1
|
Zhong Z, Li X, Gao L, Wu X, Ye Y, Zhang X, Zeng Q, Zhou C, Lu X, Wei Y, Ding Y, Chen S, Zhou G, Xu J, Liu S. Long Non-coding RNA Involved in the Pathophysiology of Atrial Fibrillation. Cardiovasc Drugs Ther 2025; 39:435-458. [PMID: 37702834 PMCID: PMC11954709 DOI: 10.1007/s10557-023-07491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Atrial fibrillation (AF) is a prevalent and chronic cardiovascular disorder associated with various pathophysiological alterations, including atrial electrical and structural remodeling, disrupted calcium handling, autonomic nervous system dysfunction, aberrant energy metabolism, and immune dysregulation. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play a significant role in the pathogenesis of AF. OBJECTIVE This discussion aims to elucidate the involvement of AF-related lncRNAs, with a specific focus on their role as miRNA sponges that modulate crucial signaling pathways, contributing to the progression of AF. We also address current limitations in AF-related lncRNA research and explore potential future directions in this field. Additionally, we summarize feasible strategies and promising delivery systems for targeting lncRNAs in AF therapy. CONCLUSION In conclusion, targeting AF-related lncRNAs holds substantial promise for future investigations and represents a potential therapeutic avenue for managing AF.
Collapse
Affiliation(s)
- Zikan Zhong
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xintao Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longzhe Gao
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Wu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yutong Ye
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Zhang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingye Zeng
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changzuan Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Wei
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Ding
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Songwen Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Juan Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaowen Liu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Gaggi G, Hausman C, Cho S, Badalamenti BC, Trinh BQ, Di Ruscio A, Ummarino S. LncRNAs Ride the Storm of Epigenetic Marks. Genes (Basel) 2025; 16:313. [PMID: 40149464 PMCID: PMC11942515 DOI: 10.3390/genes16030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Advancements in genome sequencing technologies have uncovered the multifaceted roles of long non-coding RNAs (lncRNAs) in human cells. Recent discoveries have identified lncRNAs as major players in gene regulatory pathways, highlighting their pivotal role in human cell growth and development. Their dysregulation is implicated in the onset of genetic disorders and age-related diseases, including cancer. Specifically, they have been found to orchestrate molecular mechanisms impacting epigenetics, including DNA methylation and hydroxymethylation, histone modifications, and chromatin remodeling, thereby significantly influencing gene expression. This review provides an overview of the current knowledge on lncRNA-mediated epigenetic regulation of gene expression, emphasizing the biomedical implications of lncRNAs in the development of different types of cancers and genetic diseases.
Collapse
Affiliation(s)
- Giulia Gaggi
- Department of Medicine and Aging Sciences, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- UdA-TechLab, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Clinton Hausman
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Soomin Cho
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Brianna C. Badalamenti
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Bon Q. Trinh
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA;
- Molecular Genetics & Epigenetics Program, University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA
| | - Annalisa Di Ruscio
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Simone Ummarino
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA; (C.H.); (S.C.); (B.C.B.)
- Beth Israel Deaconess Medical Center, Cancer Research Institute, Boston, MA 02215, USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Biology, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
3
|
Xuan L, Guo J, Luo H, Cui S, Sun F, Wang G, Yang X, Li S, Zhang H, Zhang Q, Yang H, Wang S, Hu X, Yang B, Sun L. CCRR regulate MYZAP-PKP2-Nav1.5 signaling pathway in atrial fibrillation following myocardial infarction. iScience 2024; 27:111102. [PMID: 39507261 PMCID: PMC11539591 DOI: 10.1016/j.isci.2024.111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia which brings a heavy burden to the lives and health of patients worldwide. Our earlier research documented cardiac conduction regulatory RNA (CCRR) as an antiarrhythmic lncRNA in heart failure. Here, we report that CCRR was decreased in atrial tissue after MI, MYZAP, and Nav1.5 were increased in the atrium in cardiac-specific transgenic CCRR overexpression mice. Overexpression of CCRR carried by AAV-9 reversed the incidence and duration of AF and atrial conduction velocity in MI mice. MYZAP overexpression reversed the decreasing levels of PKP2, Nav1.5, and AF incidence after MI in addition to downregulating the expression levels of TLR2, TLR4, and inflammation-related factors following MI. Our work revealed that CCRR can improve the occurrence and development of AF after MI through the MYZAP-PKP2 pathway and inhibit Nav1.5 and TLR signaling pathways associated with inflammation, thus serving as a therapeutic target for AF.
Collapse
Affiliation(s)
- Lina Xuan
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jianjun Guo
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Huishan Luo
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shijia Cui
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Feihan Sun
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Guangze Wang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xingmei Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Siyun Li
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hailong Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qingqing Zhang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Hua Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Shengjie Wang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaolin Hu
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Baofeng Yang
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, Heilongjiang, China
| | - Lihua Sun
- Department of Pharmacology (State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Joint International Research Laboratory of Cardiovascular Medicine Research, Ministry of Education, China), College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| |
Collapse
|
4
|
Senthivel V, Jolly B, Vr A, Bajaj A, Bhoyar R, Imran M, Vignesh H, Divakar MK, Sharma G, Rai N, Kumar K, Mp J, Krishna M, Shenthar J, Ali M, Abqari S, Nadri G, Scaria V, Naik N, Sivasubbu S. Whole genome sequencing of families diagnosed with cardiac channelopathies reveals structural variants missed by whole exome sequencing. J Hum Genet 2024; 69:455-465. [PMID: 38890497 DOI: 10.1038/s10038-024-01265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/07/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Cardiac channelopathies are a group of heritable disorders that affect the heart's electrical activity due to genetic variations present in genes coding for ion channels. With the advent of new sequencing technologies, molecular diagnosis of these disorders in patients has paved the way for early identification, therapeutic management and family screening. The objective of this retrospective study was to understand the efficacy of whole-genome sequencing in diagnosing patients with suspected cardiac channelopathies who were reported negative after whole exome sequencing and analysis. We employed a 3-tier analysis approach to identify nonsynonymous variations and loss-of-function variations missed by exome sequencing, and structural variations that are better resolved only by sequencing whole genomes. By performing whole genome sequencing and analyzing 25 exome-negative cardiac channelopathy patients, we identified 3 pathogenic variations. These include a heterozygous likely pathogenic nonsynonymous variation, CACNA1C:NM_000719:exon19:c.C2570G:p. P857R, which causes autosomal dominant long QT syndrome in the absence of Timothy syndrome, a heterozygous loss-of-function variation CASQ2:NM_001232.4:c.420+2T>C classified as pathogenic, and a 9.2 kb structural variation that spans exon 2 of the KCNQ1 gene, which is likely to cause Jervell-Lange-Nielssen syndrome. In addition, we also identified a loss-of-function variation and 16 structural variations of unknown significance (VUS). Further studies are required to elucidate the role of these identified VUS in gene regulation and decipher the underlying genetic and molecular mechanisms of these disorders. Our present study serves as a pilot for understanding the utility of WGS over clinical exomes in diagnosing cardiac channelopathy disorders.
Collapse
Affiliation(s)
- Vigneshwar Senthivel
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bani Jolly
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arvinden Vr
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anjali Bajaj
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul Bhoyar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohamed Imran
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Harie Vignesh
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Mohit Kumar Divakar
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gautam Sharma
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Nitin Rai
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kapil Kumar
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jayakrishnan Mp
- Government Medical College, Kozhikode, Kerala, 673008, India
| | - Maniram Krishna
- Tiny Hearts Fetal and Pediatric Clinic, Thanjavur, Tamil Nadu, 613001, India
| | - Jeyaprakash Shenthar
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Muzaffar Ali
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru, Karnataka, 560069, India
| | - Shaad Abqari
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gulnaz Nadri
- Jawaharlal Nehru Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Vinod Scaria
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nitish Naik
- Department of Cardiology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| | - Sridhar Sivasubbu
- CSIR- Institute of Genomics and Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Wen JL, Ruan ZB, Wang F, Hu Y. Progress of circRNA/lncRNA-miRNA-mRNA axis in atrial fibrillation. PeerJ 2023; 11:e16604. [PMID: 38144204 PMCID: PMC10740593 DOI: 10.7717/peerj.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Atrial fibrillation (AF) is a prevalent arrhythmia that requires effective biomarkers and therapeutic targets for clinical management. In recent years, non-coding RNAs (ncRNAs) have emerged as key players in the pathogenesis of AF, particularly through the ceRNA (competitive endogenous RNA) mechanism. By acting as ceRNAs, ncRNAs can competitively bind to miRNAs and modulate the expression of target mRNAs, thereby influencing the biological behavior of AF. The ceRNA axis has shown promise as a diagnostic and prognostic biomarker for AF. This review provides a comprehensive overview of the roles of ncRNAs in the development and progression of AF, highlighting the intricate crosstalk between different ncRNAs in AF pathophysiology. Furthermore, we discuss the potential implications of targeting the circRNA/lncRNA-miRNA-mRNA axis for the diagnosis, prognosis, and therapeutic intervention of AF.
Collapse
Affiliation(s)
- Jia-le Wen
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
- Dalian Medical University, Dalian, China
| | - Zhong-bao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Fei Wang
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Yuhua Hu
- Dalian Medical University, Dalian, China
| |
Collapse
|
6
|
Beylerli O, Ju J, Beilerli A, Gareev I, Shumadalova A, Ilyasova T, Bai Y, Yang B. The roles of long noncoding RNAs in atrial fibrillation. Noncoding RNA Res 2023; 8:542-549. [PMID: 37602317 PMCID: PMC10432912 DOI: 10.1016/j.ncrna.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atrial fibrillation (AF) is a common cardiac arrhythmia that often occurs in patients with structural heart disease and is a significant cause of morbidity and mortality in clinical settings. AF is typically associated with significant changes of both the structure of the atria and the cardiac conduction system. AF can result in reduced heart function, heart failure, and various other complications. Current drug therapy for AF patients is often ineffective and may have adverse effects. Radiofrequency ablation is more effective than traditional drug therapy, but this invasive procedure carries potential risks and may lead to postoperative recurrence, limiting the clinical benefits to some extent. Therefore, in-depth research into the molecular mechanisms of AF and exploration of new treatment strategies based on research findings are prerequisites for improving the treatment of AF and the associated cardiac conditions. Long noncoding RNAs (lncRNAs) are a new class of noncoding RNA (ncRNAs) with a length exceeding 200 nt, which regulate gene expression at multiple levels. Increasing evidence suggests that lncRNAs participate in many pathological processes of AF initiation, development, and maintenance, such as structural remodeling, electrical remodeling, renin-angiotensin system anomalies, and intracellular calcium deregulation s. LncRNAs that play key roles in structural and electrical remodeling may become molecular markers and targets for AF diagnosis and treatment, respectively, while lncRNAs critical to autonomic nervous system remodeling may bring new insights into the prognosis and recurrence of AF. This review article provides a synopsis on the up-to-date research findings relevant to the roles of lncRNAs in AF.
Collapse
Affiliation(s)
- Ozal Beylerli
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 3 Lenin Street, 450008, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
7
|
Al-Masri A. Apoptosis and long non-coding RNAs: Focus on their roles in Heart diseases. Pathol Res Pract 2023; 251:154889. [PMID: 38238070 DOI: 10.1016/j.prp.2023.154889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Heart disease is one of the principal death reasons around the world and there is a growing requirement to discover novel healing targets that have the potential to avert or manage these illnesses. On the other hand, apoptosis is a strongly controlled, cell removal procedure that has a crucial part in numerous cardiac problems, such as reperfusion injury, MI (myocardial infarction), consecutive heart failure, and inflammation of myocardium. Completely comprehending the managing procedures of cell death signaling is critical as it is the primary factor that influences patient mortality and morbidity, owing to cardiomyocyte damage. Indeed, the prevention of heart cell death appears to be a viable treatment approach for heart illnesses. According to current researches, a number of long non-coding RNAs cause the heart cells death via different methods that are embroiled in controlling the activity of transcription elements, the pathways that signals transmission within cells, small miRNAs, and the constancy of proteins. When there is too much cell death in the heart, it can cause problems like reduced blood flow, heart damage after restoring blood flow, heart disease in diabetics, and changes in the heart after reduced blood flow. Therefore, studying how lncRNAs control apoptosis could help us find new treatments for heart diseases. In this review, we present recent discoveries about how lncRNAs are involved in causing cell death in different cardiovascular diseases.
Collapse
Affiliation(s)
- Abeer Al-Masri
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
8
|
Hanxiao Y, Boyun Y, Minyue J, Xiaoxiao S. Identification of a novel competing endogenous RNA network and candidate drugs associated with ferroptosis in aldosterone-producing adenomas. Aging (Albany NY) 2023; 15:9193-9216. [PMID: 37709486 PMCID: PMC10522391 DOI: 10.18632/aging.205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Aldosterone-producing adenoma (APA), characterized by unilaterally excessive aldosterone production, is a common cause of primary aldosteronism. Ferroptosis, a recently raised iron-dependent mode of programmed cell death, has been involved in the development and therapy of various diseases. This study obtained datasets of the mRNA and lncRNA expression profiles for APA and adjacent adrenal gland (AAG) from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) and lncRNAs (DE lncRNAs) associated with ferroptosis were identified. Enrichment analyses indicated 89 ferroptosis-related DEGs were primarily enriched in ROS related processes and ferroptosis. Two physical cores, and one combined core were identified in the protein-protein interaction (PPI). DEGs and clinical traits were used in conjunction to screen eight hub genes from two hub modules and 89 DEGs. A competitive endogenous RNA (ceRNA) network was constructed via co-express analysis. Thereafter, molecular docking was used to identify potential targets. Two active compounds, QL-X-138 and MK-1775, bound to AURKA and DUOX1, respectively, with the lowest binding energies. Molecular dynamics simulation verified the stability of the two complexes. In summary, our studies identified eight hub genes and a novel ceRNA regulatory network associated with ferroptosis, wherein QL-X-138 and MK-1775 were considered to be potential drugs for treating APA.
Collapse
Affiliation(s)
- Yu Hanxiao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Boyun
- Department of Allergy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Minyue
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Xiaoxiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Xue Z, Zhu J, Liu J, Wang L, Ding J. Research progress of non-coding RNA in atrial fibrillation. Front Cardiovasc Med 2023; 10:1210762. [PMID: 37522088 PMCID: PMC10379658 DOI: 10.3389/fcvm.2023.1210762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Atrial fibrillation (AF) is a common arrhythmia in clinic, and its incidence is increasing year by year. In today's increasingly prevalent society, ageing poses a huge challenge to global healthcare systems. AF not only affects patients' quality of life, but also causes thrombosis, heart failure and other complications in severe cases. Although there are some measures for the diagnosis and treatment of AF, specific serum markers and targeted therapy are still lacking. In recent years, ncRNAs have become a hot topic in cardiovascular disease research. These ncRNAs are not only involved in the occurrence and development of AF, but also in pathophysiological processes such as myocardial infarction and atherosclerosis, and are potential biomarkers of cardiovascular diseases. We believe that the understanding of the pathophysiological mechanism of AF and the study of diagnosis and treatment targets can form a more systematic diagnosis and treatment framework of AF and provide convenience for individuals with AF and the society.
Collapse
|
10
|
Zang X, Zhao Z, Chen K, Song W, Ma J, Fu H, Wang X, Zhao Y. SHP-1 alleviates atrial fibrosis in atrial fibrillation by modulating STAT3 activation. Exp Biol Med (Maywood) 2023; 248:979-990. [PMID: 37226737 PMCID: PMC10525403 DOI: 10.1177/15353702231165717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/04/2023] [Indexed: 05/26/2023] Open
Abstract
Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP-1) has a well-established role in myocardial infarction, yet its involvement in atrial fibrosis and atrial fibrillation (AF) has not been elucidated. As cardiac arrhythmias caused by AF are a major global health concern, we investigated whether SHP-1 modulates AF development. The degree of atrial fibrosis was examined using Masson's trichrome staining, and SHP-1 expression in the human atrium was assessed using quantitative polymerase chain reaction (qPCR), immunohistochemistry (IHC), and western blotting (WB). We also examined SHP-1 expression in cardiac tissue from an AF mouse model, as well as in angiotensin II (Ang II)-treated mouse atrial myocytes and fibroblasts. We found that SHP-1 expression was reduced with the aggravation of atrial fibrosis in clinical samples of patients with AF. SHP-1 was also downregulated in the heart tissue of AF mice and Ang II-treated myocytes and fibroblasts, compared with that in the control groups. Next, we demonstrated that SHP-1 overexpression alleviated AF severity in mice by injecting a lentiviral vector into the pericardial space. In Ang II-treated myocytes and fibroblasts, we observed excessive extracellular matrix (ECM) deposition, reactive oxygen species (ROS) generation, and transforming growth factor beta 1 (TGF-β1)/mothers against decapentaplegic homolog 2 (SMAD2) pathway activation, all of which were counteracted by the overexpression of SHP-1. Our WB data showed that STAT3 activation was inversely correlated with SHP-1 expression in samples from patients with AF, AF mice, and Ang II-treated cells. Furthermore, administration of colivelin, a STAT3 agonist, in SHP-1-overexpressing, Ang II-treated myocytes and fibroblasts resulted in higher levels of ECM deposition, ROS generation, and TGF-β1/SMAD2 activation. These findings indicate that SHP-1 regulates AF fibrosis progression by modulating STAT3 activation and is thus a potential treatment target for atrial fibrosis and AF.
Collapse
Affiliation(s)
- Xiaobiao Zang
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| | - Zhihan Zhao
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| | - Ke Chen
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| | - Weifeng Song
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| | - Jifang Ma
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| | - Haixia Fu
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| | - Xianqing Wang
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| | - Yonghui Zhao
- Department of Cardiology, Henan Provincial People’s Hospital, Fuwai Central China Cardiovascular Hospital, Zhengzhou 451460, China
| |
Collapse
|
11
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Samra M, Srivastava K. Non-coding RNA and their potential role in cardiovascular diseases. Gene 2023; 851:147011. [DOI: 10.1016/j.gene.2022.147011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
|
13
|
Tan W, Wang K, Yang X, Wang K, Wang N, Jiang TB. LncRNA HOTAIR promotes myocardial fibrosis in atrial fibrillation through binding with PTBP1 to increase the stability of Wnt5a. Int J Cardiol 2022; 369:21-28. [PMID: 35787431 DOI: 10.1016/j.ijcard.2022.06.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is one of the most common arrhythmia in clinical practice, and atrial fibrosis is the important mediator in AF. LncRNA HOTAIR was reported to be up-regulated in AF, while the underlying mechanism of HOTAIR in AF remains unclear. METHODS In vitro and in vivo AF model was established. qRT-PCR and Western blotting were used to assess the mRNA expression (HOTAIR, Wnt5a and PTBP1) and protein levels (Wnt5a, collagen I/III, α-SMA, CTGF, p-ERK, ERK, p-JNK, and JNK), respectively. MTT, CCK8, transwell assay was used to test cell viability, proliferation and migration, respectively. RIP assay assessed the correlation among HOTAIR, PTBP1 and Wnt5a. The level of α-SMA was detected by immunofluorescence. HE and Masson staining detected the histological changes and fibrosis in mouse heart tissues. RESULTS Ang II significantly increased the viability of atrial fibroblasts. The levels of HOTAIR and Wnt5a in fibroblasts were up-regulated by Ang II. HOTAIR silencing or Wnt5a significantly inhibited Ang II-induced proliferation, migration and fibrosis in fibroblasts. HOTAIR silencing repressed Wnt5a-mediated ERK and JNK signaling pathway, and Wnt5a partially abolished the effect of HOTAIR silencing on cell proliferation, migration and fibrosis. Meanwhile, HOTAIR could increase the mRNA stability of Wnt5a via recruiting PTBP1. Furthermore, HOTAIR knockdown notably inhibited the fibrosis in heart tissues of AF mice via regulation of Wnt signaling. CONCLUSION HOTAIR could promote atrial fibrosis in AF through binding with PTBP1 to increase Wnt5a stability. Our study might shed new insights on exploring new strategies against AF.
Collapse
Affiliation(s)
- Wei Tan
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, PR China; Department of Cardiovascular, Suqian First Hospital, Suqian 223800, Jiangsu Province, PR China
| | - Kun Wang
- Department of Thoracic and Cardiac Surgery, Suqian First Hospital, Suqian 223800, Jiangsu Province, PR China
| | - Xue Yang
- Department of Cardiovascular, Suqian First Hospital, Suqian 223800, Jiangsu Province, PR China
| | - Kun Wang
- Department of Cardiovascular, Suqian First Hospital, Suqian 223800, Jiangsu Province, PR China
| | - Ning Wang
- Department of Cardiovascular, Suqian First Hospital, Suqian 223800, Jiangsu Province, PR China
| | - Ting-Bo Jiang
- Department of Cardiovascular, The First Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu Province, PR China.
| |
Collapse
|
14
|
Xia F, Wang Y, Xue M, Zhu L, Jia D, Shi Y, Gao Y, Li L, Li Y, Chen S, Xu G, Yuan D, Yuan C. LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases. Genes Dis 2022; 9:1556-1565. [PMID: 36157505 PMCID: PMC9485204 DOI: 10.1016/j.gendis.2021.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) exhibit a length more than 200 nucleotides and they are characterized by non-coding RNAs (ncRNA) not encoded into proteins. Over the past few years, the role and development of lncRNAs have aroused the rising attention of researchers. To be specific, KCNQ1OT1, the KCNQ1 opposite strand/antisense transcript 1, is clearly classified as a regulatory ncRNA. KCNQ1OT1 is capable of interacting with miRNAs, RNAs and proteins, thereby affecting gene expression and various cell functions (e.g., cell proliferation, migration, epithelial-mesenchymal transition (EMT), apoptosis, viability, autophagy and inflammation). KCNQ1OT1 is dysregulated in a wide range of human diseases (e.g., cardiovascular disease, cancer, diabetes, osteoarthritis, osteoporosis and cataract), and it is speculated to act as a therapeutic target for treating various human diseases. On the whole, this review aims to explore the biological functions, underlying mechanisms and pathogenic roles of KCNQ1OT1 in human diseases.
Collapse
Affiliation(s)
- Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Silong Chen
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Guangfu Xu
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Ding Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.,Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, Hubei 443002, PR China.,Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
| |
Collapse
|
15
|
Ding Y, Duan H, Lin J, Zhang X. YY1 accelerates oral squamous cell carcinoma progression through long non-coding RNA Kcnq1ot1/microRNA-506-3p/SYPL1 axis. J Ovarian Res 2022; 15:77. [PMID: 35778739 PMCID: PMC9250217 DOI: 10.1186/s13048-022-01000-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/16/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Ying Yang1 (YY1) has already been discussed in oral squamous cell carcinoma (OSCC), but the knowledge about its mediation on long non-coding RNA KCNQ1 overlapping transcript 1/microRNA-506-3p/synaptophysin like 1 (Kcnq1ot/miR-506-3p/SYPL1) axis in OSCC is still in its infancy. Hence, this article aims to explain the mechanism of YY1/Kcnq1ot1/miR-506-3p/SYPL1 axis in OSCC development. METHODS YY1, Kcnq1ot1, miR-506-3p and SYPL1 expression levels were determined in OSCC tissues. The potential relation among YY1, Kcnq1ot1, miR-506-3p and SYPL1 was explored. Cell progression was observed to figure out the actions of depleted YY1, Kcnq1ot1 and SYPL1 and restored miR-506-3p in OSCC. OSCC tumorigenic ability in mice was examined. RESULTS Elevated YY1, Kcnq1ot1 and SYPL1 and reduced miR-506-3p were manifested in OSCC. YY1 promoted Kcnq1ot1 transcription and up-regulated Kcnq1ot1 expression, thereby promoting OSCC cell procession. Silencing Kcnq1ot1 or elevating miR-506-3p delayed OSCC cell progression and silencing Kcnq1ot1 impeded tumorigenic ability of OSCC cells in mice. YY1-mediated Kcnq1ot1 sponged miR-506-3p to target SYPL1. CONCLUSION YY1 promotes OSCC cell progression via up-regulating Kcnq1ot1 to sponge miR-506-3p to elevate SYPL1, guiding a novel way to treat OSCC.
Collapse
Affiliation(s)
- Yi Ding
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.,School of Life Sciences and Biophamaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Heng Duan
- Department of Pharmacy, Stomatological Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Jian Lin
- The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuanxuan Zhang
- Center for Drug Research and Development, Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
16
|
Sun Q, Gong J, Wu J, Hu Z, Zhang Q, Zhu X. SNHG1-miR-186-5p-YY1 feedback loop alleviates hepatic ischemia/reperfusion injury. Cell Cycle 2022; 21:1267-1279. [PMID: 35275048 PMCID: PMC9132488 DOI: 10.1080/15384101.2022.2046984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/20/2021] [Accepted: 02/23/2022] [Indexed: 11/03/2022] Open
Abstract
As a common cause of liver injury, hepatic ischemia/reperfusion injury (HIRI) happens in various clinical conditions including trauma, hepatectomy and liver transplantation. Since transcription factor Yin Yang 1 (YY1) was reported to be downregulated after ischemia/reperfusion (I/R) injury, we focused on YY1 to explore its function in HIRI by functional assays like Cell Counting Kit-8 (CCK-8) assays and flow cytometry assays. The RT-qPCR assay revealed that YY1 was downregulated in hepatocytes after I/R injury. The function assays disclosed that YY1 facilitated cell viability and proliferation, but hindered cell apoptosis in hepatocytes after I/R injury. Through mechanism assays including luciferase reporter assay, RIP and RNA pulldown assay, miR-186-5p was found to bind with YY1 and promote hepatocyte apoptosis by targeting YY1. Subsequently, we verified that small nucleolar RNA host gene 1 (SNHG1) could sponge miR-186-5p to upregulate YY1. Importantly, we figured out that YY1 had a positive regulation on SNHG1. Along the way, YY1 was identified as the upstream transcription factor for SNHG1. In conclusion, our study unveiled a novel competing endogenous RNA (ceRNA) pattern of SNHG1/miR-186-5p/YY1 positive feedback loop in hepatic I/R injury, which might provide new insight into prevention of HIRI during liver transplantation or hepatic surgery.
Collapse
Affiliation(s)
- Qiang Sun
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Jinlong Gong
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianlong Wu
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Zhipeng Hu
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Qiao Zhang
- General Surgery Department 1, Zhongshan Hospital, Sun Yat-sen University, Zhongshan, Guangdong, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Wang W, Han S, Gao W, Feng Y, Li K, Wu D. Long Noncoding RNA KCNQ1OT1 Confers Gliomas Resistance to Temozolomide and Enhances Cell Growth by Retrieving PIM1 From miR-761. Cell Mol Neurobiol 2022; 42:695-708. [PMID: 32897512 PMCID: PMC11441228 DOI: 10.1007/s10571-020-00958-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 08/30/2020] [Indexed: 12/17/2022]
Abstract
Many studies have found that the dysregulation of long noncoding RNA (lncRNA) contributed to cancer initiation, progression, and recurrence via multiple signaling pathways. However, the underlying mechanisms of lncRNA in temozolomide (TMZ)-resistant gliomas were not well understood, hindering the improvement of TMZ-based therapies. The present study demonstrated that the lncRNA KCNQ1OT1 increased in TMZ-resistant glioma cells compared to the TMZ-sensitive cells. The introduction of KCNQ1OT1 promoted cell viability, clonogenicity, and rhodamine 123 efflux while hampering TMZ-induced apoptosis. Moreover, KCNQ1OT1 directly sponged miR-761, which decreased in TMZ-resistant sublines. The overexpression of miR-761 attenuated cell viability and clonogenicity, while triggering apoptosis and rhodamine 123 accumulation post-TMZ exposure, leading to a response to TMZ. The interaction between miR-761 and 3'-untranslated region of PIM1 attenuated PIM1-mediated signaling cascades. Furthermore, the knockdown of KCNQ1OT1 augmented the TMZ-induced tumor regression in TMZ-resistant U251 mouse models. Briefly, the present study evaluated that KCNQ1OT1 conferred TMZ resistance by releasing PIM1 expression from miR-761, resulting in the upregulation of PIM-mediated MDR1, c-Myc, and Survivin. The present findings demonstrated that the interplay of KCNQ1OT1: miR-761: PIM1 regulated chemoresistance in gliomas and provided a promising therapeutic target for TMZ-resistant glioma patients.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Shuai Han
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Wei Gao
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Yuan Feng
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Kunhang Li
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Di Wu
- Department of Tumor Biotherapy and Cancer Research, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110001, People's Republic of China.
| |
Collapse
|
18
|
Nukala SB, Jousma J, Cho Y, Lee WH, Ong SG. Long non-coding RNAs and microRNAs as crucial regulators in cardio-oncology. Cell Biosci 2022; 12:24. [PMID: 35246252 PMCID: PMC8895873 DOI: 10.1186/s13578-022-00757-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/10/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality worldwide. Significant improvements in the modern era of anticancer therapeutic strategies have increased the survival rate of cancer patients. Unfortunately, cancer survivors have an increased risk of cardiovascular diseases, which is believed to result from anticancer therapies. The emergence of cardiovascular diseases among cancer survivors has served as the basis for establishing a novel field termed cardio-oncology. Cardio-oncology primarily focuses on investigating the underlying molecular mechanisms by which anticancer treatments lead to cardiovascular dysfunction and the development of novel cardioprotective strategies to counteract cardiotoxic effects of cancer therapies. Advances in genome biology have revealed that most of the genome is transcribed into non-coding RNAs (ncRNAs), which are recognized as being instrumental in cancer, cardiovascular health, and disease. Emerging studies have demonstrated that alterations of these ncRNAs have pathophysiological roles in multiple diseases in humans. As it relates to cardio-oncology, though, there is limited knowledge of the role of ncRNAs. In the present review, we summarize the up-to-date knowledge regarding the roles of long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) in cancer therapy-induced cardiotoxicities. Moreover, we also discuss prospective therapeutic strategies and the translational relevance of these ncRNAs.
Collapse
Affiliation(s)
- Sarath Babu Nukala
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Jordan Jousma
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Yoonje Cho
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, ABC-1 Building, 425 North 5th Street, Phoenix, AZ, 85004, USA.
| | - Sang-Ging Ong
- Department of Pharmacology & Regenerative Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
- Division of Cardiology, Department of Medicine, The University of Illinois College of Medicine, 909 S Wolcott Ave, COMRB 4100, Chicago, IL, 60612, USA.
| |
Collapse
|
19
|
Jiang W, Xu M, Qin M, Zhang D, Wu S, Liu X, Zhang Y. Role and mechanism of lncRNA under magnetic nanoparticles in atrial autonomic nerve remodeling during radiofrequency ablation of recurrent atrial fibrillation. Bioengineered 2022; 13:4173-4184. [PMID: 35114881 PMCID: PMC8973774 DOI: 10.1080/21655979.2021.2024324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
It aimed to investigate the mechanism of magnetic nanoparticles (MNPs) on atrial fibrillation and effect of n-isopropyl acrylamide coated MNPs (NIPA-co-MN) on the treatment of atrial fibrillation. Ten beagles weighing 20 - 25 kg were randomly divided into test group and control group. Dogs with atrial fibrillation were set as test group, and non-atrial fibrillation dogs as control group. The expression of long non-coding RNA (lncRNA) differentially expressed in the right anterior adipose pad in atrial fibrillation and non-atrial fibrillation dogs was detected by high-throughput sequencing. The relationship between lncRNA and cardiac autonomic nerve remodeling (CANR) was explored. In addition, 20 beagles weighing 20-25 kg were selected to study the therapeutic effect of n-isopropylacrylamide magnetic nanoparticles (NIPA-co-MN) on atrial fibrillation, and statistical analysis was performed. The volume and number of new neurons in the anterior right fat pad of atrium of test group were larger than the control group. The test group dogs produced 45 brand-new lncRNA, including 15 up-regulated transcripts and 30 down-regulated transcripts. MNPs injection can slow down the reduction of ventricular rate in right inferior ganglion plexus. The anterior right ganglion plexus resulted in a reduced amplitude of sinus tachyarrhythmia. This study provided references for the discovery of new diagnostic biomarkers or therapeutic targets and for the treatment of patients with atrial fibrillation.
Collapse
Affiliation(s)
- Weifeng Jiang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Xu
- Department of Cardiology, The People's Hospital of Suzhou New District, Suzhou City, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Daoliang Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shaohui Wu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
20
|
Wang W, Tian B, Ning Z, Li X. Research Progress of LncRNAs in Atrial Fibrillation. Mol Biotechnol 2022; 64:758-772. [PMID: 35107751 DOI: 10.1007/s12033-022-00449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/02/2022] [Indexed: 10/19/2022]
Abstract
Atrial fibrillation (AF) is one of the most common arrhythmias in adults, with high morbidity and increased mortality risk. In recent years, the clinical diagnosis, treatment, and mechanistic research of AF have increased exponentially, and regulation based on the potential molecular mechanism of AF is a research hotspot. Long noncoding RNAs (LncRNAs), usually refer to noncoding RNA transcripts greater than 200 nucleotides in length, have been shown to play a role in cardiovascular diseases such as coronary artery disease, heart failure, and myocardial fibrosis through various regulatory methods. An increasing number of researchers have begun to pay attention to the identification and function of LncRNAs in AF. This article reviews changes in the expression of related LncRNAs detected in AF and describes the LncRNAs that play a regulatory role in AF-related processes, to explore the potential of LncRNAs as new biomarkers and therapeutic targets in AF.
Collapse
Affiliation(s)
- Wenhui Wang
- Tongji University School of Medicine, Shanghai, 200082, China
| | - Bei Tian
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 of Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Zhongping Ning
- Department of Cardiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, No. 1500 of Zhouyuan Road, Pudong New District, Shanghai, 201318, China
| | - Xinming Li
- Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai, 200136, China.
| |
Collapse
|
21
|
Zhang L, Wang X, Huang C. A narrative review of non-coding RNAs in atrial fibrillation: potential therapeutic targets and molecular mechanisms. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1486. [PMID: 34734038 PMCID: PMC8506732 DOI: 10.21037/atm-21-4483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 11/11/2022]
Abstract
Objective This review summarizes the advances in the study of ncRNAs and atrial remodeling mechanisms to explore potential therapeutic targets and strategies for AF. Background Atrial fibrillation (AF) is one of the most common arrhythmias, and its morbidity and mortality rates are gradually increasing. Non-coding ribonucleic acid RNAs (ncRNAs) are transcribed from the genome and do not have the ability to be translated into proteins. A growing body of evidence has shown ncRNAs are extensively involved in the pathophysiological processes underlying AF. However, the precise molecular mechanisms of these associations have not been fully elucidated. Atrial remodeling plays a key role in the occurrence and development of AF, and includes electrical remodeling, structural remodeling, and autonomic nerve remodeling. Research has shown that ncRNA expression is altered in the plasma and tissues of AF patients that mediate cardiac excitation and arrhythmia, and is closely related to atrial remodeling. Methods Literatures about ncRNAs and atrial fibrillation were extensively reviewed to discuss and analyze. Conclusions The biology of ncRNAs represents a relatively new field of research and is still in an emerging stage. Recent studies have laid a foundation for understanding the molecular mechanisms of AF, future studies aimed at identifying how ncRNAs act on atrial fibrillation to provide potentially promising therapeutic targets for the treatment of atrial fibrillation.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
22
|
Dai W, Chao X, Jiang Z, Zhong G. lncRNA KCNQ1OT1 may function as a competitive endogenous RNA in atrial fibrillation by sponging miR‑223‑3p. Mol Med Rep 2021; 24:870. [PMID: 34698362 PMCID: PMC8569515 DOI: 10.3892/mmr.2021.12510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/01/2021] [Indexed: 11/26/2022] Open
Abstract
Atrial fibrillation (AF) is one of the most common forms of cardiac arrhythmia. Novel evidence has indicated that a competing endogenous RNA (ceRNA) mechanism may occur in AF. The present study aimed to identify differentially expressed microRNAs (miRNAs/miRs) in AF and predict their targeting long non-coding RNAs (lncRNAs) to identify a potential ceRNA network involved in AF using bioinformatics analysis. The GSE68475 microarray dataset was downloaded from the Gene Expression Omnibus database and differentially expressed miRNAs in AF were obtained. In addition, right atrial appendage (RAA) tissues from patients with AF were collected to determine the expression levels of the miRNAs identified following bioinformatics analysis using reverse transcription-quantitative PCR (n=8 per group). Subsequently, Gene Ontology (GO) functional term and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analyses of the target genes of differentially expressed miRNAs of interest were performed. The potential upstream lncRNAs targeting the identified miRNAs were predicted using bioinformatics analysis. A dual luciferase reporter assay was used to verify the existence of a targeted relationship between the differentially expressed miRNA and lncRNA of interest. The results identified 43 differentially expressed miRNAs, including 23 upregulated miRNAs. The trends in the expression levels of miR-223-3p were inconsistent between the microarray data and those recorded in the RAA tissues from patients with persistent AF. Therefore, miR-223-3p was selected as the miRNA of interest for further investigations. The target gene of miR-233-3p was found to be enriched in 57 GO terms and 21 KEGG signaling pathways. According to the bioinformatics prediction, 69 lncRNAs targeting miR-223-3p were identified, including the lncRNA growth arrest-specific transcript 5, lncRNA KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and lncRNA MYC-induced long non-coding RNA. The results from dual luciferase assay confirmed that miR-223-3p was a direct target of KCNQ1OT1. A ceRNA regulatory relationship may exist between KCNQ1OT1 and miR-223-3p in AF, providing therefore a novel potential research target for further studies.
Collapse
Affiliation(s)
- Weiran Dai
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xiaoying Chao
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhiyuan Jiang
- Department of Hypertension, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guoqiang Zhong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
23
|
Zhang J, Gao F, Xie J. LncRNA linc00152/NF-κB feedback loop promotes fibroblast-like synovial cells inflammation in rheumatoid arthritis via regulating miR-103a/TAK1 axis and YY1 expression. Immun Inflamm Dis 2021; 9:681-693. [PMID: 34061447 PMCID: PMC8342216 DOI: 10.1002/iid3.417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/28/2021] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Overexpressed inflammatory cytokines are the main factors causing rheumatoid arthritis (RA) tissue damage and pathological deterioration, and lncRNAs has found to beinvolved in some autoinflammatory diseases. METHODS We designed this study to investigate the effect of lncRNA linc00152 on rheumatoid arthritis inflammation and explore its molecular mechanism. RESULT We found that linc00152 was not only up-regulated in rheumatoid arthritis fibroblast-like synoviocytes (RAFLS), but also stimulated by TNF-α/IL-1β in adose- and time-dependent manner in RAFLS and this expression depends on the NF-κB signaling pathway. Conversely, linc00152 promoted TNF-α/IL-1β expression in RAFLS induced by TNF-α/IL-1β. In addition, we found that linc00152 promoted TAK1 expression by targeting inhibition of miR-103a and activated TAK1-mediated NF-κB pathway. NF-kB indirectly promotes linc00152 expression by promoting the transcription activity of YY1, and YY1 directly promotes linc00152 expression by binding the promoter of linc00152. CONCLUSION Our data suggested that the linc00152/NF-κB feedback loop promotes RAFLS inflammation via regulating miR-103a/TAK1 axis and YY1 expression. Thus, linc00152 acts as a switch to control this regulatory circuit and may serve as a diagnostic and therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Rheumatology and ImmunologyWeihai Municipal HospitalWeihaiShandongChina
| | - Fei‐Fei Gao
- Department of Rheumatology and ImmunologyWeihai Municipal HospitalWeihaiShandongChina
| | - Jie Xie
- Department of Out‐PatientWeihai Municipal HospitalWeihaiShandongChina
| |
Collapse
|
24
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
25
|
Dai W, Kesaraju S, Weber CR. Transcriptional factors in calcium mishandling and atrial fibrillation development. Pflugers Arch 2021; 473:1177-1197. [PMID: 34003377 DOI: 10.1007/s00424-021-02553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Healthy cardiac conduction relies on the coordinated electrical activity of distinct populations of cardiomyocytes. Disruption of cell-cell conduction results in cardiac arrhythmias, a leading cause of morbidity and mortality worldwide. Recent genetic studies have highlighted a major heritable component and identified numerous loci associated with risk of atrial fibrillation, including transcription factor genes, particularly those important in cardiac development, microRNAs, and long noncoding RNAs. Identification of such genetic factors has prompted the search to understand the mechanisms that underlie the genetic component of AF. Recent studies have found several mechanisms by which genetic alterations can result in AF formation via disruption of calcium handling. Loss of developmental transcription factors in adult cardiomyocytes can result in disruption of SR calcium ATPase, sodium calcium exchanger, calcium channels, among other ion channels, which underlie action potential abnormalities and triggered activity that can contribute to AF. This review aims to summarize the complex network of transcription factors and their roles in calcium handling.
Collapse
Affiliation(s)
- Wenli Dai
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Sneha Kesaraju
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
26
|
Dai H, Zhao N, Liu H, Zheng Y, Zhao L. LncRNA Nuclear-Enriched Abundant Transcript 1 Regulates Atrial Fibrosis via the miR-320/NPAS2 Axis in Atrial Fibrillation. Front Pharmacol 2021; 12:647124. [PMID: 34040522 PMCID: PMC8142243 DOI: 10.3389/fphar.2021.647124] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrosis is a key contributor to atrial fibrillation (AF). Long non-coding ribonucleic acids (lncRNAs) were demonstrated to exhibit a key role in fibrotic remodeling; however, the function of nuclear-enriched abundant transcript 1 (NEAT1) in atrial fibrosis remains unclear. In the present study, we showed that NEAT1 was upregulated in atrial tissues of AF patients and was positively related to collagen I (coll I) and collagen III (coll III) expressions. Furthermore, the deletion of NEAT1 attenuated angiotensin II (Ang II)-caused atrial fibroblast proliferation, migration, and collagen production. We further observed that NEAT1 knockdown improved Ang II caused mouse atrial fibrosis in in vivo experiments. Moreover, we demonstrated that NEAT1 could negatively regulate miR-320 expression by acting as a competitive endogenous RNA (ceRNA). miR-320 directly targeted neuronal per arnt sim domain protein 2 (NPAS2) and suppressed its expression. We observed that NEAT1 exerted its function via the miR-320–NPAS2 axis in cardiac fibroblasts. These findings indicate that NEAT1 exerts a significant effect on atrial fibrosis and that this lncRNA is a new potential molecular target for AF treatment.
Collapse
Affiliation(s)
- Huangdong Dai
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Naishi Zhao
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Liu
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zheng
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Zhao
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
27
|
Li W, Qi N, Wang S, Jiang W, Liu T. miR-455-5p regulates atrial fibrillation by targeting suppressor of cytokines signaling 3. J Physiol Biochem 2021; 77:481-490. [PMID: 33792885 DOI: 10.1007/s13105-021-00808-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/08/2021] [Indexed: 01/02/2023]
Abstract
Atrial fibrillation (AF) is a condition that heart beats quaveringly or irregularly, which causes blood clots, heart failure, stroke, and other heart-related complications. Therefore, early diagnosis and timely preventions are necessary for AF treatment. Compelling evidence indicated that microRNAs (miRNAs) become emerging biomarkers of AF; thus, we aimed to investigate the possibility of miR-455-5p as an AF marker to provide a new strategy for early diagnosis of AF. A minipump containing angiotensin II was implanted into mice to induce AF, and adeno-associated virus (AAV) carrying anti-miR-negative control (NC) or anti-miR-455-5p was injected into the pericardial space of mice respectively. Next, myocytes isolated from wild-type newborn mice were stimulated with angiotensin II and anti-miR-NC or anti-miR-455-5p mimic. The results showed that the expression of miR-455-5p was positively correlated with the severity of AF, and miR-455-5p mimic accelerated the progression of AF by directly binding to its target gene suppressor of cytokines signaling 3 (SOCS3), leading to the activation of signal transducer and activator of transcription 3 (STAT3) signaling pathway. On the contrary, inhibition of miR-455-5p expression effectively ameliorated AF. In conclusion, miR-455-5p might serve as a biomarker of AF.
Collapse
Affiliation(s)
- Weiling Li
- The Fourth Hospital of Shijiazhuang, Shijiazhuang, 050000, Hebei, China
| | - Na Qi
- Department of Respiratory and Critical Care Medicine, Hengshui People Hospital, Hengshui, 053000, China
| | - Shuo Wang
- Department of Cardiology, Shijiazhuang General Hospital, No. 9 Fangbei Road, Shijiazhuang, 050000, Hebei, China
| | - Wenyan Jiang
- Department of Cardiology, Tangshan People's Hospital, Tangshan, 063000, Hebei, China
| | - Tao Liu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
28
|
Oltra E. Epigenetics of muscle disorders. MEDICAL EPIGENETICS 2021:279-308. [DOI: 10.1016/b978-0-12-823928-5.00023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
29
|
Zhao Z, Liu G, Zhang H, Ruan P, Ge J, Liu Q. BIRC5, GAJ5, and lncRNA NPHP3-AS1 Are Correlated with the Development of Atrial Fibrillation-Valvular Heart Disease. Int Heart J 2021; 62:153-161. [PMID: 33518654 DOI: 10.1536/ihj.20-238] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to explore the pivotal genes or lncRNAs involved in the progression of atrial fibrillation (AF) -valvular heart disease (VHD). The mRNA profiling GSE113013 was obtained from the Gene Expression Omnibus database. The identification of differentially expressed genes (DEGs) and differentially expressed long non-coding RNAs (DElncRNAs) was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out for DEGs. Then, the construction of the protein-protein interaction (PPI) network was conducted. An lncRNA-miRNA-target ceRNA network was constructed after obtaining microRNAs (miRNA) related to DElncRNAs. Ultimately, key disease-related genes were screened. A total of 399 DEGs and 145 DElncRNAs were obtained. There were 283 nodes and 588 interaction pairs in the PPI network, and synaptosome-associated protein 25 (SNAP25) had higher degrees (degree = 22) in the PPI network. There were 65 interaction pairs in the ceRNA network. Here, Baculoviral IAP Repeat Containing 5 (BIRC5) was regulated by hsa-miR-1285-3p, which was regulated by lncRNA NPHP3-AS1. Gap Junction Protein Alpha 5 (GAJ5) was regulated by hsa-miR-4505, hsa-miR-1972, and hsa-miR-1199-5p. In particular, GAJ5 was enriched in the function of ion transmembrane transport regulation, whereas BIRC5 was enriched in the function of apoptosis-multiple species pathway. Similarly, Potassium Inwardly Rectifying Channel Subfamily J Member 6 (KCNJ6) was enriched in the function of an ion channel complex. VENN analysis identified BIRC5 and GJA5 as key AF-related genes. KCNJ6, SNAP25, GJA5, BIRC5, hsa-miR-1285-3p, and lncRNA NPHP3-AS1 were likely to be associated with AF-VHD development.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Guiqing Liu
- Department of Cardiovascular Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust
| | - Haiyang Zhang
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Peng Ruan
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Jianjun Ge
- Department of Cardiovascular Surgery, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China
| | - Qiang Liu
- The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China
| |
Collapse
|
30
|
Shen B, Li Y, Ye Q, Qin Y. YY1-mediated long non-coding RNA Kcnq1ot1 promotes the tumor progression by regulating PTEN via DNMT1 in triple negative breast cancer. Cancer Gene Ther 2020; 28:1099-1112. [PMID: 33323961 DOI: 10.1038/s41417-020-00254-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/08/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive cancer, and rapidly progresses following relapse in advanced stage. This cancer is usually associated with worse overall survival, so the carcinogenesis of TNBC needs to be further explored to find more effective therapies. In this study, we intended to identify the roles of YY1-mediated long non-coding RNA Kcnq1ot1 in TNBC. First, the paired samples of tumor tissues and adjacent tissues were collected to determine YY1, lncRNA Kcnq1ot1, and PTEN expression using RT-qPCR and Western blot analysis followed by analysis of the relationship between them and patient survival. The results revealed that YY1 and lncRNA Kcnq1ot1 were upregulated in TNBC tissues, and high expression of YY1 and lncRNA Kcnq1ot1 was associated with poor patient survival. Then, ChIP and MSP assays were employed to explore interactions between YY1, lncRNA Kcnq1ot1, and PTEN gene. We obtained that YY1 upregulated lncRNA Kcnq1ot1, which mediated PTEN methylation via DNMT1, thus decreasing PTEN expression. Afterward, TNBC cells were examined for their viability using functional assays with the results displaying that overexpression of YY1 facilitated TNBC cell proliferation, invasion, and migration. Mechanistically, upregulated YY1 repressed tumor growth by inhibiting PTEN via upregulation of lncRNA Kcnq1ot1. Mouse models were also constructed, and the above effects of YY1, lncRNA Kcnq1ot1, and PTEN on TNBC were also established in vivo. Taken together, this study demonstrates that the silencing of YY1 exerted tumor-suppressive effects on TNBC by modulating lncRNA Kcnq1ot1/DNMT1/PTEN pathway, in support of further investigation into anti-tumor therapy for TNBC.
Collapse
Affiliation(s)
- Bin Shen
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Yang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Qian Ye
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China
| | - Youyou Qin
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, PR China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, PR China.
| |
Collapse
|
31
|
Pérez-Agustín A, Pinsach-Abuin M, Pagans S. Role of Non-Coding Variants in Brugada Syndrome. Int J Mol Sci 2020; 21:E8556. [PMID: 33202810 PMCID: PMC7698069 DOI: 10.3390/ijms21228556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Brugada syndrome (BrS) is an inherited electrical heart disease associated with a high risk of sudden cardiac death (SCD). The genetic characterization of BrS has always been challenging. Although several cardiac ion channel genes have been associated with BrS, SCN5A is the only gene that presents definitive evidence for causality to be used for clinical diagnosis of BrS. However, more than 65% of diagnosed cases cannot be explained by variants in SCN5A or other genes. Therefore, in an important number of BrS cases, the underlying mechanisms are still elusive. Common variants, mostly located in non-coding regions, have emerged as potential modulators of the disease by affecting different regulatory mechanisms, including transcription factors (TFs), three-dimensional organization of the genome, or non-coding RNAs (ncRNAs). These common variants have been hypothesized to modulate the interindividual susceptibility of the disease, which could explain incomplete penetrance of BrS observed within families. Altogether, the study of both common and rare variants in parallel is becoming increasingly important to better understand the genetic basis underlying BrS. In this review, we aim to describe the challenges of studying non-coding variants associated with disease, re-examine the studies that have linked non-coding variants with BrS, and provide further evidence for the relevance of regulatory elements in understanding this cardiac disorder.
Collapse
Affiliation(s)
- Adrian Pérez-Agustín
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| | | | - Sara Pagans
- Department of Medical Sciences, School of Medicine, University of Girona, 17003 Girona, Spain;
- Biomedical Research Institute of Girona, 17190 Salt, Spain;
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Mounting evidence suggests that long noncoding RNAs (lncRNAs) are essential regulators of gene expression. Although few lncRNAs have been the subject of detailed molecular and functional characterization, it is believed that lncRNAs play an important role in tissue homeostasis and development. In fact, gene expression profiling studies reveal lncRNAs are developmentally regulated in a tissue-type and cell-type specific manner. Such findings have brought significant attention to their potential contribution to disease cause. The current review summarizes recent studies of lncRNAs in the heart. RECENT FINDINGS lncRNA discovery has largely been driven by the implementation of next generation sequencing technologies. To date, such technologies have contributed to the identification of tens of thousands of distinct lncRNAs in humans -- accounting for a large majority of all RNA sequences transcribed across the human genome. Although the functions of these lncRNAs remain largely unknown, gain-of-function and loss-of-function studies (in vivo and in vitro) have uncovered a number of mechanisms by which lncRNAs regulate gene expression and protein function. Such mechanisms have been stratified according to three major functional categories: RNA sponges (RNA-mediated sequestration of free miRNAs; e.g. H19, MEG3, and MALAT1); transcription-modulating lncRNAs (RNA influences regulatory factor recruitment by binding to histone modifiers or transcription factors; e.g. CAIF, MANTIS, and NEAT1); and translation-modulating lncRNAs (RNA modifies protein function via directly interacting with a protein itself or binding partners; e.g. Airn, CCRR, and ZFAS1). SUMMARY Recent studies strongly suggest that lncRNAs function via binding to macromolecules (e.g. genomic DNA, miRNAs, or proteins). Thus, lncRNAs constitute an additional mode by which cells regulate gene expression.
Collapse
|
33
|
Wang H, Song T, Zhao Y, Zhao J, Wang X, Fu X. Long non-coding RNA LICPAR regulates atrial fibrosis via TGF-β/Smad pathway in atrial fibrillation. Tissue Cell 2020; 67:101440. [PMID: 32971457 DOI: 10.1016/j.tice.2020.101440] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 01/11/2023]
Abstract
Long non-coding RNA predicting cardiac remodeling (lnc LIPCAR) was implicated in several human diseases, while its role in atrial fibrillation (AF) remained poorly understood. Our study aimed to discover the role of LICPAR played in AF. Samples of atrial muscle tissues from patients diagnosed with sinus rhythm (SR) and atrial fibrillation (AF) were collected, and human atrial fibroblasts were isolated and identified under immunofluorescence staining. After Angiotensin II (Ang II, as a activator of TGF-β) stimulation with LICPAR overexpression or knockdown, the viability and proliferation of atrial fibroblasts were respectively determined using cell counting kit-8 (CCK-8) assay and clone formation assay. Relative expressions of LICPAR, fibrosis- and transforming growth factor-β (TGF-β)/Smad2/3-pathway related proteins were measured using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot as needed. LICPAR and TGF-β1 were upregulated and were positively correlated in atrial muscle tissues from AF. Atrial fibroblasts were identified as Vimentin positive. Further analysis indicated that Ang II enhanced the levels of LIPCAR, Smad2/3 phosphorylation and α-smooth muscle actin (α-SMA). Also, upregulating LIPCAR further promoted the promotive effects of Ang II on levels of LIPCAR, Collagen I, Collagen II, α-SMA and Smad2/3 phosphorylation, cell viability and proliferation of atrial fibroblasts, whereas silencing LIPCAR resulted in opposite effects. LICPAR regulates atrial fibrosis via modulating TGF-β/Smad pathway, which provided a potential therapeutic method for AF in clinical practice in the future.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Cardiovascular Medicine, Second Hospital of HeBei Medical University, No. 215, Heping Road, Xinhua District, Shijiazhuang, 050000, China
| | - Tingting Song
- Department of Cardiovascular Medicine, Second Hospital of HeBei Medical University, No. 215, Heping Road, Xinhua District, Shijiazhuang, 050000, China
| | - Ying Zhao
- Department of Cardiovascular Medicine, Second Hospital of HeBei Medical University, No. 215, Heping Road, Xinhua District, Shijiazhuang, 050000, China
| | - Jiayu Zhao
- Department of Cardiovascular Medicine, Second Hospital of HeBei Medical University, No. 215, Heping Road, Xinhua District, Shijiazhuang, 050000, China
| | - Xun Wang
- Department of Cardiovascular Medicine, Second Hospital of HeBei Medical University, No. 215, Heping Road, Xinhua District, Shijiazhuang, 050000, China
| | - Xianghua Fu
- Department of Cardiovascular Medicine, Second Hospital of HeBei Medical University, No. 215, Heping Road, Xinhua District, Shijiazhuang, 050000, China.
| |
Collapse
|
34
|
Chen QH, Li B, Liu DG, Zhang B, Yang X, Tu YL. LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of prostate cancer via up-regulating PD-L1. Cancer Cell Int 2020; 20:394. [PMID: 32821247 PMCID: PMC7429893 DOI: 10.1186/s12935-020-01481-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022] Open
Abstract
Background We focused on the KCNQ1OT1/miR-15a/PD-L1 axis and explored its significance in regulating immune evasion and malignant behaviors of prostate cancer (PC) cells. Methods The expression levels of KCNQ1OT1, miR-15a, PD-L1, and CD8 in cells or tissues were examined by RT-qPCR, western blot or immunohistochemistry (IHC) assays. The direct regulations between KCNQ1OT1, miR-15a and PD-L1 were validated by luciferase reporter assay. PC cells were co-cultured with CD8+ T cells to study the immune evasion. Proliferation, apoptosis, migration and invasion abilities were detected by MTT, flow cytometry, wound healing and Transwell assays, respectively. The cytotoxicity of CD8+ T cells was determined by LDH cytotoxicity Kit. Epithelial–mesenchymal transition (EMT) and Ras/ERK signaling markers were evaluated by western blot. Results KCNQ1OT1, PD-L1 and CD8 were increased, while miR-15a was decreased in PC tissues. MiR-15a directly bound to the 3′-UTR of PD-L1 and inhibited the expression of PD-L1. Overexpressing miR-15a in PC cells was sufficient to promote cytotoxicity and proliferation, while inhibit apoptosis of CD8+ T cells, and also suppressed viability, migration, invasion and EMT while promoted apoptosis of PC cells. The above anti-tumor effects of miR-15a were reversed by overexpressing PD-L1. KCNQ1OT1 sponged miR-15a and released its inhibition on PD-L1. Functionally, KCNQ1OT1 in PC cells was essential for suppressing the cytotoxicity of CD8+ T cells and maintaining multiple malignant phenotypes of PC cells. The Ras/ERK signaling was suppressed after overexpressing miR-15a or knocking down KCNQ1OT1. Conclusions LncRNA KCNQ1OT1 sponges miR-15a to promote immune evasion and malignant progression of PC via up-regulating PD-L1.
Collapse
Affiliation(s)
- Qi-Hua Chen
- Department of Andrology, The First Hospital, Hunan University of Chinese Medicine, No.95, Shaoshan Middle Road, Yuhua District, Changsha, 410007 Hunan People's Republic of China
| | - Bo Li
- Department of Andrology, The First Hospital, Hunan University of Chinese Medicine, No.95, Shaoshan Middle Road, Yuhua District, Changsha, 410007 Hunan People's Republic of China
| | - De-Guo Liu
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208 People's Republic of China
| | - Biao Zhang
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208 People's Republic of China
| | - Xian Yang
- Department of Dermatology, The First Hospital, Hunan University of Chinese Medicine, Changsha, 410007 People's Republic of China
| | - Ya-Ling Tu
- Graduate School, Hunan University of Chinese Medicine, Changsha, 410208 People's Republic of China
| |
Collapse
|
35
|
Genetics and Epigenetics of Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21165717. [PMID: 32784971 PMCID: PMC7460853 DOI: 10.3390/ijms21165717] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is known to be the most common supraventricular arrhythmia affecting up to 1% of the general population. Its prevalence exponentially increases with age and could reach up to 8% in the elderly population. The management of AF is a complex issue that is addressed by extensive ongoing basic and clinical research. AF centers around different types of disturbances, including ion channel dysfunction, Ca2+-handling abnormalities, and structural remodeling. Genome-wide association studies (GWAS) have uncovered over 100 genetic loci associated with AF. Most of these loci point to ion channels, distinct cardiac-enriched transcription factors, as well as to other regulatory genes. Recently, the discovery of post-transcriptional regulatory mechanisms, involving non-coding RNAs (especially microRNAs), DNA methylation, and histone modification, has allowed to decipher how a normal heart develops and which modifications are involved in reshaping the processes leading to arrhythmias. This review aims to provide a current state of the field regarding the identification and functional characterization of AF-related epigenetic regulatory networks
Collapse
|
36
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
37
|
Lozano-Vidal N, Bink DI, Boon RA. Long noncoding RNA in cardiac aging and disease. J Mol Cell Biol 2020; 11:860-867. [PMID: 31152659 PMCID: PMC6884711 DOI: 10.1093/jmcb/mjz046] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the main cause of morbidity and mortality in Western society and present an important age-related risk. With the constant rise in life expectancy, prevalence of CVD in the population will likely increase further. New therapies, especially in the elderly, are needed to combat CVD. This review is focused on the role of long noncoding RNA (lncRNA) in CVD. RNA sequencing experiments in the past decade showed that most RNA does not code for protein, but many RNAs function as ncRNA. Here, we summarize the recent findings of lncRNA regulation in the diseased heart. The potential use of these RNAs as biomarkers of cardiac disease prediction is also discussed.
Collapse
Affiliation(s)
- Noelia Lozano-Vidal
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Diewertje I Bink
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands
| | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, 1081 HZ, Amsterdam, the Netherlands.,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, Berlin, Germany
| |
Collapse
|
38
|
Franco D, Aranega A, Dominguez JN. Non-coding RNAs and Atrial Fibrillation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:311-325. [PMID: 32285421 DOI: 10.1007/978-981-15-1671-9_19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atrial fibrillation is the most frequent type of cardiac arrhythmia in humans, with an estimate incidence of 1-2% in the general population, rising up to 8-10% in the elderly. Cardiovascular risk factors such as diabetes, obesity, hypertension and hyperthyroidism can increase the occurrence of AF. The onset of AF triggers additional AF episodes, leading to structural and electrical remodeling of the diseased heart. Understanding the molecular bases of atrial fibrillation have greatly advance over the last decade demonstrating a pivotal role of distinct ion channels in AF pathophysiology. A new scenario has opened on the understanding of the molecular mechanisms underlying AF, with the discovery of non-coding RNAs and their wide implication in multiple disease states, including cardiac arrhythmogenic pathologies. microRNAs are small non-coding RNAs of 22-24 nucleotides that are capable of regulating gene expression by interacting with the mRNA transcript 3'UTRs and promoting mRNA degradation and/or protein translation blockage. Long non-coding RNAs are a more diverse group of non-coding RNAs, providing transcriptional and post-transcriptional roles and subclassified according to their functional properties. In this chapter we summarized current state-of-the-art knowledge on the functional of microRNAs and long non-coding RNAs as well as their cross-talk regulatory mechanisms in atrial fibrillation.
Collapse
Affiliation(s)
- Diego Franco
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain.
| | - Amelia Aranega
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| | - Jorge N Dominguez
- Cardiovascular Development Group, Department of Experimental Biology, University of Jaen, Jaen, Spain
| |
Collapse
|
39
|
Lai L, Xu Y, Kang L, Yang J, Zhu G. LncRNA KCNQ1OT1 contributes to cardiomyocyte apoptosis by targeting FUS in heart failure. Exp Mol Pathol 2020; 115:104480. [PMID: 32497620 DOI: 10.1016/j.yexmp.2020.104480] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 03/09/2020] [Accepted: 05/30/2020] [Indexed: 11/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) have recently been recognized as the important regulators in cardiac diseases. This study was aimed to investigate the role and molecular mechanism of lncRNA KCNQ1OT1 in regulating cardiomyocyte apoptosis in heart failure (HF). The mouse model of HF was induced by doxorubicin (ADR). Cell apoptosis was detected by Hoechst and TUNEL staining. Molecule expressions were determined by qRT-PCR and western blot. The interaction between KCNQ1OT1 and Fused in sarcoma (FUS) was assessed by RNA immunoprecipitation (RIP) and RNA pull-down assays. KCNQ1OT1 was up-regulated in the myocardial tissues of HF mice and the ADR-stimulated mouse myocardial cell line (HL-1). KCNQ1OT1 overexpression promoted apoptosis of ADR-stimulated HL-1 cells, while KCNQ1OT1 knockdown caused the opposite effect. The RIP and RNA pull-down results showed that KCNQ1OT1 - bound to FUS and negatively regulated its protein level. Knockdown of FUS inhibited apoptosis of ADR-stimulated HL-1 cells and reversed the effect of KCNQ1OT1 overexpression on cardiomyocyte apoptosis. In vivo experiment showed that KCNQ1OT1 ovexpression improved myocardial histopathological changes, reduced myocardial fibrosis areas, down-regulated FUS expression, and inhibited cell apoptosis of HF mice. In conclusion, KCNQ1OT1 facilitates cardiomyocyte apoptosis by - targeting FUS in ADR-induced HF.
Collapse
Affiliation(s)
- Lei Lai
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Lan Kang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Jianmin Yang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| | - Gangjie Zhu
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang Province, China
| |
Collapse
|
40
|
Babapoor-Farrokhran S, Gill D, Rasekhi RT. The role of long noncoding RNAs in atrial fibrillation. Heart Rhythm 2020; 17:1043-1049. [DOI: 10.1016/j.hrthm.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/14/2020] [Indexed: 12/18/2022]
|
41
|
LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1. Life Sci 2020; 256:117811. [PMID: 32422306 DOI: 10.1016/j.lfs.2020.117811] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 05/06/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022]
Abstract
Acute myocardial infarction (AMI) is a major cardiovascular disease with high mortality worldwide. Hypoxia is a key inducing factor for AMI. We aimed to examine the expression and functions of Kcnq1ot1 (KCNQ1 overlapping transcript 1) in hypoxia-induced cardiomyocytes in the process of AMI. The left anterior descending coronary artery ligation (LAD) was used for inducing in-vivo AMI model and the primary cardiomyocytes were extracted; in-vitro H9c2 cell model was simulated by hypoxia treatment. TUNEL, flow cytometry and JC-1 assay were carried out to evaluate cell apoptosis. Mechanism assays including luciferase reporter assay and RIP assay revealed interplays between RNAs. To begin with, Kcnq1ot1 was revealed to be conspicuously upregulated in myocardium infracted zone and border zone within 2 days since establishment of the model. Moreover, inhibition of Kcnq1ot1 protected cardiomyocytes against hypoxia-triggered cell apoptosis during the process of AMI. Then, miR-466k and miR-466i-5p were proved to bind with Kcnq1ot1 and participated in Kcnq1ot1-mediated cardiomyocyte injury under hypoxia. Subsequently, Kcnq1ot1 was found to elevate Tead1 (TEA domain transcription factor 1) expression via sponging miR-466k and miR-466i-5p. Finally, it was verified that Kcnq1ot1 regulated hypoxia-induced cardiomyocyte injury dependent on Tead1. In conclusion, Kcnq1ot1 sponged miR-466k and miR-466i-5p to up-regulate Tead1, thus triggering cardiomyocyte injury in the process of AMI.
Collapse
|
42
|
|
43
|
Li X, Yu M, Yang C. YY1-mediated overexpression of long noncoding RNA MCM3AP-AS1 accelerates angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis. J Cell Biochem 2019; 121:2258-2267. [PMID: 31693222 DOI: 10.1002/jcb.29448] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022]
Abstract
Lung cancer is famous as an aggressive malignant tumor and is the main cause of cancer-associated mortality globally. Tumor angiogenesis is a vital part in cancer, which influences cell proliferation and metastasis. Increasing studies have claimed that long noncoding RNAs (lncRNAs) were involved in the progression of several cancers. Based on previous studies, this study focused on the role and mechanism of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in lung cancer. At first, MCM3AP-AS1 expression was found to be elevated in lung cancer cells. Depletion of MCM3AP-AS1 repressed cell proliferation, migration, and angiogenesis in lung cancer cells. YY1 was confirmed to mediate MCM3AP-AS1 transcription in lung cancer cells. Moreover, the molecular mechanism investigation revealed that MCM3AP-AS1 could sponge miR-340-5p and elevate KPNA4 expression. On the basis of rescue assays, we identified that the overexpression of KPNA4 partly counteracted the suppressed effect of MCM3AP-AS1 knockdown on angiogenesis and progression in lung cancer cells. Conclusively, the YY1-mediated overexpression of MCM3AP-AS1 accelerated angiogenesis and progression in lung cancer by targeting miR-340-5p/KPNA4 axis, which highlighted the possibility of MCM3AP-AS1 as a promising therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Xuemei Li
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, China
| | - Mei Yu
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, China
| | - Caiyong Yang
- Department of Infectious Diseases, Ankang Central Hospital, Ankang, China
| |
Collapse
|
44
|
Zhang Y, Du W, Yang B. Long non-coding RNAs as new regulators of cardiac electrophysiology and arrhythmias: Molecular mechanisms, therapeutic implications and challenges. Pharmacol Ther 2019; 203:107389. [DOI: 10.1016/j.pharmthera.2019.06.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
|
45
|
Ye Y, Gu B, Wang Y, Shen S, Huang W. YY1-Induced Upregulation of Long Noncoding RNA ARAP1-AS1 Promotes Cell Migration and Invasion in Colorectal Cancer Through the Wnt/β-Catenin Signaling Pathway. Cancer Biother Radiopharm 2019; 34:519-528. [PMID: 31173500 DOI: 10.1089/cbr.2018.2745] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction: It has been reported that long noncoding RNAs (lncRNAs) are crucial regulators in progression of human cancers, including colorectal cancer (CRC). However, the function of lncRNA ARAP1 antisense RNA 1 (ARAP1-AS1) in CRC remains unclear. Aim: The aim of this study was to investigate the function and molecular mechanism of lncRNA ARAP1-AS1 in CRC. Results: ARAP1-AS1 was highly expressed in CRC tissues and cell lines. ARAP1-AS1 knockdown suppressed cell migration, invasion, and epithelial-mesenchymal transition (EMT). YY1 transcription factor (YY1) enhanced the transcription activity of ARAP1-AS1. The YY1/ARAP1-AS1 axis promoted CRC cell migration and invasion. YY1/ARAP1-AS1 could regulate the Wnt/β-catenin signaling pathway. Conclusions: This study revealed that YY1-induced upregulation of ARAP1-AS1 promoted cell migration, invasion, and EMT process in CRC through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yaqun Ye
- The Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Binbin Gu
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sudan Shen
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Huang
- Nutrition Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
46
|
Cao F, Li Z, Ding WM, Yan L, Zhao QY. LncRNA PVT1 regulates atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation. Mol Med 2019; 25:7. [PMID: 30894138 PMCID: PMC6425687 DOI: 10.1186/s10020-019-0074-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNA) plasmacytoma variant translocation 1 (PVT1) has been shown to be associated with liver fibrosis. Nevertheless, the role of PVT1 in atrial fibrosis remains undefined. This study aims to elucidate the pathophysiological role of lncRNA PVT1 in the regulation of atrial fibrosis and to explore the underlying mechanism. METHODS Expression of PVT1, miR-128-sp, and Sp1 were examined in human atrial muscle tissues and angiotensin-II (Ang-II)-induced human atrial fibroblasts. Furthermore, the role of PVT1 in regulating atrial fibrosis in Ang-II-treated human atrial fibroblasts and Ang-II-induced atrial fibrosis in mice was investigated. Moreover, the interaction among PVT1, miR-128-3p, and Sp1 were examined using bioinformatics, expression correlation analysis, gain- or loss-of-function assays, RIP assays, and luciferase reporter assays. The involvement of transforming growth factor beta 1 (TGF-β1)/Smad pathway in this process was also explored. RESULTS PVT1 was increased in atrial muscle tissues from AF patients and positively with collagen I and collagen III. In vitro assay revealed that PVT1 overexpression facilitated the Ang-II-induced atrial fibroblasts proliferation, collagen production, and TGF-β1/Smad signaling activation, whereas PVT1 knockdown caused the opposite effect. In vivo assay further confirmed that PVT1 knockdown attenuated the Ang-II-induced mouse atrial fibrosis. Mechanically, PVT1 acted as a sponge for miR-128-3p to facilitate Sp1 expression, thereby activating the TGF-β1/Smad signaling pathway. CONCLUSION LncRNA PVT1 promotes atrial fibrosis via miR-128-3p-SP1-TGF-β1-Smad axis in atrial fibrillation.
Collapse
Affiliation(s)
- Feng Cao
- Department of Cardiology, Renmin Hospital of Wuhan University, NO.99 Zhangzhidong Road, Wuchang District, Wuhan, 430060 China
- Cardiovascular Research Institute, Wuhan University, Wuchang District, Wuhan, 430072 China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 China
| | - Zhe Li
- Department of Cardiology, Renmin Hospital of Wuhan University, NO.99 Zhangzhidong Road, Wuchang District, Wuhan, 430060 China
- Cardiovascular Research Institute, Wuhan University, Wuchang District, Wuhan, 430072 China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 China
| | - Wen-mao Ding
- Department of Cardiology, Renmin Hospital of Wuhan University, NO.99 Zhangzhidong Road, Wuchang District, Wuhan, 430060 China
- Cardiovascular Research Institute, Wuhan University, Wuchang District, Wuhan, 430072 China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 China
| | - Ling Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, NO.99 Zhangzhidong Road, Wuchang District, Wuhan, 430060 China
- Cardiovascular Research Institute, Wuhan University, Wuchang District, Wuhan, 430072 China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 China
| | - Qing-yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, NO.99 Zhangzhidong Road, Wuchang District, Wuhan, 430060 China
- Cardiovascular Research Institute, Wuhan University, Wuchang District, Wuhan, 430072 China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060 China
| |
Collapse
|