1
|
Zhang X, Sun Q, Xie X, Luo M, Zan J, Cong Z. Epimedin B protects against bone loss and inflammation in diabetic osteoporosis rats by regulating OPG/RANKL pathway. J Orthop Surg Res 2025; 20:403. [PMID: 40264188 PMCID: PMC12016483 DOI: 10.1186/s13018-025-05685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Diabetes is a common disease contributing to osteoporosis. Epimedin B (EB), a major ingredient of Herba Epimedii, has been found to be effective in preventing osteoporosis in mice. However, the potential of EB to ameliorate diabetic osteoporosis (DOP) remains elusive. In this study, our goal is to investigate the functions and underlying mechanisms of EB in the progression of DOP. METHODS A DOP rat model was established via a high-fat diet combined with intraperitoneal injection of streptozotocin (STZ). DOP rats were daily administered with EB or vehicle via intragastric administration for 8 weeks. Body weights and blood glucose levels were measured every 4 weeks during the drug administration period. Blood samples and femoral tissues were collected for further analysis. Bone parameters and bone histopathological changes were detected. Bone formation and resorption markers as well as inflammatory factors were detected using enzyme-linked immunosorbent assay kits. Reverse-transcription quantitative polymerase chain reaction and western blotting were conducted to measure the expression of osteoprotegerin (OPG) and Rev-Erbα, receptor activator of NF-κB ligand (RANKL). RESULTS EB improved weight loss and lowered blood glucose of DOP rats. EB promoted the formation of bone trabeculae and altered several bone microstructure parameters in DOP rats. EB ameliorated improved bone structure, restored histological abnormalities of femoral bone, and reduced the number of bone marrow adipocytes in DOP rats. EB inhibited excessive bone resorption and inflammation and increased bone formation in DOP rats. EB regulated the OPG/RANKL axis in DOP rats. CONCLUSION EB attenuates STZ-induced DOP in rats by maintaining the balance between bone formation and resorption and inhibiting inflammation through regulating the OPG/RANKL axis.
Collapse
Affiliation(s)
- Xianmei Zhang
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Wuhan, 430000, China
| | - Qinguo Sun
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Wuhan, 430000, China
| | - Xie Xie
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Wuhan, 430000, China
| | - Meng Luo
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Wuhan, 430000, China
| | - Junjie Zan
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Wuhan, 430000, China
| | - Zewei Cong
- Department of Traditional Chinese Medicine, Wuhan Third Hospital, Wuhan, 430000, China.
| |
Collapse
|
2
|
Iwamoto N, Chiba K, Sato S, Tashiro S, Shiraishi K, Watanabe K, Ohki N, Okada A, Koga T, Kawashiri SY, Tamai M, Osaki M, Kawakami A. Preferable effect of CTLA4-Ig on both bone erosion and bone microarchitecture in rheumatoid arthritis revealed by HR-pQCT. Sci Rep 2024; 14:27673. [PMID: 39532911 PMCID: PMC11557861 DOI: 10.1038/s41598-024-77392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
This exploratory study aimed to examine the impact of abatacept treatment on bone structure in patients with rheumatoid arthritis (RA) using high-resolution peripheral quantitative computed tomography (HR-pQCT). RA patients initiating either abatacept or newly introduced csDMARDs were enrolled in this prospective, non-randomized, two-group study. Bone structure in the 2nd and 3rd metacarpal heads was assessed using HR-pQCT at 0, 6, and 12 months after enrollment. Synovitis was evaluated using musculoskeletal ultrasound and MRI. The adjusted mean between-group differences (abatacept-csDMARDs group) were estimated using a mixed-effect model. Thirty-five patients (abatacept group: n = 15; csDMARDs group: n = 20) were analyzed. Changes in erosion volume, depth and width were numerically smaller in the abatacept group compared to the csDMARDs group (adjusted mean between-group differences: - 1.86 mm3, - 0.02 mm, and - 0.09 mm, respectively). Over a 12-month period, 5 erosions emerged in the csDMARDs group, while only 1 erosion appeared in the abatacept group. Compared to csDMARDs, abatacept better preserved bone microarchitecture; several components of bone microarchitecture were significantly worsened at 6 months in the csDMARDs group, but were not deteriorated at 6 months in the abatacept group. Changes in synovitis scores were similar between the two treatment groups. Our results indicate that abatacept prevented the progression of bone erosion including new occurrence, and also prevented worsening of bone strength independently with synovitis compared to csDMARDs including MTX. Thus, abatacept treatment may provide benefits not only in inhibiting the progress of bone erosion but also in preventing bone microarchitectural deterioration.
Collapse
Affiliation(s)
- Naoki Iwamoto
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Ko Chiba
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shigeki Tashiro
- Clinical Research Center, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kazuteru Shiraishi
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Kounosuke Watanabe
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Nozomi Ohki
- Department of Radiological Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Akitomo Okada
- Department of Rheumatology, National Hospital Organization Nagasaki Medical Center, Kubara 2-1001-1, Omura, Nagasaki, 856-8562, Japan
| | - Tomohiro Koga
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shin-Ya Kawashiri
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
- Center for Collaborative Medical Education and Development, Nagasaki University Institute of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Mami Tamai
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Makoto Osaki
- Department of Orthopedic Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Atsushi Kawakami
- Division of Advanced Preventive Medical Sciences, Department of Immunology and Rheumatology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
3
|
Hu J, Zhu Z, Zhang Z, Hu H, Yang Q. Blockade of STARD3-mediated cholesterol transport alleviates diabetes-induced podocyte injury by reducing mitochondrial cholesterol accumulation. Life Sci 2024; 349:122722. [PMID: 38754814 DOI: 10.1016/j.lfs.2024.122722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
AIMS Steroidogenic acute regulatory (StAR)-related lipid transfer domain-3 (STARD3) is a sterol-binding protein that facilitates cholesterol transport between cellular organelles. Cholesterol accumulation in podocytes directly contributes to the pathogenesis of albuminuria and renal injury under the condition of diabetic kidney disease (DKD). The aim of this study is to determine the role of STARD3 on the intracellular distribution of cholesterol within podocytes. METHODS In vivo and in vitro models of diabetes were performed. The protein levels of STARD3, Niemann-Pick disease type C1 (NPC1), and Niemann-Pick disease type C2 (NPC2) were respectively detected by western blot analysis, immunohistochemistry, and immunofluorescence. Filipin staining was used to evaluate the subcellular localization of cholesterol in podocytes. Mitochondrial damage was evaluated using JC-1 (CBIC2) and ROS (reactive oxygen species) assays. KEY FINDINGS Upregulation of STARD3 under diabetes and hyperglycemia increases cholesterol transport from the late endosomal/lysosomal (LE/LY) to mitochondria, leading to mitochondrial cholesterol accumulation and cell injury in podocytes. Conversely, downregulating STARD3 expression attenuated mitochondrial cholesterol accumulation, and improved mitochondrial homeostasis. SIGNIFICANCE STARD3 may govern intracellular cholesterol transport in podocytes, subsequently leading to regulation of mitochondrial metabolism. Therefore, targeting STARD3 emerges as a potential therapeutic strategy to mitigate diabetes-induced mitochondrial cholesterol accumulation and associated injury in podocytes.
Collapse
Affiliation(s)
- Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China
| | - Qian Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Nephrology and Urology Research Institute of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Fathy MA, Anbaig A, Aljafil R, El-Sayed SF, Abdelnour HM, Ahmed MM, Abdelghany EMA, Alnasser SM, Hassan SMA, Shalaby AM. Effect of Liraglutide on Osteoporosis in a Rat Model of Type 2 Diabetes Mellitus: A Histological, Immunohistochemical, and Biochemical Study. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:2053-2067. [PMID: 37832035 DOI: 10.1093/micmic/ozad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 09/02/2023] [Indexed: 10/15/2023]
Abstract
Diabetic osteoporosis (DOP) is a diabetic complication associated with a significant disability rate. Liraglutide, a glucagon-like peptide-1 receptor agonist, is a promising and innovative drug for type 2 diabetes mellitus (T2DM), with potential therapeutic implications for bone disorders. This investigation examined the impact of liraglutide on osteoporosis in rats with T2DM and studied the influence of vitamin D receptor Bsm1 polymorphism on liraglutide-induced outcomes. Thirty rats were divided into control, T2DM induced by a combination of a high-fat diet and 25 mg/kg streptozotocin, and T2DM-liraglutide (T2DM treated with 0.4 mg/kg/day liraglutide) groups. After 8 weeks of liraglutide treatment, femurs and blood samples were obtained from all rats for subsequent investigations. Diabetes induced a remarkable rise in the serum levels of receptor activator of nuclear factor kappa B ligand (RANKL) and C-telopeptide of type I collagen (CTX-1) associated with a remarkable decline in osteocalcin and osteoprotegerin (OPG). Impaired bone architecture was also demonstrated by light and scanning electron microscopic study. The immune expression of OPG was down-regulated, while RANKL was up-regulated. Interestingly, the administration of liraglutide ameliorated the previous changes induced by diabetes mellitus. In conclusion, liraglutide can prevent DOP, mostly due to liraglutide's ability to increase bone growth, while inhibiting bone resorption.
Collapse
Affiliation(s)
- Maha Abdelhamid Fathy
- Department of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amal Anbaig
- Department of Pathology, Faculty of Medicine, Benghazi University, Benghazi 16063, Libya
| | - Raja Aljafil
- Department of Pathology, Faculty of Medicine, Benghazi University, Benghazi 16063, Libya
| | - Sherein F El-Sayed
- Department of Medical Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Hanim Magdy Abdelnour
- Department of Medical Biochemistry, Faculty of Human Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mona Mostafa Ahmed
- Department of Pathology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Eman M A Abdelghany
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Shaimaa Mohamed Abdelfattah Hassan
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufi University, Shebin El Koum 32511, Egypt
- Department of Histology, College of Medicine, Batterjee Medical College, Abha 61961, Saudi Arabia
| | - Amany Mohamed Shalaby
- Department of Histology and Cell Biology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
5
|
The Relationship of Cholesterol Responses to Mitochondrial Dysfunction and Lung Inflammation in Chronic Obstructive Pulmonary Disease. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020253. [PMID: 36837454 PMCID: PMC9958740 DOI: 10.3390/medicina59020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Hyperlipidemia is frequently reported in chronic obstructive pulmonary disease (COPD) patients and is linked to the progression of the disease and its comorbidities. Hypercholesterolemia leads to cholesterol accumulation in many cell types, especially immune cells, and some recent studies suggest that cholesterol impacts lung epithelial cells' inflammatory responses and mitochondrial responses. Several studies also indicate that targeting cholesterol responses with either statins or liver X receptor (LXR) agonists may be plausible means of improving pulmonary outcomes. Equally, cholesterol metabolism and signaling are linked to mitochondrial dysfunction and inflammation attributed to COPD progression. Here, we review the current literature focusing on the impact of cigarette smoke on cholesterol levels, cholesterol efflux, and the influence of cholesterol on immune and mitochondrial responses within the lungs.
Collapse
|
6
|
Han J, Zheng Q, Cheng Y, Liu Y, Bai Y, Yan B, Guo S, Yu J, Li X, Wang C. Toll-like receptor 9 (TLR9) gene deletion-mediated fracture healing in type II diabetic osteoporosis associates with inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway. Bioengineered 2022; 13:13689-13702. [PMID: 35707851 PMCID: PMC9275877 DOI: 10.1080/21655979.2022.2063663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diabetes is characterized by increased fracture risk. Evidence from in vivo studies is lacking for anti-fracture strategies in diabetes. Our microarray analyses predicted association of Toll-like receptor 9 (TLR9) with both diabetes and osteoporosis, which was the focus of this work in a murine model of type II diabetic osteoporosis (T2DOP). A T2DOP model with fracture was established in TLR9 knockout (TLR9−/−) mice, which were then treated with the NF-κB signaling pathway inhibitor (PDTC) and activator (TNF-α). The obtained data suggested that TLR9 knockout augmented regeneration of bone tissues and cartilage area in the callus, and diminished fibrous tissues in T2DOP mice. Moreover, TLR9 depletion significantly affected bone mineral density (BMD), bone volume/tissue volume (BV/TV), connectivity density, trabecular number, trabecular separation and trabecular thickness, thus promoting fracture recovery. Bone morphology and structure were also improved in response to TLR9 depletion in T2DOP mice. TLR9 depletion inactivated NF-κB signaling in T2DOP mice. PDTC was found to enhance fracture healing in T2DOP mice, while TNF-α negated this effect. Collectively, these data indicate that TLR9 depletion may hold anti-fracture properties, making it a potential therapeutic target for T2DOP. Abbreviations: Diabetic osteoporosis (DOP); bone mineral density (BMD); Toll-like receptors (TLRs); type 2 diabetes (T2D); Toll-like receptor 9 (TLR9); nuclear factor-kappaB (NF-κB); streptozotocin (STZ); type 2 diabetic osteoporosis (T2DOP); Gene Expression Omnibus (GEO); Kyoto encyclopedia of genes and genomes (KEGG); pyrrolidine dithiocarbamate (PDTC); computed tomography (CT); Hematoxylin–eosin (HE); bone morphogenetic protein 7 (BMP7); analysis of variance (ANOVA);
Collapse
Affiliation(s)
- Jiakai Han
- Endocrinology Department, Huaihe Hospital of Henan University, Kaifeng, PR, China
| | - Qian Zheng
- Endocrinology Department, Yan'an Hospital of Kunming Medical University, Kunming, PR, China
| | - Yongxia Cheng
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Yong Liu
- Platform Management Division, Scientific Research Division of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Yuxin Bai
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Bin Yan
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Sufen Guo
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Jianbo Yu
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Xinxin Li
- Ultrasound Department, Second Hospital of Mudanjiang Medical College, Mudanjiang, PR, China
| | - Chong Wang
- Pathology Diagnosis Center, The HongQi Hospital, The First Clinical Medical School of Mudanjiang Medical College, Mudanjiang, PR, China
| |
Collapse
|
7
|
Ren Y, Yang M, Wang X, Xu B, Xu Z, Su B. ELAV-like RNA binding protein 1 regulates osteogenesis in diabetic osteoporosis: Involvement of divalent metal transporter 1. Mol Cell Endocrinol 2022; 546:111559. [PMID: 35051552 DOI: 10.1016/j.mce.2022.111559] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 12/18/2022]
Abstract
Diabetic osteoporosis (DOP) is a complication of diabetes mellitus (DM) and occurs due to alterations in bone metabolism under hyperglycemic condition. ELAV-like RNA binding protein 1 (ELAVL1) is abnormally up-regulated in diabetes-related diseases. Bioinformatics prediction indicates that divalent metal transporter 1 (DMT1) is a potential target of ELAVL1. To explore the role of ELAVL1 and the involvement of ELAVL1/DMT1 axis in DOP, we established a mouse model of DM by administration of high-fat diet and intraperitoneal injection with streptozotocin (STZ). The expression of ELAVL1 and DMT1 was increased in the bone tissues of DM mice. Knockdown of ELAVL1 reduced iron level and oxidative stress, promoted osteogensis, and prevented bone mass loss, thus mitigating DOP in DM mice. In vitro, mouse pre-osteoblast MC3T3-E1 cells were treated with high glucose (25 mM) and ferric ammonium citrate (FAC, 200 μM). The inhibitory effects of ELAVL1 knockdown on iron accumulation and oxidative stress were evidenced in MC3T3-E1 cells. Knockdown of ELAVL1 enhanced osteoblast viability, differentiation and mineralization. Notably, the expression of DMT1 was positively correlated with that of ELAVL1 in vivo and in vitro. Overexpression of DMT1 abolished the effect of ELAVL1 knockdown on the behaviors of MC3T3-E1 cells, suggesting that ELAVL1 might function through regulating DMT1. In conclusion, knockdown of ELAVL1 likely alleviated DOP by inhibiting iron overload and oxidative stress and promoting osteogenesis, and DMT1 might be involved in this process. These findings provide insights into the pathogenesis of DOP and suggest a potential therapeutic target for DOP treatment.
Collapse
Affiliation(s)
- Yuanfei Ren
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China; The First Department of Hand and Foot Surgery, Dalian Municipal Central Hospital, Dalian, Liaoning, China
| | - Maowei Yang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xindong Wang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Buxuan Xu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zerong Xu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bo Su
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
8
|
Liu YD, Liu JF, Liu B. N,N-Dimethylformamide inhibits high glucose-induced osteoporosis via attenuating MAPK and NF-κB signalling. Bone Joint Res 2022; 11:200-209. [PMID: 35369730 PMCID: PMC9057521 DOI: 10.1302/2046-3758.114.bjr-2020-0308.r2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims The role of N,N-dimethylformamide (DMF) in diabetes-induced osteoporosis (DM-OS) progression remains unclear. Here, we aimed to explore the effect of DMF on DM-OS development. Methods Diabetic models of mice, RAW 264.7 cells, and bone marrow macrophages (BMMs) were established by streptozotocin stimulation, high glucose treatment, and receptor activator of nuclear factor-κB ligand (RANKL) treatment, respectively. The effects of DMF on DM-OS development in these models were examined by micro-CT analysis, haematoxylin and eosin (H&E) staining, osteoclast differentiation of RAW 264.7 cells and BMMs, H&E and tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA) of TRAP5b and c-terminal telopeptides of type 1 (CTX1) analyses, reactive oxygen species (ROS) analysis, quantitative reverse transcription polymerase chain reaction (qRT-PCR), Cell Counting Kit-8 (CCK-8) assay, and Western blot. Results The established diabetic mice were more sensitive to ovariectomy (OVX)-induced osteoporosis, and DMF treatment inhibited the sensitivity. OVX-treated diabetic mice exhibited higher TRAP5b and c-terminal telopeptides of type 1 (CTX1) levels, and DMF treatment inhibited the enhancement. DMF reduced RAW 264.7 cell viability. Glucose treatment enhanced the levels of TRAP5b, cathepsin K, Atp6v0d2, and H+-ATPase, ROS, while DMF reversed this phenotype. The glucose-increased protein levels were inhibited by DMF in cells treated with RANKL. The expression levels of antioxidant enzymes Gclc, Gclm, Ho-1, and Nqo1 were upregulated by DMF. DMF attenuated high glucose-caused osteoclast differentiation by targeting mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) signalling in BMMs. Conclusion DMF inhibits high glucose-induced osteoporosis by targeting MAPK and NF-κB signalling. Cite this article: Bone Joint Res 2022;11(4):200–209.
Collapse
Affiliation(s)
- Ya Dong Liu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jian Feng Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Department of Hand Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Bai RJ, Li YS, Zhang FJ. Osteopontin, a bridge links osteoarthritis and osteoporosis. Front Endocrinol (Lausanne) 2022; 13:1012508. [PMID: 36387862 PMCID: PMC9649917 DOI: 10.3389/fendo.2022.1012508] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease characterized by degradation of articular cartilage, inflammation, and changes in periarticular and subchondral bone of joints. Osteoporosis (OP) is another systemic skeletal disease characterized by low bone mass and bone mineral density (BMD) accompanied by microarchitectural deterioration in bone tissue and increased bone fragility and fracture risk. Both OA and OP are mainly affected on the elderly people. Recent studies have shown that osteopontin (OPN) plays a vital role in bone metabolism and homeostasis. OPN involves these biological activities through participating in the proliferation, migration, differentiation, and adhesion of several bone-related cells, including chondrocytes, synoviocytes, osteoclasts, osteoblasts, and marrow mesenchymal stem cells (MSCs). OPN has been demonstrated to be closely related to the occurrence and development of many bone-related diseases, such as OA and OP. This review summarizes the role of OPN in regulating inflammation activity and bone metabolism in OA and OP. Furthermore, some drugs that targeted OPN to treat OA and OP are also summarized in the review. However, the complex mechanism of OPN in regulating OA and OP is not fully elucidated, which drives us to explore the depth effect of OPN on these two bone diseases.
Collapse
Affiliation(s)
- Rui-Jun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| | - Fang-Jie Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
- Department of Emergency Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Yu-Sheng Li, ; Fang-Jie Zhang,
| |
Collapse
|
10
|
Cao Y, Han X, Wang Z, Liu Y, Wang Y, Zhang R, Ye J, Zou L, Dai W. TLR4 knockout ameliorates streptozotocin-induced osteoporosis in a mouse model of diabetes. Biochem Biophys Res Commun 2021; 546:185-191. [PMID: 33601314 DOI: 10.1016/j.bbrc.2021.01.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/28/2021] [Indexed: 12/28/2022]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by hyperglycemia manifesting as insufficient insulin. Toll-like receptor-4 (TLR4) has been implicated in diabetic osteoporosis. We established streptozotocin (STZ)-induced diabetic mouse model and examined the relevant osteoporosis factors in different experimental groups, the WT-CON group, WT-STZ group, KO-CON group and KO-STZ group, respectively. No obvious protection of TLR4 deletion was shown in mice with diabetes. There was no obvious difference in the body weight or blood glucose concentration between WT-STZ group and KO-STZ group. However, TLR4 deletion reduced the receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Furthermore, TLR4 knockout attenuated STZ-induced diabetic osteoporosis via inhibiting osteoblasts and pre-inflammation factors mediated by the NF-κB pathway. TLR4 deletion ameliorated STZ-induced diabetic osteoporosis in mice, and TLR4 may be used as a potential therapeutic target for the treatment of diabetic osteoporosis.
Collapse
Affiliation(s)
- Yonghong Cao
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Xiaofang Han
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Zhenzhen Wang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Yan Liu
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Yunsheng Wang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Rong Zhang
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Jun Ye
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Lingling Zou
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China
| | - Wu Dai
- Department of Endocrinology, The Second People's Hospital of Hefei, Guangde Road, Hefei, 230011, Anhui, China.
| |
Collapse
|
11
|
Lu R, Zheng Z, Yin Y, Jiang Z. Genistein prevents bone loss in type 2 diabetic rats induced by streptozotocin. Food Nutr Res 2021; 64:3666. [PMID: 33447176 PMCID: PMC7778425 DOI: 10.29219/fnr.v64.3666] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/02/2020] [Accepted: 06/12/2020] [Indexed: 01/03/2023] Open
Abstract
Background Diabetic osteoporosis has become a severe public health problem in the aging societies. Genistein has been reported to play an important role in preventing and treating metabolic diseases via its anti-inflammatory, antioxidant, anti-estrogenic, and estrogen-like functions. Objective We aimed to investigate whether genistein exerts bone-protective effect on diabetic rats induced by 35 mg/kg streptozotocin (STZ) plus a 4-week high-fat diet. Design Sprague–Dawley rats were randomly divided into four groups: (1) control group, (2) type 2 diabetes mellitus (T2DM) model group, (3) T2DM with 10 mg/kg genistein, and (4) T2DM with 30 mg/kg genistein. After an 8-week treatment with genistein, the femurs, tibias, and blood were collected from all rats for further analysis. Results Genistein at 10 mg/kg showed little effect on diabetic osteoporosis, whereas genistein at 30 mg/kg significantly improved glucose and bone metabolisms compared with diabetic rats. Our results showed that 30 mg/kg genistein significantly increased bone mineral density, serum osteocalcin, and bone alkaline phosphatase. Genistein also effectively lowered fasting blood glucose, tartrate-resistant acid phosphatase 5b, tumor necrosis factor-α, interleukin-6, and numbers of adipocytes and osteoclasts. Compared with the T2DM group, protein levels of receptor activator of nuclear factor κB ligand (RANKL) and peroxisome proliferator-activated receptor-γ (PPAR-γ) were decreased, while protein levels of osteoprotegerin (OPG), β-catenin, and runt-related transcription factor 2 (Runx-2) were increased after genistein intervention. Conclusion Genistein could effectively improve abnormal bone metabolism in STZ-induced diabetic rats; the underlying molecular mechanisms might be related to OPG/RANKL, PPAR-γ, and β-catenin/Runx-2 pathways.
Collapse
Affiliation(s)
- Rongrong Lu
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zicong Zheng
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yimin Yin
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhuoqin Jiang
- Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|