondo
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yu Dong
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Takashi Fujita
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tomoko Asano
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tomoka Hisada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yasuaki Uemoto
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Sayaka Nishikawa
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Yusuke Katagiri
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Akiko Kato
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Mitsuo Terada
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hiroshi Sugiura
- Education and Research Center for Advanced Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Katsuhiro Okuda
- Department of Oncology, Immunology and Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Tatsuya Toyama
- Department of Breast Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| |
Collapse
|
27
|
Zhang Y, Chen X, Cao Y, Yang Z. Roles of APOBEC3 in hepatitis B virus (HBV) infection and hepatocarcinogenesis. Bioengineered 2021; 12:2074-2086. [PMID: 34043485 PMCID: PMC8806738 DOI: 10.1080/21655979.2021.1931640] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/08/2023] Open
Abstract
APOBEC3 (A3) cytidine deaminases inhibit hepatitis B virus (HBV) infection and play vital roles in maintaining a variety of biochemical processes, including the regulation of protein expression and innate immunity. Emerging evidence indicates that the deaminated deoxycytidine biochemical activity of A3 proteins in single-stranded DNA makes them a double-edged sword. These enzymes can cause cellular genetic mutations at replication forks or within transcription bubbles, depending on the physiological state of the cell and the phase of the cell cycle. Under pathological conditions, aberrant expression of A3 genes with improper deaminase activity regulation may threaten genomic stability and eventually lead to cancer development. This review attempted to summarize the antiviral activities and underlying mechanisms of A3 editing enzymes in HBV infections. Moreover, the correlations between A3 genes and hepatocarcinogenesis were also elucidated.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary HospitalSchool of Medicine, Tongji University School of Medicine, Shanghai, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
28
|
Zhang J, Liu W, Feng S, Zhong B. The possible role of SRMS in colorectal cancer by bioinformatics analysis. World J Surg Oncol 2021; 19:326. [PMID: 34781983 PMCID: PMC8594183 DOI: 10.1186/s12957-021-02431-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a non-receptor tyrosine kinase that has been found to be overexpressed in various tumors. However, the role of SRMS in colorectal cancer (CRC) has not been well established. METHODS We evaluated the expression levels of SRMS in CRC using GEPIA, Oncomine, and HPA datasets. Survival information and gene expression data of CRC were obtained from The Cancer Genome Atlas (TCGA). Then, the association between SRMS and clinicopathological features was analyzed using UALCAN dataset. LinkedOmics was used to determine co-expression and functional networks associated with SRMS. Besides, we used TISIDB to assess the correlation between SRMS and immune signatures, including tumor-infiltrating immune cells and immunomodulators. Lastly, protein-protein interaction network (PPI) was established and the function enrichment analysis of the SRMS-associated immunomodulators and immune cell marker genes were performed using the STRING portal. RESULTS Compared to normal colorectal tissues, SRMS was found to be overexpressed in CRC tissues, which was correlated with a poor prognosis. In colon adenocarcinoma (COAD), the expression levels of SRMS are significantly correlated with pathological stages and nodal metastasis status. Functional network analysis suggested that SRMS regulates intermediate filament-based processes, protein autophosphorylation, translational initiation, and elongation signaling through pathways involving ribosomes, proteasomes, oxidative phosphorylation, and DNA replication. In addition, SRMS expression was correlated with infiltrating levels of CD4+ T cells, CD56dim, MEM B, Neutrophils, Th2, Th17, and Act DC. The gene ontology (GO) analysis of SRMS-associated immunomodulators and immune cell marker genes showed that they were mainly enriched in the immune microenvironment molecule-related signals. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these genes indicated that they are involved in multiple cancer-related pathways. CONCLUSIONS SRMS is a promising prognostic biomarker and potential therapeutic target for CRC patients. In particular, SRMS regulates CRC progression by modulating cytokine-cytokine receptor interaction, chemokines, IL-17, and intestinal immune networks for IgA production signaling pathways among others. However, more studies are needed to validate these findings.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Weidong Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China
| | - Sisi Feng
- Department of Essential Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.
| |
Collapse
|
29
|
Song X, Wang TX, Zhu XN, Tan SK. Immunological and prognostic significance of CBX2 expression in hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2021; 29:1118-1129. [DOI: 10.11569/wcjd.v29.i19.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The number of cases of hepatocellular carcinoma (HCC), the sixth most common malignancy and the third leading cause of cancer death worldwide, has risen from 1.6 to 4.6 per 100000 people worldwide over the past 30 years. Guangxi has a high incidence of HCC in China, and its death rate ranks first in the spectrum of causes of tumor death in Guangxi, accounting for about 40% of all deaths from malignant tumors. Exploring the role of chromobox homolog 2 (CBX2) in HCC immunity will provide potential value for the treatment of this malignancy.
AIM To investigate the expression of CBX2 and analyze its immunological and prognostic significance in HCC.
METHODS The expression of CBX2 in 75 cases of HCC and matched non-tumor tissues was detected by tissue microarray and immunohistochemistry. The relationship of CBX2 expression with the clinicopathologic features of HCC and survival prognosis was analyzed. Then, the differential expression of CBX2 between HCC and normal tissues was verified in The Cancer Genomic Atlas (TCGA). Next, we explored the association between CBX2 expression and immunocyte infiltration, determined the relationship between CBX2 expression and immunosuppressors and immunostimulators, and identified the immune events that CBX2 was involved in through relevant GO and KEGG pathway enrichment analyses. A multi-gene risk prediction model was developed using a COX regression model, thereby generating a risk score that is an independent predictor of survival prognosis. ROC analysis was performed to assess the predictive accuracy of the risk score. Finally, a prognostic model with a calibration curve was constructed to predict the patients' survival probability at 3 and 5 years.
RESULTS The positive expression of CBX2 in HCC tissue was 66.7% (50/75), which was significantly higher than that in matched non-tumor tissues (25.3% (19/75); P < 0.01). The expression of CBX2 was associated with TNM stage and AFP status (P < 0.05). The survival time of patients in the CBX2 positive group was significantly lower than that of the CBX2 negative group, suggesting that CBX2 positive expression may be related to the prognosis of HCC patients. TCGA database verification reached the same conclusion. The expression of CBX2 was positively correlated with the infiltration levels of T helper 2 cells. CBX2 was identified to be associated with 10 immunosuppressors and 23 immunostimulators, and enriched analysis of related GO and KEGG pathways showed that CBX2 was associated with immune events such as intestinal immune network for immunoglobulin A production, cytokine-cytokine receptor interactions, cell adhesion molecules, and rheumatoid arthritis.
CONCLUSION CBX2 positive expression may be a prognostic risk factor in HCC patients. Our findings provide evidence for the role of CBX2 in tumor immunity in HCC, suggesting that CBX2 may be a potential immunoprognostic marker for HCC.
Collapse
Affiliation(s)
- Xin Song
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Tian-Xian Wang
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Nian Zhu
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Sheng-Kui Tan
- School of Public Health, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
30
|
Identifying Biomarkers of Alzheimer's Disease via a Novel Structured Sparse Canonical Correlation Analysis Approach. J Mol Neurosci 2021; 72:323-335. [PMID: 34570360 DOI: 10.1007/s12031-021-01915-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023]
Abstract
Using correlation analysis to study the potential connection between brain genetics and imaging has become an effective method to understand neurodegenerative diseases. Sparse canonical correlation analysis (SCCA) makes it possible to study high-dimensional genetic information. The traditional SCCA methods can only process single-modal genetic and image data, which to some extent weaken the close connection of the brain's biological network. In some recently proposed multimodal SCCA methods, due to the limitations of penalty items, the pre-processed data needs to be further filtered to make the dimensions uniform, which may destroy the potential association of data in the same modal. In this research, in order to combine data between different modalities and to ensure that the chain relationship or graph network relationship within the same modality will not be destroyed, the original generalized fused lasso penalty was replaced with the fused pairwise group lasso (FGL) and the graph-guided pairwise group lasso (GGL) based on the method of joint sparse canonical correlation analysis (JSCCA). We used prior knowledge to construct a supervised bivariate learning model and use linear regression to select quantitative traits (QTs) of images that are strongly correlated with the Mini-mental State Examination (MMSE) scores. Compared with FGL-SCCA, the model we constructed obtained a higher gene-ROI correlation coefficient and identified more significant biomarkers, providing a theoretical basis for further understanding the complex pathology of neurodegenerative diseases.
Collapse
|
31
|
Xie Q, Chen Y, Tan H, Liu B, Zheng LL, Mu Y. Targeting Autophagy with Natural Compounds in Cancer: A Renewed Perspective from Molecular Mechanisms to Targeted Therapy. Front Pharmacol 2021; 12:748149. [PMID: 34512368 PMCID: PMC8427500 DOI: 10.3389/fphar.2021.748149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023] Open
Abstract
Natural products are well-characterized to have pharmacological or biological activities that can be of therapeutic benefits for cancer therapy, which also provide an important source of inspiration for discovery of potential novel small-molecule drugs. In the past three decades, accumulating evidence has revealed that natural products can modulate a series of key autophagic signaling pathways and display therapeutic effects in different types of human cancers. In this review, we focus on summarizing some representative natural active compounds, mainly including curcumin, resveratrol, paclitaxel, Bufalin, and Ursolic acid that may ultimately trigger cancer cell death through the regulation of some key autophagic signaling pathways, such as RAS-RAF-MEK-ERK, PI3K-AKT-mTOR, AMPK, ULK1, Beclin-1, Atg5 and p53. Taken together, these inspiring findings would shed light on exploiting more natural compounds as candidate small-molecule drugs, by targeting the crucial pathways of autophagy for the future cancer therapy.
Collapse
Affiliation(s)
- Qiang Xie
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Chen
- Department of Stomatology, Zigong First People’s Hospital, Zigong, China
| | - Huidan Tan
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Li Zheng
- Department of Pharmacy, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yandong Mu
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
32
|
Xu J, Zhang Y, Liu C, Yan P, Yang Z. Roles of the miR-139-5p/CCT5 axis in hepatocellular carcinoma: a bioinformatic analysis. Int J Med Sci 2021; 18:3556-3564. [PMID: 34522182 PMCID: PMC8436101 DOI: 10.7150/ijms.57504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 08/06/2021] [Indexed: 02/05/2023] Open
Abstract
Background: MiRNAs are pivotal regulators involved in proliferation, apoptosis, invasion, metastasis, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance and autophagy in hepatocellular carcinoma (HCC). The aim of this study was to investigate the influence of miR-139-5p and its target genes on the outcomes of HCC. Methods: Survival analysis of miR-139-5p in HCC was conducted in Kaplan-Meier plotter. Target genes of miR-139-5p were identified in TargetScan, miRTarBase and starBase. Gene Expression Omnibus (GEO) series were used for the validation of miR-139-5p target genes. Cox proportional regression model was also established. Results: In Kaplan-Meier plotter, 163 HCC patients were included. MiR-139-5p downregulation was significantly associated with unfavorable overall survival (OS) and disease-free survival (DFS) in HCC patients (all P < 0.001). MiR-139-5p was significantly downregulated in HCC tumors and human hepatoma cell lines (all P < 0.05). As a target gene of miR-139-5p, CCT5 was overexpressed in HCC tumor tissues and peripheral blood mononuclear cells (all P < 0.05). A negative correlation between CCT5 and miR-139-5p was found in TCGA dataset. CCT5 overexpression was significantly associated with worse OS in HCC patients (P < 0.001), which was validated in the GSE14520 dataset (P = 0.017). CCT5 mRNA was significantly overexpressed in HCC patients with alpha-fetoprotein (AFP) > 300 ng/ml, BCLC staging B-C, TNM staging III and main tumor size > 5 cm (all P < 0.05). According to the Cox regression model of CCT5-interacting genes, HCC patients with high risk had poor OS compared to those with low risk in the TCGA dataset (P < 0.001), with the 1-year, 3-year, and 5-year ROC curves of an area under the curve (AUC) equal to 0.704, 0.662, and 0.631, respectively. Conclusions: MiR-139-5p suppresses HCC tumor aggression and conversely correlated with CCT5. The miR-139-5p/CCT5 axis might perform crucial functions in the development of HCC.
Collapse
Affiliation(s)
- Jingjing Xu
- Department of Pathology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Cheng Liu
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Ping Yan
- Department of Infectious Disease, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
33
|
Škubník J, Pavlíčková V, Rimpelová S. Cardiac Glycosides as Immune System Modulators. Biomolecules 2021; 11:biom11050659. [PMID: 33947098 PMCID: PMC8146282 DOI: 10.3390/biom11050659] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiac glycosides (CGs) are natural steroid compounds occurring both in plants and animals. They are known for long as cardiotonic agents commonly used for various cardiac diseases due to inhibition of Na+/K+-ATPase (NKA) pumping activity and modulating heart muscle contractility. However, recent studies show that the portfolio of diseases potentially treatable with CGs is much broader. Currently, CGs are mostly studied as anticancer agents. Their antiproliferative properties are based on the induction of multiple signaling pathways in an NKA signalosome complex. In addition, they are strongly connected to immunogenic cell death, a complex mechanism of induction of anticancer immune response. Moreover, CGs exert various immunomodulatory effects, the foremost of which are connected with suppressing the activity of T-helper cells or modulating transcription of many immune response genes by inhibiting nuclear factor kappa B. The resulting modulations of cytokine and chemokine levels and changes in immune cell ratios could be potentially useful in treating sundry autoimmune and inflammatory diseases. This review aims to summarize current knowledge in the field of immunomodulatory properties of CGs and emphasize the large area of potential clinical use of these compounds.
Collapse
|
34
|
Xu Y, Tang L, Chen P, Chen M, Zheng M, Shi F, Wang Y. Tumor-Targeted Delivery of Bufalin-Loaded Modified Albumin-Polymer Hybrid for Enhanced Antitumor Therapy and Attenuated Hemolysis Toxicity and Cardiotoxicity. AAPS PharmSciTech 2021; 22:137. [PMID: 33880681 DOI: 10.1208/s12249-021-02000-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
A novel albumin polymer hybrid with a core-shell structure was designed to target delivery of bufalin, which is an antineoplastic monomer with serious cardiotoxicity. The sheath layer was composed of ursodeoxycholic acid (UA)-modified bovine serum albumin (UA-BSA), while the stable core consisted of poly n-butyl cyanoacrylate (PBCA) nanoparticles. The UA-BSA was synthetized, and the substitution degree was characterized. The physical properties of bufalin-loaded UA-modified protein-PBCA nanocomplexes (BF-uPPNCs), such as morphology, particle size, and encapsulation efficiency, were evaluated. FTIR and DSC revealed the bufalin to be in an amorphous state. Furthermore, the in vitro release study indicated a sustained release profile of BF-uPPNCs. The MTT and cellular uptake study demonstrated that BF-uPPNCs significantly improved the inhibitory effect of the bufalin accompanied with an enhanced cell uptake capacity on HepG2 cells. In addition, in vivo research demonstrated that BF-uPPNCs had a better antitumor effect coupled with improved therapeutic effect, and reduced hemolysis, vascular irritation, and cardiotoxicity. This work therefore presented a novel albumin polymer hybrid with favorable stability, efficient tumor-targeted delivery potential, and side effect reduction ability, which can be a potential vehicle for an anticancer drug.
Collapse
|
35
|
Zhang Y, Lu W, Chen X, Cao Y, Yang Z. A Bioinformatic Analysis of Correlations between Polymeric Immunoglobulin Receptor (PIGR) and Liver Fibrosis Progression. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5541780. [PMID: 33937393 PMCID: PMC8055406 DOI: 10.1155/2021/5541780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE This study is aimed at investigating the enriched functions of polymeric immunoglobulin receptor (PIGR) and its correlations with liver fibrosis stage. METHODS PIGR mRNA expression in normal liver, liver fibrosis, hepatic stellate cells (HSCs), and hepatitis virus infection samples was calculated in Gene Expression Omnibus (GEO) and Oncomine databases. Enrichment analysis of PIGR-related genes was conducted in Metascape and Gene Set Enrichment Analysis (GSEA). Logistic model and ROC curve were performed to evaluate the correlations between pIgR and liver fibrosis. RESULTS PIGR mRNA was upregulated in advanced liver fibrosis, cirrhosis compared to normal liver (all p < 0.05). PIGR mRNA was also overexpressed in activated HSCs compared to senescent HSCs, liver stem/progenitor cells, and reverted HSCs (all p < 0.05). Enrichment analysis revealed that PIGR-related genes involved in the defense response to virus and interferon (IFN) signaling. In GEO series, PIGR mRNA was also upregulated by hepatitis virus B, C, D, and E infection (all p < 0.05). After adjusting age and gender, multivariate logistic regression models revealed that high PIGR in the liver was a risk factor for liver fibrosis (OR = 82.2, p < 0.001). The area under curve (AUC), positive predictive value (PPV), negative predictive value (NPV), sensitivity, and specificity of PIGR for liver fibrosis stage >2 were 0.84, 0.86, 0.7, 0.61, and 0.90. CONCLUSION PIGR was correlated with liver fibrosis and might involve in hepatitis virus infection and HSC transdifferentiation.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Wenjun Lu
- Department of Rheumatology and Immunology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu 212300, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yajuan Cao
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University School of Medicine, Shanghai 200433, China
- Clinical Translation Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
36
|
Chen Q, Qiu B, Zeng X, Hu L, Huang D, Chen K, Qiu X. Identification of a tumor microenvironment-related gene signature to improve the prediction of cervical cancer prognosis. Cancer Cell Int 2021; 21:182. [PMID: 33766042 PMCID: PMC7992856 DOI: 10.1186/s12935-021-01867-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies have found that the microenvironment of cervical cancer (CESC) affects the progression and treatment of this disease. Thus, we constructed a multigene model to assess the survival of patients with cervical cancer. Methods We scored 307 CESC samples from The Cancer Genome Atlas (TCGA) and divided them into high and low matrix and immune scores using the ESTIMATE algorithm for differential gene analysis. Cervical cancer patients were randomly divided into a training group, testing group and combined group. The multigene signature prognostic model was constructed by Cox analyses. Multivariate Cox analysis was applied to evaluate the significance of the multigene signature for cervical cancer prognosis. Prognosis was assessed by Kaplan–Meier curves comparing the different groups, and the accuracy of the prognostic model was analyzed by receiver operating characteristic-area under the curve (ROC-AUC) analysis and calibration curve. The Tumor Immune Estimation Resource (TIMER) database was used to analyze the relationship between the multigene signature and immune cell infiltration. Results We obtained 420 differentially expressed genes in the tumor microenvironment from 307 patients with cervical cancer. A three-gene signature (SLAMF1, CD27, SELL) model related to the tumor microenvironment was constructed to assess patient survival. Kaplan–Meier analysis showed that patients with high risk scores had a poor prognosis. The ROC-AUC value indicated that the model was an accurate predictor of cervical cancer prognosis. Multivariate cox analysis showed the three-gene signature to be an independent risk factor for the prognosis of cervical cancer. A nomogram combining the three-gene signature and clinical features was constructed, and calibration plots showed that the nomogram resulted in an accurate prognosis for patients. The three-gene signature was associated with T stage, M stage and degree of immune infiltration in patients with cervical cancer. Conclusions This research suggests that the developed three-gene signature may be applied as a biomarker to predict the prognosis of and personalized therapy for CESC.
Collapse
Affiliation(s)
- Qian Chen
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China.,Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Bingqing Qiu
- Department of Nuclear Medicine, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiaoyun Zeng
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Lang Hu
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Dongping Huang
- Department of Nutrition, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kaihua Chen
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiaoqiang Qiu
- Department of Epidemiology, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
37
|
Zhang Y, Zhang J, Chen X, Yang Z. Polymeric immunoglobulin receptor (PIGR) exerts oncogenic functions via activating ribosome pathway in hepatocellular carcinoma. Int J Med Sci 2021; 18:364-371. [PMID: 33390805 PMCID: PMC7757154 DOI: 10.7150/ijms.49790] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/03/2020] [Indexed: 02/05/2023] Open
Abstract
Objective: This report aimed to investigate the potential mechanism of polymeric immunoglobulin receptor (PIGR) in promoting cancer development in hepatocellular carcinoma (HCC). Methods: PIGR expression was investigated in Gene Expression Omnibus (GEO), Oncomine, The Cancer Genome Atlas (TCGA) and The Human Protein Atlas (HPA) databases. Relationships between PIGR and HCC survival and clinico-pathological features were conducted in TCGA. RNAseq of PIGR overexpression and knockdown samples in Bel-7404 cells were performed for identifying potential mechanisms. Results: PIGR was significantly overexpressed in tumors compared to nontumors and in HCC serum peripheral blood mononuclear cells (PBMC) than in healthy individuals (all p < 0.05). In TCGA, PIGR was highly altered in 14% HCC patients. PIGR upregulation was significantly associated with poor disease-free survival (p < 0.05). More patients recurred/progressed in PIGR altered group compared to unaltered group (p < 0.01). PIGR was significantly higher in HCC patients with incomplete cirrhosis (p < 0.001) and established cirrhosis (p < 0.05). Fewer patients had N0 lymph node stage in PIGR altered group than those in the unaltered group (p < 0.05). PIGR RNAseq revealed that ribosome signaling was the common pathway in PIGR overexpression and PIGR knockdown samples. RNAseq analysis indicated that RPL10, RPL10A, RPL12, RPL19, RPL36, RPL38, RPL41, RPL6, RPL8, RPS12, RPS14, RPS15A, RPS2, RPS27A and RPSA were significantly upregulated in PIGR overexpression group and downregulated in PIGR underexpression group (all p < 0.05). Conclusions: Aberrant PIGR was associated with HCC recurrence, and PIGR stimulated ribosome pathway might be a potential mechanism.
Collapse
MESH Headings
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Carcinogenesis/genetics
- Carcinoma, Hepatocellular/blood
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Datasets as Topic
- Disease Progression
- Disease-Free Survival
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Liver/pathology
- Liver Neoplasms/blood
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Liver Neoplasms/pathology
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- RNA-Seq
- Receptors, Polymeric Immunoglobulin/blood
- Receptors, Polymeric Immunoglobulin/genetics
- Ribosomal Proteins/metabolism
- Ribosomes/metabolism
- Signal Transduction/genetics
- Up-Regulation
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Jijie Zhang
- Department of Oncology, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Jiangsu 212300, China
| | - Xiaorong Chen
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Zongguo Yang
- Department of Integrative Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| |
Collapse
|
38
|
Niu Y, Shan L, Gao H, Zhang C, Qian Z, Wang Z, Xu X, Zhang X, Wang J, Ma L, Chen L, Yu Y. Huaier Suppresses the Hepatocellular Carcinoma Cell Cycle by Regulating Minichromosome Maintenance Proteins. Onco Targets Ther 2020; 13:12015-12025. [PMID: 33244243 PMCID: PMC7685376 DOI: 10.2147/ott.s279723] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/07/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) is a common malignant tumor with limited treatment. Our previous studies demonstrated that Huaier enhanced chemotherapy sensitivity and restrained HCC proliferation. This study aimed to identify differentially expressed proteins with Huaier treatment in HCC cells, providing molecular targets for future targeted therapy of HCC. Materials and Methods The effects of Huaier on the cell cycle were determined by flow cytometry and Western blot (WB). Xenograft models were used to verify the effects of Huaier on tumor growth. Then, proteomics was performed to identify the potential proteins regulated by Huaier. The enrichment analysis of GO and KEGG was performed for the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were used to detect the levels of proteins after Huaier treatment. After that the correlation of differentially expressed proteins with pathological stages was analyzed via the GEPIA database. We also analyzed candidate expression after Huaier treatment in HCC cells by WB and qRT-PCR. Furthermore, siRNA was performed to verify the targeted regulation of Huaier on candidate proteins. Results First, the proteomics data showed that a total of 160 proteins were identified as differentially expressed proteins, among which six minichromosome maintenance (MCM) family members were enriched in the tumor-associated pathways after Huaier treatment. Moreover, MCM proteins were highly expressed in HCC and closely correlated with the survival of HCC patients. Finally, we confirmed that MCM proteins were targets of Huaier treatment in HCC cells. Conclusion Huaier treatment was closely associated with the activation and inhibition of cancer-related pathways, and the MCM family was identified as a potential target in the antitumor process of Huaier. This study is helpful in understanding the molecular alterations and clinical relevance of HCC after Huaier treatment, which is beneficial for finding new targets and designing effective chemotherapy regimens for the future treatment of HCC.
Collapse
Affiliation(s)
- Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Liang Shan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, People's Republic of China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zijun Qian
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Xin Xu
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Xiao Zhang
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Jiayi Wang
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Lifang Ma
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China.,Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Liyun Chen
- Institute of Science, Technology and Humanities of Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, People's Republic of China.,Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
39
|
Deng LJ, Qi M, Li N, Lei YH, Zhang DM, Chen JX. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J Leukoc Biol 2020; 108:493-508. [PMID: 32678943 PMCID: PMC7496826 DOI: 10.1002/jlb.3mr0320-444r] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
A wealth of evidence supports the role of tumor immunotherapy as a vital therapeutic option in cancer. In recent decades, accumulated studies have revealed the anticancer activities of natural products and their derivatives. Increasing interest has been driven toward finding novel potential modulators of tumor immunotherapy from natural products, a hot research topic worldwide. These works of research mainly focused on natural products, including polyphenols (e.g., curcumin, resveratrol), cardiotonic steroids (e.g., bufalin and digoxin), terpenoids (e.g., paclitaxel and artemisinins), and polysaccharide extracts (e.g., lentinan). Compelling data highlight that natural products have a promising future in tumor immunotherapy. Considering the importance and significance of this topic, we initially discussed the integrated research progress of natural products and their derivatives, including target T cells, macrophages, B cells, NKs, regulatory T cells, myeloid‐derived suppressor cells, inflammatory cytokines and chemokines, immunogenic cell death, and immune checkpoints. Furthermore, these natural compounds inactivate several key pathways, including NF‐κB, PI3K/Akt, MAPK, and JAK/STAT pathways. Here, we performed a deep generalization, analysis, and summarization of the previous achievements, recent progress, and the bottlenecks in the development of natural products as tumor immunotherapy. We expect this review to provide some insight for guiding future research.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-He Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
40
|
Wei X, Zhang Y, Yang Z, Sha Y, Pan Y, Chen Y, Cai L. Analysis of the role of the interleukins in colon cancer. Biol Res 2020; 53:20. [PMID: 32381120 PMCID: PMC7203842 DOI: 10.1186/s40659-020-00287-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 01/21/2023] Open
Abstract
Background The role of interleukin family in colon cancer remained controversial. The purpose of this study was to investigate the association between interleukin family and colon cancer progression through bioinformatics methods and to validate such association in clinical patients. Methods A total of 15 differentially expressed interleukins between the colon cancer tissue and normal colon tissue were evaluated from the Cancer Genome Atlas (TCGA) database with R software and only interleukin-7 (IL-7) was significantly associated with survival. The signaling pathway associated with IL-7 was then investigated using gene enrichment analysis. In addition, subsets of TNM were analyzed in detail and univariate and multivariate COX regression analysis were conducted. Finally, we performed western blotting, immunohistochemistry, cell proliferation and cell apoptosis analysis to examine the expression of IL-7 in patients with intestinal cancer. Results The study demonstrated that IL-7 could inhibit the progression of colon cancer. In addition, IL-7 was found to be associated with overall survival (OS) and pathological stage. Further analysis of IL-7 expression with clinical data indicated that IL-7 was a key factor in inhibiting colon cancer progression. Conclusion IL-7 was a key factor in inhibiting the progression of colon cancer and was closely related to overall survival.
Collapse
Affiliation(s)
- Xiyi Wei
- Department of General Surgery, Shanghai Pudong Hospita, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, 201399, Shanghai, China.,First Clinical Medical College of Nanjing Medical University, 210029, Nanjing, China
| | - Yuan Zhang
- Department of General Surgery, Shanghai Pudong Hospita, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, 201399, Shanghai, China
| | - Zhou Yang
- Department of General Surgery, Shanghai Pudong Hospita, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, 201399, Shanghai, China
| | - Yeqin Sha
- First Clinical Medical College of Nanjing Medical University, 210029, Nanjing, China
| | - Yitong Pan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 211116, Nanjing, China
| | - Yusheng Chen
- Department of General Surgery, Shanghai Pudong Hospita, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, 201399, Shanghai, China.
| | - Lei Cai
- Department of General Surgery, Shanghai Pudong Hospita, Fudan University Pudong Medical Center, 2800 Gongwei Road, Huinan Town, Pudong, 201399, Shanghai, China.
| |
Collapse
|
41
|
Cardiac glycosides with target at direct and indirect interactions with nuclear receptors. Biomed Pharmacother 2020; 127:110106. [PMID: 32248001 DOI: 10.1016/j.biopha.2020.110106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiac glycosides are compounds isolated from plants and animals and have been known since ancient times. These compounds inhibit the activity of the sodium potassium pump in eukaryotic cells. Cardiac glycosides were used as drugs in heart ailments to increase myocardial contraction force and, at the same time, to lower frequency of this contraction. An increasing number of studies have indicated that the biological effects of these compounds are not limited to inhibition of sodium-potassium pump activity. Furthermore, an increasing number of data have shown that they are synthesized in tissues of mammals, where they may act as a new class of steroid hormones or other hormones by mimicry to modulate various signaling pathways and influence whole organisms. Thus, we discuss the interactions of cardiac glycosides with the nuclear receptor superfamily of transcription factors activated by low-weight molecular ligands (including hormones) that regulate many functions of cells and organisms. Cardiac glycosides of endogenous and exogenous origin by interacting with nuclear receptors can affect the processes regulated by these transcription factors, including hormonal management, immune system, body defense, and carcinogenesis. They can also be treated as initial structures for combinatorial chemistry to produce new compounds (including drugs) with the desired properties.
Collapse
|
42
|
Sun SS, Fu Y, Lin JY. Upregulation of MYBL2 independently predicts a poorer prognosis in patients with clear cell renal cell carcinoma. Oncol Lett 2020; 19:2765-2772. [PMID: 32218829 PMCID: PMC7068560 DOI: 10.3892/ol.2020.11408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
MYB protooncogene-like 2 (MYBL2) is a transcription factor that is upregulated and significantly associated with various human cancer types. However, the potential role of MYBL2 in clear cell renal cell carcinoma (ccRCC) is yet to be elucidated. Therefore, the expression and biological functions of MYBL2 in ccRCC were assessed in the current study using The Cancer Genome Atlas (TCGA). A Wilcoxon signed-rank test was performed to compare MYBL2 expression between ccRCC and normal tissues. Moreover, the association between MYBL2 expression and various clinicopathological factors was estimated using both the Wilcoxon signed-rank test and logistic regression. The differences in prognosis between patients with high- and low-MYBL2 expression were analyzed via the Kaplan-Meier method and Cox regression analysis. Finally, gene set enrichment analysis (GSEA) was performed to investigate the biofunctions of MYBL2 in ccRCC. It was revealed that MYBL2 was upregulated in ccRCC, and that the MYBL2 high-expression phenotype was significantly associated with sex, a high histological grade, an advanced clinical stage, tumor stage, lymph node metastasis, distant metastasis and poor overall survival (OS). It was also revealed, via the Cox regression analysis, that the upregulation of MYBL2 expression was able to independently predict a poor prognosis in patients with ccRCC. GSEA indicated that the intestinal immune network for IgA production, primary immunodeficiency, the janus kinase (JAK)-signal transducer and activator of transcription (STAT) signaling pathway, the cytosolic DNA-sensing pathway, the p53 signaling pathway and the chemokine signaling pathway were all enriched in the high-MYBL2 expression datasets. In conclusion, the present findings indicate that MYBL2 may be used as an independent prognostic factor in patients with ccRCC.
Collapse
Affiliation(s)
- Shan-Shan Sun
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Fu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jian-Yang Lin
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
43
|
Ma L, Jiang H, Xu X, Zhang C, Niu Y, Wang Z, Tao Y, Li Y, Cai F, Zhang X, Wang X, Yu Y. Tanshinone IIA mediates SMAD7-YAP interaction to inhibit liver cancer growth by inactivating the transforming growth factor beta signaling pathway. Aging (Albany NY) 2019; 11:9719-9737. [PMID: 31711043 PMCID: PMC6874425 DOI: 10.18632/aging.102420] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Tanshinone IIA (TanIIA)-an active constituent of Salvia miltiorrhiza, a traditional Chinese medicinal plant-is known to have blood circulation promotion and anti-tumor properties. Tan IIA can induce tumor cell death and inhibit tumor growth. However, the functions and underling molecular mechanisms of Tan IIA action on human liver cancer cells remain poorly understand. In this study, we found that Tanshinone IIA mediates SMAD7-YAP interaction to induce liver cancer cell apoptosis and inhibit cell growth and migration by inactivating the transforming growth factor beta (TGF-β) signaling pathway. Our findings showed that the Tan IIA-SMAD7-YAP regulatory network might be an effective strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China.,Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Hongyuan Jiang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yan Li
- Department of Oncology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Feng Cai
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Xiao Zhang
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Xinghe Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yongchun Yu
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China.,Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
44
|
Xu X, Tao Y, Niu Y, Wang Z, Zhang C, Yu Y, Ma L. miR-125a-5p inhibits tumorigenesis in hepatocellular carcinoma. Aging (Albany NY) 2019; 11:7639-7662. [PMID: 31527306 PMCID: PMC6781988 DOI: 10.18632/aging.102276] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/07/2019] [Indexed: 04/16/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and deadly cancers world-wide. miR-125a-5p is a tumor suppressor in HCC and other cancers, but its mechanisms of action during HCC tumorigenesis remain largely unknown. In this study, we found that miR-125a-5p expression was significantly lower in HCC tissues and cell lines than matched normal tissues and liver cells. miR-125a-5p overexpression inhibited HCC cell proliferation and induced apoptosis in vitro and in vivo, while miR-125a-5p knockdown had the opposite effects. In addition, PTPN1 and MAP3K11 were identified as targets of miR-125a-5p. Knocking down PTPN1 and MAP3K11 activated the JNK MAPK signaling pathway to suppress HCC cell proliferation and induce apoptosis. Our findings suggest that miR-125a-5p may be a useful therapeutic target for treatment of HCC patients.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yuquan Tao
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yongjie Niu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Zhixian Wang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Congcong Zhang
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yongchun Yu
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
| | - Lifang Ma
- Institute for Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, P.R. China
- Department of Clinical Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| |
Collapse
|
45
|
Wan B, Huang Y, Liu B, Lu L, Lv C. AURKB: a promising biomarker in clear cell renal cell carcinoma. PeerJ 2019; 7:e7718. [PMID: 31576249 PMCID: PMC6752188 DOI: 10.7717/peerj.7718] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/21/2019] [Indexed: 12/17/2022] Open
Abstract
Background Aurora kinase B (AURKB) is an important carcinogenic factor in various tumors, while its role in clear cell renal cell carcinoma (ccRCC) still remains unclear. This study aimed to investigate its prognostic value and mechanism of action in ccRCC. Methods Gene expression profiles and clinical data of ccRCC patients were downloaded from The Cancer Genome Atlas database. R software was utilized to analyze the expression and prognostic role of AURKB in ccRCC. Gene set enrichment analysis (GSEA) was used to analyze AURKB related signaling pathways in ccRCC. Results AURKB was expressed at higher levels in ccRCC tissues than normal kidney tissues. Increased AURKB expression in ccRCC correlated with high histological grade, pathological stage, T stage, N stage and distant metastasis (M stage). Kaplan-Meier survival analysis suggested that high AURKB expression patients had a worse prognosis than patients with low AURKB expression levels. Multivariate Cox analysis showed that AURKB expression is a prognostic factor of ccRCC. GSEA indicated that genes involved in autoimmune thyroid disease, intestinal immune network for IgA production, antigen processing and presentation, cytokine-cytokine receptor interaction, asthma, etc., were differentially enriched in the AURKB high expression phenotype. Conclusions AURKB is a promising biomarker for predicting prognosis of ccRCC patients and a potential therapeutic target. In addition, AURKB might regulate progression of ccRCC through modulating intestinal immune network for IgA production and cytokine-cytokine receptor interaction, etc. signaling pathways. However, more research is necessary to validate the findings.
Collapse
Affiliation(s)
- Bangbei Wan
- Urology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Yuan Huang
- Neurology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| | - Bo Liu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou, China
| | - Likui Lu
- Institute for Fetology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cai Lv
- Urology, Haikou Municipal People's Hospital and Central South University Xiangya Medical College Affiliated Hospital, Haikou, China
| |
Collapse
|