1
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
2
|
Ucci A, Giacchi L, Rucci N. Primary Bone Tumors and Breast Cancer-Induced Bone Metastases: In Vivo Animal Models and New Alternative Approaches. Biomedicines 2024; 12:2451. [PMID: 39595017 PMCID: PMC11591690 DOI: 10.3390/biomedicines12112451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Bone is the preferential site of metastasis for the most common tumors, including breast cancer. On the other hand, osteosarcoma is the primary bone cancer that most commonly occurs and causes bone cancer-related deaths in children. Several treatment strategies have been developed so far, with little or no efficacy for patient survival and with the development of side effects. Therefore, there is an urgent need to develop more effective therapies for bone primary tumors and bone metastatic disease. This almost necessarily requires the use of in vivo animal models that better mimic human pathology and at the same time follow the ethical principles for the humane use of animal testing. In this review we aim to illustrate the main and more suitable in vivo strategies employed to model bone metastases and osteosarcoma. We will also take a look at the recent technologies implemented for a partial replacement of animal testing.
Collapse
Affiliation(s)
| | | | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (A.U.); (L.G.)
| |
Collapse
|
3
|
Zhao Z, Wu Q, Xu Y, Qin Y, Pan R, Meng Q, Li S. Groenlandicine enhances cisplatin sensitivity in cisplatin-resistant osteosarcoma cells through the BAX/Bcl-2/Caspase-9/Caspase-3 pathway. J Bone Oncol 2024; 48:100631. [PMID: 39263651 PMCID: PMC11388767 DOI: 10.1016/j.jbo.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/06/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Groenlandicine is a protoberberine alkaloid isolated from Coptidis Rhizoma, a widely used traditional Chinese medicine known for its various biological activities. This study aims to validate groenlandicine's effect on both cisplatin-sensitive and cisplatin-resistant osteosarcoma (OS) cells, along with exploring its potential molecular mechanism. The ligand-based virtual screening (LBVS) method and molecular docking were employed to screen drugs. CCK-8 and FCM were used to measure the effect of groenlandicine on the OS cells transfected by lentivirus with over-expression or low-expression of TOP1. Cell scratch assay, CCK-8, FCM, and the EdU assay were utilized to evaluate the effect of groenlandicine on cisplatin-resistant cells. WB, immunofluorescence, and PCR were conducted to measure the levels of TOP1, Bcl-2, BAX, Caspase-9, and Caspase-3. Additionally, a subcutaneous tumor model was established in nude mice to verify the efficacy of groenlandicine. Groenlandicine reduced the migration and proliferation while promoting apoptosis in OS cells, effectively damaging them. Meanwhile, groenlandicine exhibited weak cytotoxicity in 293T cells. Combination with cisplatin enhanced tumor-killing activity, markedly activating BAX, cleaved-Caspase-3, and cleaved-Caspase-9, while inhibiting the Bcl2 pathway in cisplatin-resistant OS cells. Moreover, the level of TOP1, elevated in cisplatin-resistant OS cells, was down-regulated by groenlandicine both in vitro and in vivo. Animal experiments confirmed that groenlandicine combined with cisplatin suppressed OS growth with lower nephrotoxicity. Groenlandicine induces apoptosis and enhances the sensitivity of drug-resistant OS cells to cisplatin via the BAX/Bcl-2/Caspase-9/Caspase-3 pathway. Groenlandicine inhibits OS cells growth by down-regulating TOP1 level.Therefore, groenlandicine holds promise as a potential agent for reversing cisplatin resistance in OS treatment.
Collapse
Affiliation(s)
- Zihao Zhao
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qihong Wu
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Yangyang Xu
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Yuhuan Qin
- Beijing Jinshuitan Hospital Guizhou Hospital, Guiyang, Guizhou Province, China
| | - Runsang Pan
- Basic Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Qingqi Meng
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Siming Li
- Clincal Medical College, Guizhou Medical University, Guiyang, Guizhou Province, China
- Guangzhou Red Cross Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
4
|
Shanmugavadivu A, Lekhavadhani S, Miranda PJ, Selvamurugan N. Current approaches in tissue engineering-based nanotherapeutics for osteosarcoma treatment. Biomed Mater 2024; 19:022003. [PMID: 38324905 DOI: 10.1088/1748-605x/ad270b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Osteosarcoma (OS) is a malignant bone neoplasm plagued by poor prognosis. Major treatment strategies include chemotherapy, radiotherapy, and surgery. Chemotherapy to treat OS has severe adverse effects due to systemic toxicity to healthy cells. A possible way to overcome the limitation is to utilize nanotechnology. Nanotherapeutics is an emerging approach in treating OS using nanoparticulate drug delivery systems. Surgical resection of OS leaves a critical bone defect requiring medical intervention. Recently, tissue engineered scaffolds have been reported to provide physical support to bone defects and aid multimodal treatment of OS. These scaffolds loaded with nanoparticulate delivery systems could also actively repress tumor growth and aid new bone formation. The rapid developments in nanotherapeutics and bone tissue engineering have paved the way for improved treatment efficacy for OS-related bone defects. This review focuses on current bifunctional nanomaterials-based tissue engineered (NTE) scaffolds that use novel approaches such as magnetic hyperthermia, photodynamic therapy, photothermal therapy, bioceramic and polymeric nanotherapeutics against OS. With further optimization and screening, NTE scaffolds could meet clinical applications for treating OS patients.
Collapse
Affiliation(s)
- Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Sundaravadhanan Lekhavadhani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | | | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
5
|
Povo-Retana A, Landauro-Vera R, Alvarez-Lucena C, Cascante M, Boscá L. Trabectedin and Lurbinectedin Modulate the Interplay between Cells in the Tumour Microenvironment-Progresses in Their Use in Combined Cancer Therapy. Molecules 2024; 29:331. [PMID: 38257245 PMCID: PMC10820391 DOI: 10.3390/molecules29020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Trabectedin (TRB) and Lurbinectedin (LUR) are alkaloid compounds originally isolated from Ecteinascidia turbinata with proven antitumoral activity. Both molecules are structural analogues that differ on the tetrahydroisoquinoline moiety of the C subunit in TRB, which is replaced by a tetrahydro-β-carboline in LUR. TRB is indicated for patients with relapsed ovarian cancer in combination with pegylated liposomal doxorubicin, as well as for advanced soft tissue sarcoma in adults in monotherapy. LUR was approved by the FDA in 2020 to treat metastatic small cell lung cancer. Herein, we systematically summarise the origin and structure of TRB and LUR, as well as the molecular mechanisms that they trigger to induce cell death in tumoral cells and supporting stroma cells of the tumoral microenvironment, and how these compounds regulate immune cell function and fate. Finally, the novel therapeutic venues that are currently under exploration, in combination with a plethora of different immunotherapeutic strategies or specific molecular-targeted inhibitors, are reviewed, with particular emphasis on the usage of immune checkpoint inhibitors, or other bioactive molecules that have shown synergistic effects in terms of tumour regression and ablation. These approaches intend to tackle the complexity of managing cancer patients in the context of precision medicine and the application of tailor-made strategies aiming at the reduction of undesired side effects.
Collapse
Affiliation(s)
- Adrián Povo-Retana
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Rodrigo Landauro-Vera
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Carlota Alvarez-Lucena
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine-Institute of Biomedicine (IBUB), Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain
| | - Lisardo Boscá
- Instituto de Investigaciones Biomédicas Alberto Sols-Morreale (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (R.L.-V.); (C.A.-L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
6
|
Meroni A, Grosser J, Agashe S, Ramakrishnan N, Jackson J, Verma P, Baranello L, Vindigni A. NEDDylated Cullin 3 mediates the adaptive response to topoisomerase 1 inhibitors. SCIENCE ADVANCES 2022; 8:eabq0648. [PMID: 36490343 PMCID: PMC9733930 DOI: 10.1126/sciadv.abq0648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/26/2022] [Indexed: 05/30/2023]
Abstract
DNA topoisomerase 1 (TOP11) inhibitors are mainstays of anticancer therapy. These drugs trap TOP1 on DNA, stabilizing the TOP1-cleavage complex (TOP1-cc). The accumulation of TOP1-ccs perturbs DNA replication fork progression, leading to DNA breaks and cell death. By analyzing the genomic occupancy and activity of TOP1, we show that cells adapt to treatment with multiple doses of TOP1 inhibitor by promoting the degradation of TOP1-ccs, allowing cells to better tolerate subsequent doses of TOP1 inhibitor. The E3-RING Cullin 3 ligase in complex with the BTBD1 and BTBD2 adaptor proteins promotes TOP1-cc ubiquitination and subsequent proteasomal degradation. NEDDylation of Cullin 3 activates this pathway, and inhibition of protein NEDDylation or depletion of Cullin 3 sensitizes cancer cells to TOP1 inhibitors. Collectively, our data uncover a previously unidentified NEDD8-Cullin 3 pathway involved in the adaptive response to TOP1 inhibitors, which can be targeted to improve the efficacy of TOP1 drugs in cancer therapy.
Collapse
Affiliation(s)
- Alice Meroni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jan Grosser
- Karolinska Institutet, CMB, 171 65 Solna, Sweden
| | - Sumedha Agashe
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Natasha Ramakrishnan
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jessica Jackson
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Priyanka Verma
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Alessandro Vindigni
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Chiu WJ, Lin CS, Lin SR, Chen TH, Wu CJ, Busa P, Long H, Chen CC, Tseng FJ, Fu YS, Weng CF. Diterpene promptly executes a non-canonical autophagic cell death in doxorubicin-resistant lung cancer. Biomed Pharmacother 2022; 153:113443. [DOI: 10.1016/j.biopha.2022.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
|
8
|
Beck J, Ren L, Huang S, Berger E, Bardales K, Mannheimer J, Mazcko C, LeBlanc A. Canine and murine models of osteosarcoma. Vet Pathol 2022; 59:399-414. [PMID: 35341404 PMCID: PMC9290378 DOI: 10.1177/03009858221083038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in children. Despite efforts to develop and implement new therapies, patient outcomes have not measurably improved since the 1980s. Metastasis continues to be the main source of patient mortality, with 30% of cases developing metastatic disease within 5 years of diagnosis. Research models are critical in the advancement of cancer research and include a variety of species. For example, xenograft and patient-derived xenograft (PDX) mouse models provide opportunities to study human tumor cells in vivo while transgenic models have offered significant insight into the molecular mechanisms underlying OS development. A growing recognition of naturally occurring cancers in companion species has led to new insights into how veterinary patients can contribute to studies of cancer biology and drug development. The study of canine cases, including the use of diagnostic tissue archives and clinical trials, offers a potential mechanism to further canine and human cancer research. Advancement in the field of OS research requires continued development and appropriate use of animal models. In this review, animal models of OS are described with a focus on the mouse and tumor-bearing pet dog as parallel and complementary models of human OS.
Collapse
Affiliation(s)
| | - Ling Ren
- National Cancer Institute, Bethesda, MD
| | | | | | - Kathleen Bardales
- National Cancer Institute, Bethesda, MD
- University of Pennsylvania, Philadelphia, PA
| | | | | | | |
Collapse
|
9
|
Ferrari A, Chiaravalli S, Bergamaschi L, Nigro O, Livellara V, Sironi G, Gasparini P, Pasquali S, Zaffaroni N, Stacchiotti S, Morosi C, Massimino M, Casanova M. Trabectedin-irinotecan, a potentially promising combination in relapsed desmoplastic small round cell tumor: report of two cases. J Chemother 2022; 35:163-167. [PMID: 35470779 DOI: 10.1080/1120009x.2022.2067706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effective new drugs are urgently needed for desmoplastic small round cell tumor (DSRCT), an extremely rare and aggressive disease with a generally poor prognosis. We describe two heavily-pretreated young patients with advanced-stage DSRCT given third-line treatment with a combination of trabectedin and irinotecan, based on our preclinical data demonstrating its effect on patient-derived xenografts. This trabectedin-irinotecan treatment showed a limited toxicity. One patient had a mixed response (overall stable disease), the other a complete tumor remission. This is the first report of preliminary findings to suggest that combining trabectedin and irinotecan is worth further investigating as a potentially valuable chemotherapy for DSRCT.
Collapse
Affiliation(s)
- Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Stefano Chiaravalli
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Luca Bergamaschi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Olga Nigro
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Virginia Livellara
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giovanna Sironi
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Gasparini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Sarcoma Service, Department of Surgery, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Silvia Stacchiotti
- Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Carlo Morosi
- Radiology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Michela Casanova
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Inoue M, Horiuchi K, Susa M, Taguchi E, Ishizaka T, Rikitake H, Matsuhashi Y, Chiba K. Trabectedin suppresses osteosarcoma pulmonary metastasis in a mouse tumor xenograft model. J Orthop Res 2022; 40:945-953. [PMID: 34057747 DOI: 10.1002/jor.25105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 02/04/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone tumor that mainly affects adolescents and young adults. Although standard treatment modality can achieve up to 60%-70% 5-year survival rate, there has not been any substantial improvement over the past four decades. Furthermore, those presenting with pulmonary metastatic lesions often undergo a highly unfavorable clinical course. Therefore, there is a severely unmet clinical need to provide a more effective treatment for patients with OS. In this study, we show that trabectedin (TBD), a chemotherapeutic agent approved for soft tissue sarcomas, significantly suppresses pulmonary metastasis in a mouse OS xenograft model. In vitro experiments revealed that TBD suppresses cell migration potentially by downregulating the activity of ERK1/2, intracellular molecules that are critically involved in the regulation of cell motility. Collectively, our data may provide a basis for further investigation of TBD on the potential use for OS patients who are at great risk of pulmonary metastasis.
Collapse
Affiliation(s)
- Masahiro Inoue
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
- Department of Orthopedic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Michiro Susa
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Eiko Taguchi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takahiro Ishizaka
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hajime Rikitake
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yusuke Matsuhashi
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kazuhiro Chiba
- Department of Orthopedic Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
11
|
Su Q, Xu B, Tian Z, Gong Z. Novel 1,3,5-triazine-nicotinohydrazide derivatives induce cell arrest and apoptosis in osteosarcoma cancer cells and inhibit osteosarcoma in a patient-derived orthotopic xenograft mouse model. Chem Biol Drug Des 2021; 99:320-330. [PMID: 34811888 DOI: 10.1111/cbdd.13986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/14/2021] [Indexed: 01/02/2023]
Abstract
The present study deals with developing novel 1,3,5-triazine-nicotinohydrazide derivatives as potent CDK9 inhibitors in a straightforward synthetic route with potent anti-osteosarcoma activity. The most potent CDK9 inhibitor compound 5k inhibits proliferation of MG-63 cells via induction of apoptosis and G2/M cell cycle arrest. It reduces tumor progression in the patient-derived orthotopic xenograft (PDOX) mouse model with significant antioxidant and anti-inflammatory activity. In tumor tissue homogenates, it caused significant inhibition of CDK9 and inhibited the phosphorylation of RNAPII ser2 and reduced MCL-1 expression in Western blot analysis. Compound 5k also showed considerable bioavailability in SD mice. Our results demonstrated that compound 5k inhibits growth of OS in vitro and in vivo via inhibition of CDK9 which attenuated the downstream phosphorylation of RNAPII ser2 and represses expression of the anti-apoptotic protein, MCL-1 for the induction of apoptosis in OS.
Collapse
Affiliation(s)
- Qing Su
- Department of Orthopedic Oncology, Yantai Shan Hospital, Yantai, China
| | - Baolin Xu
- Department of Orthopedics, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Zhoubin Tian
- Departments of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ziling Gong
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
12
|
Mikulčić M, Tabrizi-Wizsy NG, Bernhart EM, Asslaber M, Trummer C, Windischhofer W, Sattler W, Malle E, Hrzenjak A. 15d-PGJ 2 Promotes ROS-Dependent Activation of MAPK-Induced Early Apoptosis in Osteosarcoma Cell In Vitro and in an Ex Ovo CAM Assay. Int J Mol Sci 2021; 22:ijms222111760. [PMID: 34769194 PMCID: PMC8583949 DOI: 10.3390/ijms222111760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common type of bone tumor, and has limited therapy options. 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has striking anti-tumor effects in various tumors. Here, we investigated molecular mechanisms that mediate anti-tumor effects of 15d-PGJ2 in different OS cell lines. Human U2-OS and Saos-2 cells were treated with 15d-PGJ2 and cell survival was measured by MTT assay. Cell proliferation and motility were investigated by scratch assay, the tumorigenic capacity by colony forming assay. Intracellular ROS was estimated by H2DCFDA. Activation of MAPKs and cytoprotective proteins was detected by immunoblotting. Apoptosis was detected by immunoblotting and Annexin V/PI staining. The ex ovo CAM model was used to study growth capability of grafted 15d-PGJ2-treated OS cells, followed by immunohistochemistry with hematoxylin/eosin and Ki-67. 15d-PGJ2 substantially decreased cell viability, colony formation and wound closure capability of OS cells. Non-malignant human osteoblast was less affected by 15d-PGJ2. 15d-PGJ2 induced rapid intracellular ROS production and time-dependent activation of MAPKs (pERK1/2, pJNK and pp38). Tempol efficiently inhibited 15d-PGJ2-induced ERK1/2 activation, while N-acetylcystein and pyrrolidine dithiocarbamate were less effective. Early but weak activation of cytoprotective proteins was overrun by induction of apoptosis. A structural analogue, 9,10-dihydro-15d-PGJ2, did not show toxic effects in OS cells. In the CAM model, we grafted OS tumors with U2-OS, Saos-2 and MG-63 cells. 15d-PGJ2 treatment resulted in significant growth inhibition, diminished tumor tissue density, and reduced tumor cell proliferation for all cell lines. Our in vitro and CAM data suggest 15d-PGJ2 as a promising natural compound to interfere with OS tumor growth.
Collapse
Affiliation(s)
- Mateja Mikulčić
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
| | - Nassim Ghaffari Tabrizi-Wizsy
- Otto Loewi Research Center, Division of Immunology and Pathophysiology, Medical University of Graz, 8010 Graz, Austria;
| | - Eva M. Bernhart
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Martin Asslaber
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Christopher Trummer
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Werner Windischhofer
- Department of Pediatrics and Adolescence Medicine, Medical University of Graz, 8036 Graz, Austria;
| | - Wolfgang Sattler
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Ernst Malle
- Gottfried Schatz Research Center, Division of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria; (E.M.B.); (C.T.); (W.S.); (E.M.)
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, 8036 Graz, Austria;
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, 8010 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-73860
| |
Collapse
|
13
|
Wu NF, Wu J, Yamamoto J, Aoki Y, Hozumi C, Bouvet M, Hoffman RM. The First Mouse Model of Primary Osteosarcoma of the Breast. In Vivo 2021; 35:1979-1983. [PMID: 34182472 DOI: 10.21873/invivo.12466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/13/2021] [Accepted: 05/27/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Sarcomas of the breast are extremely rare malignant tumors and comprise only 5% of all sarcomas and fewer than 1% of breast cancers. Primary osteosarcoma of the breast is histologically indistinguishable from osteosarcoma of the bone. Effective therapies of this recalcitrant disease have not yet been developed. MATERIALS AND METHODS A patient-derived xenograft (PDX) mouse model of primary osteosarcoma of the breast was established by subcutaneous implantation of the surgical specimen, along with surrounding normal tissue. Hematoxylin and eosin (H&E) staining was performed on paraffin-embedded histological sections of the original tumor resected from the patient and from implanted tumors that grew in nude mice. RESULTS Tumors grew in 46 of 51 mice implanted with the original surgical specimen. The H&E-stained slides of the mouse-grown tumor and the original patient tumor matched, both showing large areas of spindle-shaped cells, characteristic of osteosarcoma. CONCLUSION The first PDX mouse model of primary breast osteosarcoma was established which will enable testing of novel therapeutics as well as basic research of osteosarcoma of the breast.
Collapse
Affiliation(s)
- Nathaniel F Wu
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, U.S.A
| | - Justin Wu
- Department of General Surgery, Kaiser Permanente San Diego Medical Center, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Yusuke Aoki
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | | | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.; .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
14
|
Wu NF, Yamamoto J, Bouvet M, Hoffman RM. A Novel Procedure for Orthotopic Tibia Implantation for Establishment of a More Clinical Osteosarcoma PDOX Mouse Model. In Vivo 2021; 35:105-109. [PMID: 33402455 DOI: 10.21873/invivo.12237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/21/2020] [Accepted: 11/25/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND/AIM Osteosarcoma is a rare type of malignancy that affects mostly children and adolescents. A new procedure was designed to create an improved patient-derived orthotopic xenograft (PDOX) mouse model of osteosarcoma that more closely mimics osteosarcoma in clinical settings. Previous osteosarcoma PDOX models involved implanting a tumor fragment near the femur of nude mice in a space created by separating muscle. MATERIALS AND METHODS A hole was created in the tibia of nude mice and an osteosarcoma tumor fragment was implanted directly into the bone. RESULTS This procedure resulted in tumor growth in the bone similar to osteosarcoma tumors found in clinical patients. CONCLUSION The establishment ratio for this procedure is 80% making it a practical and clinically-relevant model for screening effective therapies for osteosarcoma patients.
Collapse
Affiliation(s)
- Nathaniel F Wu
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, U.S.A
| | - Jun Yamamoto
- AntiCancer Inc, San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Robert M Hoffman
- AntiCancer Inc, San Diego, CA, U.S.A.; .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
15
|
Barani M, Mukhtar M, Rahdar A, Sargazi S, Pandey S, Kang M. Recent Advances in Nanotechnology-Based Diagnosis and Treatments of Human Osteosarcoma. BIOSENSORS 2021; 11:55. [PMID: 33672770 PMCID: PMC7924594 DOI: 10.3390/bios11020055] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Osteosarcoma (OSA) is a type of bone cancer that begins in the cells that form bones.OSA is a rare mesenchymal bone neoplasm derived from mesenchymal stem cells. Genome disorganization, chromosomal modifications, deregulation of tumor suppressor genes, and DNA repair defects are the factors most responsible for OSA development. Despite significant advances in the diagnosing and treatment of OSA, patients' overall survival has not improved within the last twenty years. Lately, advances in modern nanotechnology have spurred development in OSA management and offered several advantages to overcome the drawbacks of conventional therapies. This technology has allowed the practical design of nanoscale devices combined with numerous functional molecules, including tumor-specific ligands, antibodies, anti-cancer drugs, and imaging probes. Thanks to their small sizes, desirable drug encapsulation efficiency, and good bioavailability, functionalized nanomaterials have found wide-spread applications for combating OSA progression. This review invokes the possible utility of engineered nanomaterials in OSA diagnosis and treatment, motivating the researchers to seek new strategies for tackling the challenges associated with it.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Mahwash Mukhtar
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, 6720 Szeged, Hungary;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
| | - Saman Sargazi
- Cellular and Molecule Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Sadanand Pandey
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea;
| |
Collapse
|
16
|
Higuchi T, Han Q, Sugisawa N, Yamamoto J, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. Combination Methionine-methylation-axis Blockade: A Novel Approach to Target the Methionine Addiction of Cancer. Cancer Genomics Proteomics 2021; 18:113-120. [PMID: 33608308 DOI: 10.21873/cgp.20246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/31/2020] [Accepted: 01/19/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND/AIM Cancers are selectively sensitive to methionine (MET) restriction (MR) due to their addiction to MET which is overused for elevated methylation reactions. MET addiction of cancer was discovered by us 45 years ago. MR of cancer results in depletion of S-adenosylmethionine (SAM) for transmethylation reactions, resulting in selective cancer-growth arrest in the late S/G2-phase of the cell cycle. The aim of the present study was to determine if blockade of the MET-methylation axis is a highly-effective strategy for cancer chemotherapy. MATERIALS AND METHODS In the present study, we demonstrated the efficacy of MET-methylation-axis blockade using MR by oral-recombinant methioninase (o-rMETase) combined with decitabine (DAC), an inhibitor of DNA methylation, and an inhibitor of SAM synthesis, cycloleucine (CL). We determined a proof-of-concept of the efficacy of the MET-methylation-axis blockade on a recalcitrant undifferentiated/unclassified soft-tissue sarcoma (USTS) patient-derived orthotopic xenograft (PDOX) mouse model. RESULTS The o-rMETase-CL-DAC combination regressed the USTS PDOX with extensive cancer necrosis. CONCLUSION The new concept of combination MET-methylation-axis blockade is effective and can now be tested on many types of recalcitrant cancer.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | | | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Jun Yamamoto
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, U.S.A.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan;
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A.; .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
17
|
Higuchi T, Sugisawa N, Park JH, Sun Y, Zhu G, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. Osimertinib regressed an EGFR-mutant lung-adenocarcinoma bone-metastasis mouse model and increased long-term survival. Transl Oncol 2020; 13:100826. [PMID: 32659740 PMCID: PMC7356269 DOI: 10.1016/j.tranon.2020.100826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 12/31/2022] Open
Abstract
Bone is one of the most frequent metastatic sites in non-small cell lung cancer (NSCLC). Osimertinib, with and without bevacizumab (BV), has been investigated on advanced NSCLC patients. However, the efficacy of those drugs on bone metastasis of NSCLC has not been investigated. The human NSCLC cell line H1975, expressing red fluorescent protein (H1975-RFP), was orthotopically injected to the tibia of nude mice. The established mouse models were randomized into four treatment groups of nine mice: Control; BV alone; osimertinib alone; osimertinib and BV combination. The tumors were observed by non-invasive fluorescence imaging. Osimertinib, with or without BV, caused tumor regression, increased mouse survival, and bone remodeling in the bone metastasis models. These results suggest that osimertinib is a promising clinical option for NSCLS patients with bone metastasis. Bone is a frequent metastatic site in non-small cell lung cancer (NSCLC). Established imageable orthotopic xenograft mouse model for NSCLC Osimertinib and osimertinib + BV regressed the NSCLC bone metastasis. Osimertinib and osimertinib + BV increased mouse survival and bone remodeling. Osimertinib is a promising clinical option for NSCLS patients with bone metastasis.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | | | - Yu Sun
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Guangwei Zhu
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
18
|
Higuchi T, Yamamoto J, Sugisawa N, Tashiro Y, Nishino H, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. PPARγ Agonist Pioglitazone in Combination With Cisplatinum Arrests a Chemotherapy-resistant Osteosarcoma PDOX Model. Cancer Genomics Proteomics 2020; 17:35-40. [PMID: 31882549 DOI: 10.21873/cgp.20165] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIM Cisplatinum (CDDP) is a first-line drug in osteosarcoma treatment and the acquisition of resistance to CDDP is associated with a poor prognosis. Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear hormone receptor that plays important roles in cell proliferation, differentiation, development, metabolism and cell death. Recently, PPARγ was reported to enhance the efficacy, overcome resistance, and decrease the toxicity of CDDP in various human cancers. In this study we tested whether pioglitazone (PIO), a PPARγ agonist, could overcome CDDP resistance in osteosarcoma. MATERIALS AND METHODS In this study, we used a human osteosarcoma cell line and a patient-derived orthotopic xenograft (PDOX) models of osteosarcoma. We measured cell viability of 143B human osteosarcoma cells when treated with CDDP and PIO. We randomized PDOX models of osteosarcoma into four treatment groups: Group 1, Untreated control; Group 2, PIO alone; Group 3, CDDP alone; Group 4, a combination of CDDP and PIO. Each group comprised six mice. Mice were treated for 14 days and tumor size and body weight were measured. RESULTS Cell viability of 143B human osteosarcoma cells was significantly reduced when PIO (50 μmol/l) was combined with CDDP compared to CDDP alone. PDOX osteosarcoma tumors treated with the CDDP-PIO combination showed the strongest tumor growth inhibition compared to other treatment groups. PDOX osteosarcoma tumors treated with the CDDP-PIO combination had the least cancer cells and the most necrosis in histological section. CONCLUSION These results suggest that combining PIO along with CDDP could be an effective treatment strategy for osteosarcoma and has important clinical potential for patients.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A.,Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Jun Yamamoto
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Yoshihiko Tashiro
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Hiroto Nishino
- AntiCancer, Inc., San Diego, CA, U.S.A.,Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, U.S.A
| | - Shree Ram Singh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, U.S.A.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, U.S.A. .,Department of Surgery, University of California, San Diego, CA, U.S.A
| |
Collapse
|
19
|
Heymann MF, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy era. Br J Pharmacol 2020; 178:1955-1972. [PMID: 31975481 DOI: 10.1111/bph.14999] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Bone sarcomas are primary bone tumours found mainly in children and adolescents, as osteosarcoma and Ewing's sarcoma, and in adults in their 40s as chondrosarcoma. The last four decades the development of therapeutic approaches was based on drug combinations have shown no real improvement in overall survival. Recently oncoimmunology has allowed a better understand of the crucial role played by the immune system in the oncologic process. This led to clinical trials with the aim of reprogramming the immune system to facilitate cancer cell recognition. Immune infiltrates of bone sarcomas have been characterized and their molecular profiling identified as immune therapeutic targets. Unfortunately, the clinical responses in trials remain anecdotal but highlight the necessity to improve the characterization of tumour micro-environment to unlock the immunotherapeutic response, especially in their paediatric forms. Bone sarcomas have entered the immunotherapy era and here we overview the recent developments in immunotherapies in these sarcomas. LINKED ARTICLES: This article is part of a themed issue on The molecular pharmacology of bone and cancer-related bone diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.9/issuetoc.
Collapse
Affiliation(s)
- Marie-Françoise Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Kristina Schiavone
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France
| | - Dominique Heymann
- Université de Nantes, INSERM, CRCINA, Institut de Cancérologie de l'Ouest, Saint-Herblain, France.,"Tumor Heterogeneity and Precision Medicine", Institut de Cancérologie de l'Ouest, Saint Herblain, France.,INSERM, European Associated Laboratory "Sarcoma Research Unit", Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Schott C, Shah AT, Sweet-Cordero EA. Genomic Complexity of Osteosarcoma and Its Implication for Preclinical and Clinical Targeted Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1258:1-19. [PMID: 32767231 DOI: 10.1007/978-3-030-43085-6_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Osteosarcoma is a genomically complex disease characterized by few recurrent single-nucleotide mutations or in-frame fusions. In contrast, structural alterations, including copy number changes, chromothripsis, kataegis, loss of heterozygosity (LOH), and other large-scale genomic alterations, are frequent and widespread across the osteosarcoma genome. These observed structural alterations lead to activation of oncogenes and loss of tumor suppressors which together contribute to oncogenesis. To date, few targeted therapies for osteosarcoma have been identified. It is likely that effectiveness of targeted therapies will vary greatly in subsets of tumors with distinct key driver events. Model systems which can recapitulate the genetic heterogeneity of this disease are needed to test this hypothesis. One possible approach is to use patient-derived xenograft (PDX) models characterized with regards to their similarity to the human tumor samples from which they were derived. Here we review evidence pointing to the genomic complexity of osteosarcoma and how this is reflected in available model systems. We also review the current state of preclinical testing for targeted therapies using these models.
Collapse
Affiliation(s)
- Courtney Schott
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Avanthi Tayi Shah
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA
| | - E Alejandro Sweet-Cordero
- Department of Pediatrics, Division of Hematology and Oncology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
21
|
Higuchi T, Han Q, Miyake K, Oshiro H, Sugisawa N, Tan Y, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model. Biochem Biophys Res Commun 2019; 523:135-139. [PMID: 31839218 DOI: 10.1016/j.bbrc.2019.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Cancer cells are methionine (MET) and methylation addicted and are highly sensitive to MET restriction. The present study determined the efficacy of oral-recombinant methioninase (o-rMETase) and the DNA methylation inhibitor, decitabine (DAC) on restricting MET in an undifferentiated-soft tissue sarcoma (USTS) patient-derived orthotopic xenograft (PDOX) nude-mouse model. The USTS PDOX models were randomized into five treatment groups of six mice: Control; doxorubicin (DOX) alone; DAC alone; o-rMETase alone; and o-rMETase-DAC combination. Tumor size and body weight were measured during the 14 days of treatment. Tumor growth was arrested only in the o-rMETase-DAC condition. Tumors treated with the o-rMETase-DAC combination exhibited tumor necrosis with degenerative changes. This study demonstrates that the o-rMETase-DAC combination could arrest the USTS PDOX tumor suggesting clinical promise.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | | | - Kentaro Miyake
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norihiko Sugisawa
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | | | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
22
|
Higuchi T, Sugisawa N, Yamamoto J, Oshiro H, Han Q, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Tan Y, Kuchipudi S, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 2019; 85:285-291. [PMID: 31705268 DOI: 10.1007/s00280-019-03986-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Cancers are methionine (MET) and methylation addicted, causing them to be highly sensitive to MET restriction. The present study determined the efficacy of restricting MET with oral-recombinant methioninase (o-rMETase) and the DNA methylation inhibitor, azacitidine (AZA) on a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft (PDOX) mouse model. METHODS The osteosarcoma PDOX models were randomized into five treatment groups of six mice: control; doxorubicin (DOX) alone; AZA alone; o-rMETase alone; o-rMETase-AZA combination. Tumor size and body weight were measured during the 14 days of treatment. RESULTS We found that tumor growth was arrested only by the o-rMETase-AZA combination treatment, as tumors with this treatment exhibited tumor necrosis with degenerative change. CONCLUSION This study suggests that o-rMETase-AZA combination has clinical potential for patients with chemoresistant osteosarcoma.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer, Inc, 7917 Ostrow Street, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA.,Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Norihiko Sugisawa
- AntiCancer, Inc, 7917 Ostrow Street, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Jun Yamamoto
- AntiCancer, Inc, 7917 Ostrow Street, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer, Inc, 7917 Ostrow Street, San Diego, CA, 92111, USA.,Department of Surgery, University of California, San Diego, CA, USA
| | - Qinghong Han
- AntiCancer, Inc, 7917 Ostrow Street, San Diego, CA, 92111, USA
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Yuying Tan
- AntiCancer, Inc, 7917 Ostrow Street, San Diego, CA, 92111, USA
| | - Shreya Kuchipudi
- Division of Cancer Prevention, National Cancer Institute, Rockville, MD, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc, 7917 Ostrow Street, San Diego, CA, 92111, USA. .,Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|
23
|
Higuchi T, Sugisawa N, Miyake K, Oshiro H, Yamamoto N, Hayashi K, Kimura H, Miwa S, Igarashi K, Kline Z, Bouvet M, Singh SR, Tsuchiya H, Hoffman RM. Pioglitazone, an agonist of PPARγ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed Pharmacother 2019; 118:109356. [PMID: 31545293 DOI: 10.1016/j.biopha.2019.109356] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance (MDR) which results in chemoresistance is a major problem in osteosarcoma. P-glycoprotein (P-gp) plays a critical role in MDR by pumping out chemotherapy agents. Peroxisome proliferator activated receptor gamma (PPARγ) is a nuclear receptor involved in cellular differentiation and proliferation. Recently, a correlation between the expression and activity of PPARγ and the expression of P-gp-associated with MDR, has been reported in several human cancers. The present study determined if pioglitazone (PIO), a PPARγ agonist, could modulate P-gp and overcome doxorubicin (DOX)-resistance in a patient-derived orthotopic xenograft (PDOX) model of osteosarcoma. P-gp mRNA expression was quantified in 143B human osteosarcoma cells treated with DOX with/without PIO. The osteosarcoma PDOX models were randomized into four treatment groups of six mice: Control; PIO alone; DOX alone; DOX and PIO combination. Tumor size and body weight were measured during the 14 days of treatment. DOX significantly induced P-gp mRNA in a dose-dependent manner in 143B cells. PIO inhibited the increase of P-gp mRNA induced by DOX treatment when co-administrated with DOX. Tumor growth was inhibited the most by the DOX-PIO combination. Tumors treated with the DOX-PIO combination also had the most tumor necrosis. This study suggests that the DOX-PIO combination could be used in the clinic for osteosarcoma patients who develop DOX-resistance.
Collapse
Affiliation(s)
- Takashi Higuchi
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA; Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sugisawa
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Kentaro Miyake
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Hiromichi Oshiro
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA
| | - Norio Yamamoto
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Katsuhiro Hayashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Kimura
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Shinji Miwa
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Kentaro Igarashi
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan
| | - Zoey Kline
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, CA, USA
| | - Shree Ram Singh
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA.
| | - Hiroyuki Tsuchiya
- Department of Orthopedic Surgery, Kanazawa University, Kanazawa, Japan.
| | - Robert M Hoffman
- AntiCancer Inc., San Diego, CA, USA; Department of Surgery, University of California, San Diego, CA, USA.
| |
Collapse
|