1
|
Ferri G, Tesi M, Pesce L, Bugliani M, Grano F, Occhipinti M, Suleiman M, De Luca C, Marselli L, Marchetti P, Cardarelli F. Spatiotemporal Correlation Spectroscopy Reveals a Protective Effect of Peptide-Based GLP-1 Receptor Agonism against Lipotoxicity on Insulin Granule Dynamics in Primary Human β-Cells. Pharmaceutics 2021; 13:pharmaceutics13091403. [PMID: 34575477 PMCID: PMC8464798 DOI: 10.3390/pharmaceutics13091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/18/2021] [Accepted: 09/02/2021] [Indexed: 12/25/2022] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are being used for the treatment of type 2 diabetes (T2D) and may have beneficial effects on the pancreatic β-cells. Here, we evaluated the effects of GLP-1R agonism on insulin secretory granule (ISG) dynamics in primary β-cells isolated from human islets exposed to palmitate-induced lipotoxic stress. Islets cells were exposed for 48 h to 0.5 mM palmitate (hereafter, ‘Palm’) with or without the addition of a GLP-1 agonist, namely 10 nM exendin-4 (hereafter, ‘Ex-4’). Dissociated cells were first transfected with syncollin-EGFP in order to fluorescently mark the ISGs. Then, by applying a recently established spatiotemporal correlation spectroscopy technique, the average structural (i.e., size) and dynamic (i.e., the local diffusivity and mode of motion) properties of ISGs are extracted from a calculated imaging-derived Mean Square Displacement (iMSD) trace. Besides defining the structural/dynamic fingerprint of ISGs in human cells for the first time, iMSD analysis allowed to probe fingerprint variations under selected conditions: namely, it was shown that Palm affects ISGs dynamics in response to acute glucose stimulation by abolishing the ISGs mobilization typically imparted by glucose and, concomitantly, by reducing the extent of ISGs active/directed intracellular movement. By contrast, co-treatment with Ex-4 normalizes ISG dynamics, i.e., re-establish ISG mobilization and ability to perform active transport in response to glucose stimulation. These observations were correlated with standard glucose-stimulated insulin secretion (GSIS), which resulted in being reduced in cells exposed to Palm but preserved in cells concomitantly exposed to 10 nM Ex-4. Our data support the idea that GLP-1R agonism may exert its beneficial effect on human β-cells under metabolic stress by maintaining ISGs’ proper intracellular dynamics.
Collapse
Affiliation(s)
- Gianmarco Ferri
- Laboratorio NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Marta Tesi
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Luca Pesce
- Laboratorio NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Francesca Grano
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Margherita Occhipinti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Carmela De Luca
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, 56127 Pisa, Italy; (M.T.); (M.B.); (F.G.); (M.O.); (M.S.); (C.D.L.); (L.M.); (P.M.)
| | - Francesco Cardarelli
- Laboratorio NEST-Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy; (G.F.); (L.P.)
- Correspondence:
| |
Collapse
|
2
|
Durso W, Martins M, Marchetti L, Cremisi F, Luin S, Cardarelli F. Lysosome Dynamic Properties during Neuronal Stem Cell Differentiation Studied by Spatiotemporal Fluctuation Spectroscopy and Organelle Tracking. Int J Mol Sci 2020; 21:ijms21093397. [PMID: 32403391 PMCID: PMC7247004 DOI: 10.3390/ijms21093397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 01/20/2023] Open
Abstract
We investigated lysosome dynamics during neuronal stem cell (NSC) differentiation by two quantitative and complementary biophysical methods based on fluorescence: imaging-derived mean square displacement (iMSD) and single-particle tracking (SPT). The former extracts the average dynamics and size of the whole population of moving lysosomes directly from imaging, with no need to calculate single trajectories; the latter resolves the finest heterogeneities and dynamic features at the single-lysosome level, which are lost in the iMSD analysis. In brief, iMSD analysis reveals that, from a structural point of view, lysosomes decrement in size during NSC differentiation, from 1 μm average diameter in the embryonic cells to approximately 500 nm diameter in the fully differentiated cells. Concomitantly, iMSD analysis highlights modification of key dynamic parameters, such as the average local organelle diffusivity and anomalous coefficient, which may parallel cytoskeleton remodeling during the differentiation process. From average to local, SPT allows mapping heterogeneous dynamic responses of single lysosomes in different districts of the cells. For instance, a dramatic decrease of lysosomal transport in the soma is followed by a rapid increase of transport in the projections at specific time points during neuronal differentiation, an observation compatible with the hypothesis that lysosomal active mobilization shifts from the soma to the newborn projections. Our combined results provide new insight into the lysosome size and dynamics regulation throughout NSC differentiation, supporting new functions proposed for this organelle.
Collapse
Affiliation(s)
- William Durso
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Manuella Martins
- Bio@SNS Laboratory—Scuola Normale Superiore, via G. Moruzzi, 1, 56126 Pisa, Italy; (M.M.); (F.C.)
| | - Laura Marchetti
- Center for Nanotechnology Innovation@NEST (CNI@NEST), Piazza San Silvestro 12, 56126 Pisa, Italy;
| | - Federico Cremisi
- Bio@SNS Laboratory—Scuola Normale Superiore, via G. Moruzzi, 1, 56126 Pisa, Italy; (M.M.); (F.C.)
| | - Stefano Luin
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
- NEST, Istituto Nanoscienze, CNR, Piazza San Silvestro 12, 56127 Pisa, Italy
- Correspondence: (S.L.); (F.C.)
| | - Francesco Cardarelli
- NEST Laboratory—Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
- Correspondence: (S.L.); (F.C.)
| |
Collapse
|
3
|
Ferri G, Digiacomo L, Lavagnino Z, Occhipinti M, Bugliani M, Cappello V, Caracciolo G, Marchetti P, Piston DW, Cardarelli F. Insulin secretory granules labelled with phogrin-fluorescent proteins show alterations in size, mobility and responsiveness to glucose stimulation in living β-cells. Sci Rep 2019; 9:2890. [PMID: 30814595 PMCID: PMC6393586 DOI: 10.1038/s41598-019-39329-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/15/2019] [Indexed: 11/13/2022] Open
Abstract
The intracellular life of insulin secretory granules (ISGs) from biogenesis to secretion depends on their structural (e.g. size) and dynamic (e.g. diffusivity, mode of motion) properties. Thus, it would be useful to have rapid and robust measurements of such parameters in living β-cells. To provide such measurements, we have developed a fast spatiotemporal fluctuation spectroscopy. We calculate an imaging-derived Mean Squared Displacement (iMSD), which simultaneously provides the size, average diffusivity, and anomalous coefficient of ISGs, without the need to extract individual trajectories. Clustering of structural and dynamic quantities in a multidimensional parametric space defines the ISGs' properties for different conditions. First, we create a reference using INS-1E cells expressing proinsulin fused to a fluorescent protein (FP) under basal culture conditions and validate our analysis by testing well-established stimuli, such as glucose intake, cytoskeleton disruption, or cholesterol overload. After, we investigate the effect of FP-tagged ISG protein markers on the structural and dynamic properties of the granule. While iMSD analysis produces similar results for most of the lumenal markers, the transmembrane marker phogrin-FP shows a clearly altered result. Phogrin overexpression induces a substantial granule enlargement and higher mobility, together with a partial de-polymerization of the actin cytoskeleton, and reduced cell responsiveness to glucose stimulation. Our data suggest a more careful interpretation of many previous ISG-based reports in living β-cells. The presented data pave the way to high-throughput cell-based screening of ISG structure and dynamics under various physiological and pathological conditions.
Collapse
Affiliation(s)
- Gianmarco Ferri
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genoa, Italy
| | - Luca Digiacomo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Zeno Lavagnino
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Margherita Occhipinti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - Marco Bugliani
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | | | - Giulio Caracciolo
- Department of Molecular Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, Islet Cell Laboratory, University of Pisa, Pisa, Italy
| | - David W Piston
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Francesco Cardarelli
- NEST - Scuola Normale Superiore, Istituto Nanoscienze - CNR (CNR-NANO), Pisa, Italy.
| |
Collapse
|