1
|
Ziehr BK, MacDonald JA. Regulation of NLRPs by reactive oxygen species: A story of crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119823. [PMID: 39173681 DOI: 10.1016/j.bbamcr.2024.119823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/28/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The nucleotide oligomerization domain (NOD)-like receptors containing pyrin (NLRP) family of cytosolic pattern-recognition receptors play an integral role in host defense following exposure to a diverse set of pathogenic and sterile threats. The canonical event following ligand recognition is the formation of a heterooligomeric signaling complex termed the inflammasome that produces pro-inflammatory cytokines. Dysregulation of this process is associated with many autoimmune, cardiovascular, metabolic, and neurodegenerative diseases. Despite the range of activating stimuli which affect varied cell types, recent literature makes evident that reactive oxygen species (ROS) are integral to the initiation and propagation of inflammasome signaling. Notably, ROS production and inflammasome activation act in a positive feedback loop to promote this potent immune response. While NLRP3 is by far the most extensively studied NLRP, there is also sufficient literature to make these conclusions for other NLRPs family members. In all cases, a knowledge gap exists regarding the molecular targets and effects of ROS. Future research to define these targets and to parse the order and timing of ROS-mediated NLRP activation will provide meaningful insights into inflammasome biology. This will create novel therapeutic opportunities for the numerous illnesses that are impacted by inflammasome activity.
Collapse
Affiliation(s)
- Bjoern K Ziehr
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Justin A MacDonald
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4Z6, Canada.
| |
Collapse
|
2
|
Zhang T, Xing F, Qu M, Yang Z, Liu Y, Yao Y, Xing N. NLRP2 in health and disease. Immunology 2024; 171:170-180. [PMID: 37735978 DOI: 10.1111/imm.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
NLR family pyrin domain containing 2 (NLRP2) is a novel member of the Nod-like receptor (NLR) family. However, our understanding of NLRP2 has long been ambiguous. NLRP2 may have a role in the innate immune response, but its 'specific' functions remain controversial. Although NLRP2 can initiate inflammasome and promote inflammation, it can also downregulate inflammatory signals. Additionally, NLRP2 has been reported to function in the reproductive system and shows high expression in the placenta. However, the exact role of NLRP2 in the reproductive system is unclear. Here, we highlight the most current progress on NLRP2 in inflammasome activation, effector function and regulation of nuclear factor-κB. And we discuss functions of NLRP2 in inflammatory diseases, reproductive disorders and the potential implication of NLRP2 in human diseases.
Collapse
Affiliation(s)
- Tongtong Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fei Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
| | - Mingcui Qu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhihu Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yafei Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yongchao Yao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Xing
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Chen G, Calcaterra F, Ma Y, Ping X, Pontarini E, Yang D, Oriolo F, Yu Z, Cancellara A, Mikulak J, Huang Y, Della Bella S, Liu Y, Biesecker LG, Harper RL, Dalgard CL, Boehm M, Mavilio D. Derived myeloid lineage induced pluripotent stem as a platform to study human C-C chemokine receptor type 5Δ32 homozygotes. iScience 2023; 26:108331. [PMID: 38026202 PMCID: PMC10663745 DOI: 10.1016/j.isci.2023.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/29/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
The C-C chemokine receptor type 5 (CCR5) expressed on immune cells supports inflammatory responses by directing cells to the inflammation site. CCR5 is also a major coreceptor for macrophage tropic human immunodeficiency viruses (R5-HIV-1) and its variants can confer protection from HIV infection, making it an ideal candidate to target for therapy. We developed a stepwise protocol that differentiates induced pluripotent stem cells (iPSCs) from individuals homozygous for the CCR5Δ32 variant and healthy volunteers into myeloid lineage induced monocytes (iMono) and macrophages (iMac). By characterizing iMono and iMac against their primary counterparts, we demonstrated that CCR5Δ32 homozygous cells are endowed with similar pluripotent potential for self-renewal and differentiation as iPSC lines generated from non-variant individuals while also showing resistance to HIV infection. In conclusion, these cells are a platform to investigate CCR5 pathophysiology in HIV-positive and negative individuals and to help develop novel therapies.
Collapse
Affiliation(s)
- Guibin Chen
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Francesca Calcaterra
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, 20054 Segrate, Italy
| | - Yuchi Ma
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xianfeng Ping
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Elena Pontarini
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, London, England, UK
| | - Dan Yang
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ferdinando Oriolo
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, 20054 Segrate, Italy
| | - Zhen Yu
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Assunta Cancellara
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, 20054 Segrate, Italy
| | - Joanna Mikulak
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Yuting Huang
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, 20054 Segrate, Italy
| | - Yangtengyu Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Leslie G. Biesecker
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca L. Harper
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Clifton L. Dalgard
- The American Genome Center, Uniformed Services University, Bethesda, MD, USA
| | - Manfred Boehm
- Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, 20054 Segrate, Italy
| |
Collapse
|
4
|
Cho S, Ying F, Sweeney G. Sterile inflammation and the NLRP3 inflammasome in cardiometabolic disease. Biomed J 2023; 46:100624. [PMID: 37336361 PMCID: PMC10539878 DOI: 10.1016/j.bj.2023.100624] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023] Open
Abstract
Inflammation plays an important role in the pathophysiology of cardiometabolic diseases. Sterile inflammation, a non-infectious and damage-associated molecular pattern (DAMP)-induced innate response, is now well-established to be closely associated with development and progression of cardiometabolic diseases. The NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is well-established as a major player in sterile inflammatory responses. It is a multimeric cytosolic protein complex which regulates the activation of caspase-1 and subsequently promotes cleavage and release of interleukin (IL)-1 family cytokines, which have a deleterious impact on the development of cardiometabolic diseases. Therefore, targeting NLRP3 itself or the downstream consequences of NLRP3 activation represent excellent potential therapeutic targets in inflammatory cardiometabolic diseases. Here, we review our current understanding of the role which NLRP3 inflammasome regulation plays in cardiometabolic diseases such as obesity, diabetes, non-alcoholic steatohepatitis (NASH), atherosclerosis, ischemic heart disease and cardiomyopathy. Finally, we highlight the potential of targeting NLPR3 or related signaling molecules as a therapeutic approach.
Collapse
Affiliation(s)
- Sungji Cho
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Fan Ying
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Li T, Li X, Mao R, Pan L, Que Y, Zhu C, Jin L, Li S. NLRP2 inhibits cell proliferation and migration by regulating EMT in lung adenocarcinoma cells. Cell Biol Int 2021; 46:588-598. [PMID: 34957627 DOI: 10.1002/cbin.11755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
Nucleotide-binding oligomerization domain-like receptors (NLRs) are crucial types of innate immune sensors and well known for their critical roles in the immune system. However, how NLRP2 functions in the progression of cancer is largely unknown. Here, we identified NLRP2 as an antioncogene in lung adenocarcinoma (LUAD) cells. Gain- and loss-of-function studies revealed that NLRP2 silencing promoted cell proliferation and migration by stimulating NF-kB signaling in the microenvironment, which induced epithelial-to-mesenchymal transition (EMT) phenotype and cytoskeleton reorganization in LUAD cells. The addition of the NF-kB inhibitor rescued the function of NLRP2 on EMT. Moreover, NLRP2 increased the level of cofilin phosphorylation and repressed subsequent F-actin reorganization. Consistently, the in vivo study showed that NLRP2 played an inhibitory role in forming metastasis foci. Taken together, NLRP2 inhibited cell proliferation and migration by regulating EMT in LUAD cells, demonstrating the essential function of NLRP2 in the development of LUAD.
Collapse
Affiliation(s)
- Tiantian Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rongchen Mao
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lihua Pan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuhui Que
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lai Jin
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengnan Li
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
7
|
Perryman A, Speen AM, Kim HYH, Hoffman JR, Clapp PW, Rivera Martin W, Snouwaert JN, Koller BH, Porter NA, Jaspers I. Oxysterols Modify NLRP2 in Epithelial Cells, Identifying a Mediator of Ozone-induced Inflammation. Am J Respir Cell Mol Biol 2021; 65:500-512. [PMID: 34126877 PMCID: PMC8641854 DOI: 10.1165/rcmb.2021-0032oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/11/2021] [Indexed: 11/24/2022] Open
Abstract
Ozone (O3) is a prevalent air pollutant causing lung inflammation. Previous studies demonstrate that O3 oxidizes lipids, such as cholesterol, in the airway to produce oxysterols, such as secosterol A (SecoA), which are electrophiles that are capable of forming covalent linkages preferentially with lysine residues and that consequently modify protein function. The breadth of proteins modified by this oxysterol as well as the biological consequences in the lung are unknown. By using an alkynyl-tagged form of SecoA and shotgun proteomics, we identified 135 proteins as being modified in bronchial epithelial cells. Among them was NLRP2 (NLR family pyrin domain-containing protein 2), which forms an alkynyl-tagged SecoA-protein adduct at lysine residue 1019 (K1019) in the terminal leucine-rich repeat region, a known regulatory region for NLR proteins. NLRP2 expression in airway epithelial cells was characterized, and CRISPR-Cas9 knockout (KO) and shRNA knockdown of NLRP2 were used to determine its function in O3-induced inflammation. No evidence for NLPR2 inflammasome formation or an NLRP2-dependent increase in caspase-1 activity in response to O3 was observed. O3-induced proinflammatory gene expression for CXCL2 and CXCL8/IL8 was further enhanced in NLRP2-KO cells, suggesting a negative regulatory role. Reconstitution of NLRP2-KO cells with the NLRP2 K1019 mutated to arginine partially blocked SecoA adduction and enhanced O3-induced IL-8 release as compared with wild-type NLRP2. Together, our findings uncover NLRP2 as a highly abundant, key component of proinflammatory signaling pathways in airway epithelial cells and as a novel mediator of O3-induced inflammation.
Collapse
Affiliation(s)
| | - Adam M Speen
- Center for Environmental Medicine, Asthma, and Lung Biology
| | - Hye-Young H Kim
- Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee
| | | | | | | | | | | | - Ned A Porter
- Department of Chemistry and Center for Molecular Toxicology, Vanderbilt University, Nashville, Tennessee
| | - Ilona Jaspers
- Center for Environmental Medicine, Asthma, and Lung Biology
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and
| |
Collapse
|
8
|
Li P, Chang M. Roles of PRR-Mediated Signaling Pathways in the Regulation of Oxidative Stress and Inflammatory Diseases. Int J Mol Sci 2021; 22:ijms22147688. [PMID: 34299310 PMCID: PMC8306625 DOI: 10.3390/ijms22147688] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress is a major contributor to the pathogenesis of various inflammatory diseases. Accumulating evidence has shown that oxidative stress is characterized by the overproduction of reactive oxygen species (ROS). Previous reviews have highlighted inflammatory signaling pathways, biomarkers, molecular targets, and pathogenetic functions mediated by oxidative stress in various diseases. The inflammatory signaling cascades are initiated through the recognition of host cell-derived damage associated molecular patterns (DAMPs) and microorganism-derived pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs). In this review, the effects of PRRs from the Toll-like (TLRs), the retinoic acid-induced gene I (RIG-I)-like receptors (RLRs) and the NOD-like (NLRs) families, and the activation of these signaling pathways in regulating the production of ROS and/or oxidative stress are summarized. Furthermore, important directions for future studies, especially for pathogen-induced signaling pathways through oxidative stress are also reviewed. The present review will highlight potential therapeutic strategies relevant to inflammatory diseases based on the correlations between ROS regulation and PRRs-mediated signaling pathways.
Collapse
Affiliation(s)
- Pengwei Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| | - Mingxian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Aquaculture Disease Control, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
- Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-027-6878-0760
| |
Collapse
|
9
|
Longo M, Paolini E, Meroni M, Dongiovanni P. Remodeling of Mitochondrial Plasticity: The Key Switch from NAFLD/NASH to HCC. Int J Mol Sci 2021; 22:4173. [PMID: 33920670 PMCID: PMC8073183 DOI: 10.3390/ijms22084173] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and the third-leading cause of cancer-related mortality. Currently, the global burden of nonalcoholic fatty liver disease (NAFLD) has dramatically overcome both viral and alcohol hepatitis, thus becoming the main cause of HCC incidence. NAFLD pathogenesis is severely influenced by lifestyle and genetic predisposition. Mitochondria are highly dynamic organelles that may adapt in response to environment, genetics and epigenetics in the liver ("mitochondrial plasticity"). Mounting evidence highlights that mitochondrial dysfunction due to loss of mitochondrial flexibility may arise before overt NAFLD, and from the early stages of liver injury. Mitochondrial failure promotes not only hepatocellular damage, but also release signals (mito-DAMPs), which trigger inflammation and fibrosis, generating an adverse microenvironment in which several hepatocytes select anti-apoptotic programs and mutations that may allow survival and proliferation. Furthermore, one of the key events in malignant hepatocytes is represented by the remodeling of glucidic-lipidic metabolism combined with the reprogramming of mitochondrial functions, optimized to deal with energy demand. In sum, this review will discuss how mitochondrial defects may be translated into causative explanations of NAFLD-driven HCC, emphasizing future directions for research and for the development of potential preventive or curative strategies.
Collapse
Affiliation(s)
- Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milano, Italy
| | - Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.L.); (E.P.); (M.M.)
| |
Collapse
|
10
|
Kurtz R, Anderman MF, Shepard BD. GPCRs get fatty: the role of G protein-coupled receptor signaling in the development and progression of nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 2021; 320:G304-G318. [PMID: 33205999 PMCID: PMC8202238 DOI: 10.1152/ajpgi.00275.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by the abnormal deposition of lipids within the liver not due to alcohol consumption, is a growing epidemic affecting over 30% of the United States population. Both simple fatty liver and its more severe counterpart, nonalcoholic steatohepatitis, represent one of the most common forms of liver disease. Recently, several G protein-coupled receptors have emerged as targets for therapeutic intervention for these disorders. These include those with known hepatic function as well as those involved in global metabolic regulation. In this review, we highlight these emerging therapeutic targets, focusing on several common themes including their activation by microbial metabolites, stimulatory effect on insulin and incretin secretion, and contribution to glucose tolerance. The overlap in ligands, localization, and downstream effects of activation indicate the interdependent nature of these receptors and highlight the importance of this signaling family in the development and prevention of NAFLD.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Meghan F. Anderman
- Department of Human Science, Georgetown University, Washington, District of Columbia
| | - Blythe D. Shepard
- Department of Human Science, Georgetown University, Washington, District of Columbia
| |
Collapse
|
11
|
Amelioration by Idesia polycarpa Maxim. var. vestita Diels. of Oleic Acid-Induced Nonalcoholic Fatty Liver in HepG2 Cells through Antioxidant and Modulation of Lipid Metabolism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1208726. [PMID: 33144913 PMCID: PMC7596479 DOI: 10.1155/2020/1208726] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/01/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022]
Abstract
Idesia polycarpa Maxim. var. vestita Diels (I. polycarpa) is well known as an edible oil plant which contains abundant linoleic acid and polyphenols. The objective of this study was to maximize the by-product of defatted fruit of I. polycarpa. We found that the fraction D of ethyl acetate extract (EF-D) contained more polyphenols, which contribute to its strong antioxidant activity by antioxidant assays (DPPH, ABTS, and FRAP). Meanwhile, EF-D showed a significant lipid-lowering effect on oleic acid- (OA-) induced hepatic steatosis in HepG2 cells through enhancing antioxidant activity, reducing liver damage, and regulating lipid metabolism, antioxidant, and inflammation-related gene expression. The SOD and T-AOC levels significantly increased, but the levels of MDA, AST, and ALT decreased obviously when treated with EF-D. In general, EF-D improved the antioxidant enzyme activities and decreased the hepatic injury activities. Besides, treatment with EF-D for NAFLD influenced lipid metabolism and inflammation by activating PPARα which was associated with the increased expression of CPT1 and decreased expression of SCD, NF-κB, and IL-1. Moreover, EF-D improved the oxidative stress system through activation of the Nrf2 antioxidant signal pathways and upregulated its target genes of HO-1, NQO1, and GSTA2. The results highlighted the EF-D from the defatted fruit of I. polycarpa regarding lipid-lowering, proving it to be a potential drug resource of natural products for treating the nonalcoholic fatty liver disease (NAFLD).
Collapse
|
12
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
13
|
Zhang Y, Chi-Yan Cheng B, Xie R, Xu B, Gao XY, Luo G. Re-Du-Ning inhalation solution exerts suppressive effect on the secretion of inflammatory mediators via inhibiting IKKα/β/IκBα/NF-κB, MAPKs/AP-1, and TBK1/IRF3 signaling pathways in lipopolysaccharide stimulated RAW 264.7 macrophages. RSC Adv 2019; 9:8912-8925. [PMID: 35517648 PMCID: PMC9062024 DOI: 10.1039/c9ra00060g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/05/2019] [Indexed: 12/28/2022] Open
Abstract
Background: Re-Du-Ning inhalation solution (RIS) is a novel preparation derived from the Re-Du-Ning injection, which has been clinically used to treat respiratory diseases such as pneumonia for more than twenty years in China. However, scant reports have been issued on its anti-inflammatory mechanisms. Aim: we investigated the suppressive effect of RIS on inflammatory mediators and explored the underlying mechanism of action. Methods: RIS freeze dried powder was characterized by HPLC analysis. Lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage was selected as the cell model. The cell viability was determined by using the MTT assay. Moreover, the production of nitric oxide (NO) was measured by the Griess reaction. The protein secretions from inflammatory mediators were determined by the enzyme-linked immunosorbent assay (ELISA). The protein levels and enzyme activities were examined by Western blotting. The nuclear translocation of nuclear factor-kappa B (NF-κB), AP-1, and IRF3 was further explored by immunofluorescence assay. Results: the viability of the RAW 264.7 cells was not significantly changed after 24 h incubation with RIS concentration up to 400 μg mL-1. The RIS remarkably reduced the production of NO and prostaglandin E2 (PGE2), and downregulated the expression of iNOS and COX-2. The concentrations of cytokines (IL-1β, IL-6, and TNF-α) and chemokines (MCP-1, CCL-5, and MIP-1α) in the culture medium were significantly decreased by the RIS treatment. Furthermore, the phosphorylation of IκB-α, IKKα/β, TBK1, ERK, p38, JNK, NF-κB, AP-1, and IRF3 was downregulated by the RIS treatment. The nuclear translocation of NF-κB, AP-1, and IRF3 was also inhibited after the RIS treatment. Conclusion: the suppressive effect of RIS is associated with the regulated NF-κB, AP-1, and IRF3 and their upstream proteins. This study provides a pharmacological basis for the application of RIS in the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University Hong Kong 999077 China
- Quality Healthcare Medical Services Hong Kong 999077 China
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Science Beijing 100700 China
| | - Bing Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Xiao Yan Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100102 China
| |
Collapse
|