1
|
Wu J, Cheng X, Wu J, Chen J, Pei X. The development of magnesium-based biomaterials in bone tissue engineering: A review. J Biomed Mater Res B Appl Biomater 2024; 112:e35326. [PMID: 37861271 DOI: 10.1002/jbm.b.35326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2023] [Accepted: 08/23/2023] [Indexed: 10/21/2023]
Abstract
Bone regeneration is a vital clinical challenge in massive or complicated bone defects. Recently, bone tissue engineering has come to the fore to meet the demand for bone repair with various innovative materials. However, the reported materials usually cannot satisfy the requirements, such as ideal mechanical and osteogenic properties, as well as biocompatibility at the same time. Mg-based biomaterials have considerable potential in bone tissue engineering owing to their excellent mechanical strength and biosafety. Moreover, the biocompatibility and osteogenic activity of Mg-based biomaterials have been the research focuses in recent years. The main limitation faced in the applications of Mg-based biomaterials is rapid degradation, which can produce excessive Mg2+ and hydrogen, affecting the healing of the bone defect. In order to overcome the limitations, researchers have explored several ways to improve the properties of Mg-based biomaterials, including alloying, surface modification with coatings, and synthesizing other composite materials to control the degradation rate upon implantation. This article reviewed the osteogenic mechanism and requirement for appropriate degradation rate and focused on current progress in the biomedical use of Mg-based biomaterials to inspire more clinical applications of Mg in bone regeneration in the future.
Collapse
Affiliation(s)
- Jiaxin Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jicenyuan Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang G, Luo J, Qiao Y, Zhang D, Liu Y, Zhang W, Liu X, Jiang X. AMPK/mTOR Pathway Is Involved in Autophagy Induced by Magnesium-Incorporated TiO 2 Surface to Promote BMSC Osteogenic Differentiation. J Funct Biomater 2022; 13:jfb13040221. [PMID: 36412862 PMCID: PMC9680369 DOI: 10.3390/jfb13040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Magnesium has been extensively utilized to modify titanium implant surfaces based on its important function in promoting osteogenic differentiation. Autophagy has been proven to play a vital role in bone metabolism. Whether there is an association between autophagy and magnesium in promoting osteogenic differentiation remains unclear. In the present study, we focused on investigating the role of magnesium ions in early osteogenic activity and the underlying mechanism related to autophagy. Different concentrations of magnesium were embedded in micro-structured titanium surface layers using the micro-arc oxidation (MAO) technique. The incorporation of magnesium benefited cell adhesion, spreading, and viability; attenuated intracellular ATP concentrations and p-mTOR levels; and upregulated p-AMPK levels. This indicates the vital role of the ATP-related AMPK/mTOR signaling pathway in the autophagy process associated with osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) induced by magnesium modification on titanium surfaces. The enhanced osteogenic differentiation and improved cellular autophagy activity of BMSCs in their extraction medium further confirmed the function of magnesium ions. The results of the present study advance our understanding of the mechanism by which magnesium regulates BMSC osteogenic differentiation through autophagy regulation. Moreover, endowing implants with the ability to activate autophagy may be a promising strategy for enhancing osseointegration in the translational medicine field in the future.
Collapse
Affiliation(s)
- Guifang Wang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Jiaxin Luo
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Yuqin Qiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
- Correspondence: (Y.Q.); (X.J.)
| | - Dongdong Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Yulan Liu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, No. 1295 Dingxi Road, Shanghai 200050, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, 639 Zhizaoju Road, Shanghai 200011, China
- Correspondence: (Y.Q.); (X.J.)
| |
Collapse
|
3
|
New Insights into TRP Ion Channels in Stem Cells. Int J Mol Sci 2022; 23:ijms23147766. [PMID: 35887116 PMCID: PMC9318110 DOI: 10.3390/ijms23147766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Transient receptor potential (TRP) ion channels are cationic permeable proteins located on the plasma membrane. TRPs are cellular sensors for perceiving diverse physical and/or chemical stimuli; thus, serving various critical physiological functions, including chemo-sensation, hearing, homeostasis, mechano-sensation, pain, taste, thermoregulation, vision, and even carcinogenesis. Dysregulated TRPs are found to be linked to many human hereditary diseases. Recent studies indicate that TRP ion channels are not only involved in sensory functions but are also implicated in regulating the biological characteristics of stem cells. In the present review, we summarize the expressions and functions of TRP ion channels in stem cells, including cancer stem cells. It offers an overview of the current understanding of TRP ion channels in stem cells.
Collapse
|
4
|
Bai R, Miao MZ, Li H, Wang Y, Hou R, He K, Wu X, Jin H, Zeng C, Cui Y, Lei G. Increased Wnt/β-catenin signaling contributes to autophagy inhibition resulting from a dietary magnesium deficiency in injury-induced osteoarthritis. Arthritis Res Ther 2022; 24:165. [PMID: 35804467 PMCID: PMC9264717 DOI: 10.1186/s13075-022-02848-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Background Dietary magnesium deficiency, which is common in modern diet, has been associated with osteoarthritis (OA) susceptibility. Despite this clinical association, no study has addressed if dietary magnesium deficiency accelerates OA development, especially at molecular level. This study aimed to explore aggravating effects of dietary magnesium deficiency on cartilage damage in an injury-induced murine OA model and to determine the underlying mechanism. Methods Twelve-week-old C57BL/6J mice subject to injury-induced OA modeling were randomized into different diet groups in which the mice were fed a diet with daily recommended magnesium content (500 mg/kg) or diets with low magnesium content (100 or 300 mg/kg). Articular cartilage damage was evaluated using the OARSI score. To determine molecular mechanisms in vitro, mouse chondrocytes were treated with media of low magnesium conditions at 0.1 and 0.4 mM, compared with normal magnesium condition at 0.7 mM as control. Anabolic and catabolic factors, autophagy markers, β-catenin, Wnt ligands, and a magnesium channel transient receptor potential cation channel subfamily member 7 (TRPM7) were analyzed by quantitative real-time PCR and immunoblotting. Autolysosomes were detected by DALGreen staining via fluorescence microscopy and autophagosomes were evaluated by transmission electron microscopy. Autophagy markers, β-catenin, and TRPM7 were assessed in vivo in the mouse cartilage, comparing between dietary magnesium deficiency and normal diet, by immunohistochemistry. Results Dietary magnesium deficiency aggravated injury-induced cartilage damage, indicated by significant higher OARSI scores. Autophagy markers LC3-II and Beclin-1 were decreased both in low magnesium diet-fed mice and low magnesium-treated chondrocytes. The number of autolysosomes and autophagosomes was also reduced under low magnesium conditions. Moreover, magnesium deficiency induced decreased anabolic and increased catabolic effect of chondrocytes which could be restored by autophagy activator rapamycin. In addition, reduced autophagy under low magnesium conditions is mediated by activated Wnt/β-catenin signaling. The expression of TRPM7 also decreased in low magnesium diet-fed mice, indicating that downstream changes could be regulated through this channel. Conclusions Dietary magnesium deficiency contributes to OA development, which is mediated by reduced autophagy through Wnt/β-catenin signaling activation. These findings indicated potential benefits of adequate dietary magnesium for OA patients or those individuals at high risk of OA. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02848-0.
Collapse
Affiliation(s)
- Ruijun Bai
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Michael Z Miao
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Curriculum in Oral and Craniofacial Biomedicine, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Yiqing Wang
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ruixue Hou
- Department of Population Health Science and Policy, Icahn School of Medical at Mount Sinai, New York, NY, USA
| | - Ke He
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Xuan Wu
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Hongyu Jin
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China.,Hunan Engineering Research Center of Osteoarthritis, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Cui
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China. .,Xiangya International Medical Center, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, China. .,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China. .,Hunan Engineering Research Center of Osteoarthritis, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Magnesium Homeostasis in Myogenic Differentiation-A Focus on the Regulation of TRPM7, MagT1 and SLC41A1 Transporters. Int J Mol Sci 2022; 23:ijms23031658. [PMID: 35163580 PMCID: PMC8836031 DOI: 10.3390/ijms23031658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Magnesium (Mg) is essential for skeletal muscle health, but little is known about the modulation of Mg and its transporters in myogenic differentiation. Here, we show in C2C12 murine myoblasts that Mg concentration fluctuates during their differentiation to myotubes, declining early in the process and reverting to basal levels once the cells are differentiated. The level of the Mg transporter MagT1 decreases at early time points and is restored at the end of the process, suggesting a possible role in the regulation of intracellular Mg concentration. In contrast, TRPM7 is rapidly downregulated and remains undetectable in myotubes. The reduced amounts of TRPM7 and MagT1 are due to autophagy, one of the proteolytic systems activated during myogenesis and essential for the membrane fusion process. Moreover, we investigated the levels of SLC41A1, which increase once cells are differentiated, mainly through transcriptional regulation. In conclusion, myogenesis is associated with alterations of Mg homeostasis finely tuned through the modulation of MagT1, TRPM7 and SLC41A1.
Collapse
|
6
|
Bi C, Zhang X, Chen Y, Dong Y, Shi Y, Lei Y, Lv D, Cao X, Li W, Shi H. MAGT1 is required for HeLa cell proliferation through regulating p21 expression, S-phase progress, and ERK/p38 MAPK MYC axis. Cell Cycle 2021; 20:2233-2247. [PMID: 34499581 DOI: 10.1080/15384101.2021.1974792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Magnesium transporter subtype 1 (MAGT1) is known to participate in animal development and cell differentiation. Thus far, MAGT1 studies have mainly focused on its role in cardiomyocyte regulation and differentiation; only a few studies have demonstrated its role in cell proliferation. To investigate the underlying mechanism of MAGT1 in cell proliferation, HeLa and SiHa cells were transiently knocked down with different siRNAs. We showed that cell proliferation was substantially restricted by S-phase arrest and apoptosis in the MAGT1-knocked down cells, which was further confirmed by the increased expression of p21, cyclin-A1, and cyclin-B1, as well as the decreased expression of MYC, cyclin-D1, cyclin-E1, and CDK2. MAGT1 knockdown also resulted in significant changes in the transcriptional expression of 1,598 genes that were analyzed by RNA sequencing. Bioinformatics analysis showed that MAGT1 was related to the MAPK signaling pathway. Western blot analysis confirmed that the phosphorylation of extracellular signal-related protein kinase 1/2 (ERK1/2) and p38 was remarkably reduced in MAGT1 down-regulated groups. Additionally, MAGT1 was required for the function of viral proteins E6/E7 during cell proliferation and G1/S cell-cycle progression. Therefore, MAGT1 plays a crucial role in the proliferation of HPV-positive cervical cancer cells, S-phase progression, and the ERK/p38 MAPK signaling pathway. These results indicate the potential of MAGT1 as a novel target for anticancer research.Abbreviations: MAGT1: Magnesium transporter subtype 1; MAPK: Mitogen-activated protein kinase; XMEN: X-linked immunodeficiency with Magnesium defect, Epstein-Barr virus infection and Neoplasia; BMMSCs: Bone Marrow Mesenchymal Stem Cells; Dpp: Decapentaplegic; CDKIs: CDK inhibitors; GPCR: G-protein coupled receptor; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; RTK: Receptor Tyrosine Kinase; PTK: Protein Tyrosine Kinase; FGFR: Fibroblast Growth Factor Receptor; BMP: Bone Morphogenetic Protein; HPV18 E6/E7: Human Papillomavirus 18 Early protein 6/ early protein 7; FACS: Fluorescence Activated Cell Sorting; PI: Propidium Iodide.
Collapse
Affiliation(s)
- Caili Bi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, PR China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, PR China
| | - Xue Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.,The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou University, Yangzhou, 225001, PR China
| | - Yueyue Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, PR China
| | - Yushuo Dong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Yixin Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Yunshen Lei
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Dan Lv
- School of Life Sciences, Anqing Normal University, Anqing, PR China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Medical College, Yangzhou University, Yangzhou, China
| | - Wei Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, PR China
| | - Hongcan Shi
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China.,Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
7
|
Saghati S, Nasrabadi HT, Khoshfetrat AB, Moharamzadeh K, Hassani A, Mohammadi SM, Rahbarghazi R, Fathi Karkan S. Tissue Engineering Strategies to Increase Osteochondral Regeneration of Stem Cells; a Close Look at Different Modalities. Stem Cell Rev Rep 2021; 17:1294-1311. [PMID: 33547591 DOI: 10.1007/s12015-021-10130-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
The homeostasis of osteochondral tissue is tightly controlled by articular cartilage chondrocytes and underlying subchondral bone osteoblasts via different internal and external clues. As a correlate, the osteochondral region is frequently exposed to physical forces and mechanical pressure. On this basis, distinct sets of substrates and physicochemical properties of the surrounding matrix affect the regeneration capacity of chondrocytes and osteoblasts. Stem cells are touted as an alternative cell source for the alleviation of osteochondral diseases. These cells appropriately respond to the physicochemical properties of different biomaterials. This review aimed to address some of the essential factors which participate in the chondrogenic and osteogenic capacity of stem cells. Elements consisted of biomechanical forces, electrical fields, and biochemical and physical properties of the extracellular matrix are the major determinant of stem cell differentiation capacity. It is suggested that an additional certain mechanism related to signal-transduction pathways could also mediate the chondro-osteogenic differentiation of stem cells. The discovery of these clues can enable us to modulate the regeneration capacity of stem cells in osteochondral injuries and lead to the improvement of more operative approaches using tissue engineering modalities.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Tayefi Nasrabadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Keyvan Moharamzadeh
- Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai, United Arab Emirates
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz, 51335-1996, Iran
| | - Seyedeh Momeneh Mohammadi
- Department of Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sonia Fathi Karkan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Wu Z, Meng Z, Wu Q, Zeng D, Guo Z, Yao J, Bian Y, Gu Y, Cheng S, Peng L, Zhao Y. Biomimetic and osteogenic 3D silk fibroin composite scaffolds with nano MgO and mineralized hydroxyapatite for bone regeneration. J Tissue Eng 2020; 11:2041731420967791. [PMID: 33294153 PMCID: PMC7705190 DOI: 10.1177/2041731420967791] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/01/2020] [Indexed: 01/15/2023] Open
Abstract
Artificial bioactive materials have received increasing attention worldwide in clinical orthopedics to repair bone defects that are caused by trauma, infections or tumors, especially dedicated to the multifunctional composite effect of materials. In this study, a weakly alkaline, biomimetic and osteogenic, three-dimensional composite scaffold (3DS) with hydroxyapatite (HAp) and nano magnesium oxide (MgO) embedded in fiber (F) of silkworm cocoon and silk fibroin (SF) is evaluated comprehensively for its bone repair potential in vivo and in vitro experiments, particularly focusing on the combined effect between HAp and MgO. Magnesium ions (Mg2+) has long been proven to promote bone tissue regeneration, and HAp is provided with osteoconductive properties. Interestingly, the weak alkaline microenvironment from MgO may also be crucial to promote Sprague-Dawley (SD) rat bone mesenchymal stem cells (BMSCs) proliferation, osteogenic differentiation and alkaline phosphatase (ALP) activities. This SF/F/HAp/nano MgO (SFFHM) 3DS with superior biocompatibility and biodegradability has better mechanical properties, BMSCs proliferation ability, osteogenic activity and differentiation potential compared with the scaffolds adding HAp or MgO alone or neither. Similarly, corresponding meaningful results are also demonstrated in a model of distal lateral femoral defect in SD rat. Therefore, we provide a promising 3D composite scaffold for promoting bone regeneration applications in bone tissue engineering.
Collapse
Affiliation(s)
- Ziquan Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhulong Meng
- Municipal Hospital Affiliated to Medical School of Taizhou University, Taizhou, Zhejiang, China
| | - Qianjin Wu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Delu Zeng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Zhengdong Guo
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Jiangling Yao
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yangyang Bian
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Yuntao Gu
- The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Shaowen Cheng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China
| | - Lei Peng
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.,Key Laboratory of Emergency and Trauma of Hainan Medical University, Ministry of Education, Haikou, Hainan, China
| | - Yingzheng Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Tashiro M, Konishi M, Kobayashi R, Inoue H, Yokoyama U. TRPM7 silencing attenuates Mg 2+ influx in cardiac myoblasts, H9c2 cells. J Physiol Sci 2020; 70:47. [PMID: 33028185 PMCID: PMC10717136 DOI: 10.1186/s12576-020-00772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/11/2020] [Indexed: 11/10/2022]
Abstract
TRPM7, a member of the melastatin subfamily of transient receptor potential channels, is suggested to be a potential candidate for a physiological Mg2+ channel. However, there is no direct evidence of Mg2+ permeation through endogenous TRPM7. To determine the physiological roles of TRPM7 in intracellular Mg2+ homeostasis, we measured the cytoplasmic free Mg2+ concentration ([Mg2+]i) in TRPM7-silenced H9c2 cells. [Mg2+]i was measured in a cluster of 8-10 cells using the fluorescent indicator, furaptra. TRPM7 silencing did not change [Mg2+]i in Ca2+-free Tyrode's solution containing 1 mM Mg2+. Increasing the extracellular Mg2+ to 92.5 mM raised [Mg2+]i in control cells (1.56 ± 0.19 mM) at 30 min, while this effect was significantly attenuated in TRPM7-silenced cells (1.12 ± 0.07 mM). The Mg2+ efflux driven by Na+ gradient was unaffected by TRPM7 silencing. These results suggest that TRPM7 regulates the rate of Mg2+ influx in H9c2 cells, although cytoplasmic Mg2+ homeostasis at basal conditions is unaffected by TRPM7 silencing.
Collapse
Affiliation(s)
- Michiko Tashiro
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Ryo Kobayashi
- Department of Microbiology, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Hana Inoue
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
10
|
A Review of the Action of Magnesium on Several Processes Involved in the Modulation of Hematopoiesis. Int J Mol Sci 2020; 21:ijms21197084. [PMID: 32992944 PMCID: PMC7582682 DOI: 10.3390/ijms21197084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Magnesium (Mg2+) is an essential mineral for the functioning and maintenance of the body. Disturbances in Mg2+ intracellular homeostasis result in cell-membrane modification, an increase in oxidative stress, alteration in the proliferation mechanism, differentiation, and apoptosis. Mg2+ deficiency often results in inflammation, with activation of inflammatory pathways and increased production of proinflammatory cytokines by immune cells. Immune cells and others that make up the blood system are from hematopoietic tissue in the bone marrow. The hematopoietic tissue is a tissue with high indices of renovation, and Mg2+ has a pivotal role in the cell replication process, as well as DNA and RNA synthesis. However, the impact of the intra- and extracellular disturbance of Mg2+ homeostasis on the hematopoietic tissue is little explored. This review deals specifically with the physiological requirements of Mg2+ on hematopoiesis, showing various studies related to the physiological requirements and the effects of deficiency or excess of this mineral on the hematopoiesis regulation, as well as on the specific process of erythropoiesis, granulopoiesis, lymphopoiesis, and thrombopoiesis. The literature selected includes studies in vitro, in animal models, and in humans, giving details about the impact that alterations of Mg2+ homeostasis can have on hematopoietic cells and hematopoietic tissue.
Collapse
|
11
|
Biological Factors, Metals, and Biomaterials Regulating Osteogenesis through Autophagy. Int J Mol Sci 2020; 21:ijms21082789. [PMID: 32316424 PMCID: PMC7215394 DOI: 10.3390/ijms21082789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023] Open
Abstract
Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as well. Already investigated conditions regulating bone regeneration via autophagy need to be better understood for finely tailoring innovative therapeutic treatments and designing novel biomaterials.
Collapse
|