1
|
He YL, Zhang Y, Liu Q. Regulation of Postoperative Cognitive Dysfunction by Glutathione Under Various Pathways: A Narrative Review. J Biochem Mol Toxicol 2025; 39:e70154. [PMID: 39925043 DOI: 10.1002/jbt.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/05/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
Postoperative cognitive dysfunction (POCD) is a common neurological complication after surgery and general anesthesia, and the incidence increases with age. Will have a negative impact on patients, family and society. At present, neuroinflammation and oxidative stress are the main recognized mechanisms. Glutathione (GSH) is a powerful reducing agent and may be related to POCD. DATA COLLECTION Using medical search engines such as PubMed, Web of Science, we analyzed articles on topics such as: POCD, GSH, microglia, astrocyte, oligodendrocyte, ferroptosis, BDNF, Neuroinflammation, oxidative stress. The above topics are searched in databases using Boolean operations. We included original articles, reviews and other article types such as medical books. RESULTS According to the reviewed literature, GSH may be a treatment for POCD. CONCLUSIONS Specific and targeted therapies for POCD still sparse, therefore, the implementation of preventive strategies appears to remain the optimal attitude. Further research is needed for a better understanding of GSH and POCD.
Collapse
Affiliation(s)
- Yan Lin He
- Department of Anesthesiology, He jiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
| | - Ying Zhang
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
- Lu Zhou Key Laboratory of Research for Integrative on Pain and Perioperative Organ Protection, Luzhou, China
| | - Qing Liu
- Department of Anesthesiology, He jiang Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, China
- Department of Anesthesiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Qiu S, Dai H, Wang Y, Lv Y, Yu B, Yao C. The therapeutic potential of microRNAs to ameliorate spinal cord injury by regulating oligodendrocyte progenitor cells and remyelination. Front Cell Neurosci 2024; 18:1404463. [PMID: 38812792 PMCID: PMC11135050 DOI: 10.3389/fncel.2024.1404463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Spinal cord injury (SCI) can cause loss of sensory and motor function below the level of injury, posing a serious threat to human health and quality of life. One significant characteristic feature of pathological changes following injury in the nervous system is demyelination, which partially contributes to the long-term deficits in neural function after injury. The remyelination in the central nervous system (CNS) is mainly mediated by oligodendrocyte progenitor cells (OPCs). Numerous complex intracellular signaling and transcriptional factors regulate the differentiation process from OPCs to mature oligodendrocytes (OLs) and myelination. Studies have shown the importance of microRNA (miRNA) in regulating OPC functions. In this review, we focus on the demyelination and remyelination after SCI, and summarize the progress of miRNAs on OPC functions and remyelination, which might provide a potential therapeutic target for SCI treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
3
|
Fadoul G, Ikonomovic M, Zhang F, Yang T. The cell-specific roles of Nrf2 in acute and chronic phases of ischemic stroke. CNS Neurosci Ther 2024; 30:e14462. [PMID: 37715557 PMCID: PMC10916447 DOI: 10.1111/cns.14462] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
Ischemic stroke refers to the sudden loss of blood flow in a specific area of the brain. It is the fifth leading cause of mortality and the leading cause of permanent disability. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) controls the production of several antioxidants and protective proteins and it has been investigated as a possible pharmaceutical target for reducing harmful oxidative events in brain ischemia. Each cell type exhibits different roles and behaviors in different phases post-stroke, which is comprehensive yet important to understand to optimize management strategies and goals for care for stroke patients. In this review, we comprehensively summarize the protective effects of Nrf2 in experimental ischemic stroke, emphasizing the role of Nrf2 in different cell types including neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells during acute and chronic phases of stroke and providing insights on the neuroprotective role of Nrf2 on each cell type throughout the long term of stroke care. We also highlight the importance of targeting Nrf2 in clinical settings while considering a variety of important factors such as age, drug dosage, delivery route, and time of administration.
Collapse
Affiliation(s)
- George Fadoul
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Milos Ikonomovic
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Feng Zhang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Tuo Yang
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
- Pittsburgh Institute of Brain Disorders and RecoveryUniversity of PittsburghPittsburghPennsylvaniaUSA
- Department of Internal MedicineUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Bai Y, Ren H, Bian L, Zhou Y, Wang X, Xiong Z, Liu Z, Han B, Yao H. Regulation of Glial Function by Noncoding RNA in Central Nervous System Disease. Neurosci Bull 2023; 39:440-452. [PMID: 36161582 PMCID: PMC10043107 DOI: 10.1007/s12264-022-00950-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of functional RNAs that play critical roles in different diseases. NcRNAs include microRNAs, long ncRNAs, and circular RNAs. They are highly expressed in the brain and are involved in the regulation of physiological and pathophysiological processes of central nervous system (CNS) diseases. Mounting evidence indicates that ncRNAs play key roles in CNS diseases. Further elucidating the mechanisms of ncRNA underlying the process of regulating glial function that may lead to the identification of novel therapeutic targets for CNS diseases.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Liang Bian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - You Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinping Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Zhongli Xiong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Ziqi Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory, School of Medicine, Southeast University, Nanjing, 210009, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Jiao Y, Wang J, Jia Y, Xue M. Remote ischemic preconditioning protects against cerebral ischemia injury in rats by upregulating miR-204-5p and activating the PINK1/Parkin signaling pathway. Metab Brain Dis 2022; 37:945-959. [PMID: 35067796 DOI: 10.1007/s11011-022-00910-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Remote ischemic preconditioning (RiPC) is the process where preconditioning ischemia protects the organs against the subsequent index ischemia. RiPC is a protective method for brain damage. This study is to explore the effect and mechanism of RiPC in cerebral ischemia injury in rats through regulation of miR-204-5p/BRD4 expression. Middle cerebral artery occlusion (MCAO) rat model and glucose deprivation (OGD) neuron model were established. The effect of RiPC on neurological deficits, cerebral infarct size, autophagy marker, inflammatory cytokines and apoptosis was evaluated. miR-204-5p expression was analyzed using RT-qPCR, and then downregulated using miR-204-5p antagomir to estimate its effect on MCAO rats. The downstream mechanism of miR-204-5p was explored. RiPC promoted autophagy, reduced cerebral infarct volume and neurological deficit score, and alleviated apoptosis and cerebral ischemia injury in rats, with no significant effects on healthy rat brains. RiPC up-regulated miR-204-5p expression in MCAO rats. miR-204-5p knockdown partially reversed the effect of RiPC. RiPC promoted autophagy in OGD cells, and attenuated inflammation and apoptosis. miR-204-5p targeted BRD4, which partially reversed the effect of miR-204-5p on OGD cells. RiPC activated the PINK1/Parkin pathway via the miR-204-5p/BRD4 axis. In conclusion, RiPC activated the PINK1/Parkin pathway and prevented cerebral ischemia injury by up-regulating miR-204-5p and inhibiting BRD4.
Collapse
Affiliation(s)
- Yiming Jiao
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Jinlan Wang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China
| | - Yanjie Jia
- The Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, 2 Jingba Road, Zhengzhou, 450001, Henan, China.
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Liu L, Yang C, Candelario-Jalil E. Role of BET Proteins in Inflammation and CNS Diseases. Front Mol Biosci 2021; 8:748449. [PMID: 34604312 PMCID: PMC8481655 DOI: 10.3389/fmolb.2021.748449] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Bromodomain and extra-terminal domain (BET) proteins consist of four mammalian members (BRD2, BRD3, BRD4, and BRDT), which play a pivotal role in the transcriptional regulation of the inflammatory response. Dysregulated inflammation is a key pathological process in various CNS disorders through multiple mechanisms, including NF-κB and Nrf2 pathways, two well-known master regulators of inflammation. A better mechanistic understanding of the BET proteins’ role in regulating the inflammatory process is of great significance since it could reveal novel therapeutic targets to reduce neuroinflammation associated with many CNS diseases. In this minireview, we first outline the structural features of BET proteins and summarize genetic and pharmacological approaches for BET inhibition, including novel strategies using proteolysis-targeting chimeras (PROTACs). We emphasize in vitro and in vivo evidence of the interplay between BET proteins and NF-κB and Nrf2 signaling pathways. Finally, we summarize recent studies showing that BET proteins are essential regulators of inflammation and neuropathology in various CNS diseases.
Collapse
Affiliation(s)
- Lei Liu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Changjun Yang
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Zheng W, Xie Q, Zhang Z, Li J, Fang L, Li W. Inhibited HDAC3 or Elevated MicroRNA-494-3p Plays a Protective Role in Myocardial Ischemia-Reperfusion Injury via Suppression of BRD4. Mol Neurobiol 2021; 58:4268-4279. [PMID: 33982231 DOI: 10.1007/s12035-021-02369-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
Increased histone deacetylase 3 (HDAC3) has been demonstrated to contribute to the pathogenesis of myocardial ischemia-reperfusion injury (MI/RI). Therefore, the goal of this study was to investigate how HDAC3 regulated MI/RI by mediating microRNA (miR)-494-3p/dromodomain-containing protein 4 (BRD4) axis. The MI/RI model was established by ligating the right anterior descending coronary artery. Cardiomyocytes from newborn mice were treated with hypoxia/reoxygenation (H/R). Gain-of-function and loss-of-function approaches were implemented to figure out the roles of miR-494-3p and HDAC3 in MI/RI. miR-494-3p, HDAC3, and BRD4 in myocardial tissues of mice with MI/RI and H/R-treated cardiomyocytes were detected. The relationships between miR-494-3p and HDAC3 and BRD4 were identified. Reduced miR-494-3p and upregulated HDAC3 and BRD4 exhibited in myocardial tissues of mice with MI/RI and H/R-treated cardiomyocytes. Inhibited HDAC3 or elevated miR-494-3p repressed the inflammation and apoptosis, improved cardiac function, and ameliorated myocardial injury in myocardial tissues of mice with MI/RI. Suppression of HDAC3 or elevation of miR-494-3p depressed inflammation and apoptosis and promoted cell viability of primary cardiomyocytes. miR-494-3p targeted BRD4. The study concludes that suppressed HDAC3 plays a protective role in MI/RI by upregulation of miR-494-3p and inhibition of BRD4, which could be helpful for MI/RI therapy.
Collapse
Affiliation(s)
- Wuyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361000, Fujian, China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361000, Fujian, China
| | - Ziguan Zhang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361000, Fujian, China
| | - Jun Li
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361000, Fujian, China
| | - Lihuan Fang
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361000, Fujian, China
| | - Weihua Li
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361000, Fujian, China.
| |
Collapse
|
8
|
Li Q, Du X, Liu L, Liu H, Pan Z, Li Q. Upregulation of miR-146b promotes porcine ovarian granulosa cell apoptosis by attenuating CYP19A1. Domest Anim Endocrinol 2021; 74:106509. [PMID: 32653739 DOI: 10.1016/j.domaniend.2020.106509] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are 21- to 24-nucleotide long small noncoding RNAs, which play an important role in follicular atresia and granulosa cell (GC) apoptosis in the mammalian ovary. Here, we report that miR-146b, a conserved and ovary-enriched miRNA, modulates estradiol (E2) secretion, GC apoptosis, and follicular atresia in pigs. Genome-wide analysis and quantitative real-time PCR revealed that miR-146b was significantly upregulated during follicular atresia, and fluorescence-activated cell sorting showed that miR-146b functioned as a proapoptotic factor to induce GC apoptosis. MicroRNA-mRNA network analysis and luciferase reporter assays showed that CYP19A1, the pivotal enzyme for E2 synthesis signaling, was directly targeted by miR-146b. Furthermore, miR-146b interacted with the 3'untranslated region of CYP19A1 to prevent translation, thereby regulating CYP19A1-mediated E2 secretion and GC apoptosis. However, miR-146b was not regulated by the transcription factor SMAD4 or oxidative stress, both of which are critical regulators of CYP19A1. We, thus, conclude that miR-146b is a novel epigenetic factor regulating GC functions, follicular development, and female reproduction.
Collapse
Affiliation(s)
- Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - X Du
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - L Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - H Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Z Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Q Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Kahroba H, Ramezani B, Maadi H, Sadeghi MR, Jaberie H, Ramezani F. The role of Nrf2 in neural stem/progenitors cells: From maintaining stemness and self-renewal to promoting differentiation capability and facilitating therapeutic application in neurodegenerative disease. Ageing Res Rev 2021; 65:101211. [PMID: 33186670 DOI: 10.1016/j.arr.2020.101211] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) cause progressive loss of neurons in nervous system. NDs are categorized as acute NDs such as stroke and head injury, besides chronic NDs including Alzheimer's, Parkinson's, Huntington's diseases, Friedreich's Ataxia, Multiple Sclerosis. The exact etiology of NDs is not understood but oxidative stress, inflammation and synaptic dysfunction are main hallmarks. Oxidative stress leads to free radical attack on neural cells which contributes to protein misfolding, glia cell activation, mitochondrial dysfunction, impairment of DNA repair system and subsequently cellular death. Neural stem cells (NSCs) support adult neurogenesis in nervous system during injuries which is limited to certain regions in brain. NSCs can differentiate into the neurons, astrocytes or oligodendrocytes. Impaired neurogenesis and inadequate induction of neurogenesis are the main obstacles in treatment of NDs. Protection of neural cells from oxidative damages and supporting neurogenesis are promising strategies to treat NDs. Nuclear factor-erythroid 2-related factor 2 (Nrf2) is a transcriptional master regulator that maintains the redox homeostasis in cells by provoking expression of antioxidant, anti-inflammatory and cytoprotective genes. Nrf2 can strongly influence the NSCs function and fate determination by reducing levels of reactive oxygen species in benefit of NSC survival and neurogenesis. In this review we will summarize the role of Nrf2 in NSC function, and exogenous and endogenous therapeutic strategies in treatment of NDs.
Collapse
Affiliation(s)
- Houman Kahroba
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Ramezani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Hamid Maadi
- Department of Medical Genetics, and Signal Transduction Research Group, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Jaberie
- Department of Biochemistry, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Ramezani
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Zhu J, Chen G. Protective effect of FOXP3-mediated miR-146b-5p/Robo1/NF-κB system on lipopolysaccharide-induced acute lung injury in mice. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1651. [PMID: 33490163 PMCID: PMC7812239 DOI: 10.21037/atm-20-7703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background As a key transcription factor, forkhead box protein 3 (FOXP3) plays an important role in the development and function of natural cluster of differentiation 4 [CD4 (+)] regulatory T cells (Treg cells). However, the function of FOXP3 in Lipopolysaccharide (LPS)-induced acute lung injury (ALI) through regulating miR-146b-5p is unclear. This research aimed to disclose the regulatory effect of the FOXP3-mediated miR-146b-5p/Roundabout 1 (Robo1)/NF-κB system on LPS-induced ALI in mice. Methods The mice were subjected to 5 mg/kg of LPS via intratracheal instillation to induce ALI and generate the ALI model. Mice was divided into five group, including control group, ALI group, ALI + FOXP3 group, the ALI + miR antagomir group and ALI + miR antagomir+ FOXP3 group. Lung tissue injury were detected by hematoxylin and eosin (HE) staining. Lung wet/dry weight ratio, total cells in bronchoalveolar lavage fluid (BALF), total protein in BALF and the polymorphonuclear leukocyte (PMN) in BALF were detected. The levels of tumor necrosis factor-α (TNF-α), Interleukin 6 (IL-6) and IL-1β were detected by enzyme-linked immunosorbent assay (ELISA) kit. The dual-luciferase reporter assay were used to detect the target relationship between FOXP3 and Robo1. Mice was divided into five group, including control group, ALI group, ALI + FOXP3 group, ALI + Robo1 group and ALI + FOXP3+ Robo1 group. The protein levels of FOXP3, Robo1 and p-p65 were detected by western bolt. The mRNA levels of miR-146b-5p and Robo1 were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results Although protein expression levels of FOXP3 were significantly down-regulated in the ALI model, the increased FOXP3 levels promoted an increase in miR-146b-5p. Compared with the control group, the ALI model group exhibited severe histopathologic injury, such as thickening of the alveolar wall, pulmonary congestion, and decreased alveolar numbers. By mediating the overexpression of miR-146b-5p, FOXP3 also increased alveolar clearance and inhibited inflammatory responses in the ALI model. Importantly, Robo1 is a potential target of miR-146b-5p. Conclusions FOXP3 could inhibit NF-κB activation, reduce lung pathological damage, and inhibit inflammatory responses by mediating the miR-146b-5p/Robo1/NF-κB system in the ALI model. These results may provide a new potential target for the treatment of ALI disease.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Respiratory and Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University Hospital of Electronic Science & Technology of China, Chengdu, China
| | - Gaoli Chen
- Department of Blood Transfusion, Teaching Hospital of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
11
|
Wu Y, Mi Y, Zhang F, Cheng Y, Wu X. Suppression of bromodomain-containing protein 4 protects trophoblast cells from oxidative stress injury by enhancing Nrf2 activation. Hum Exp Toxicol 2020; 40:742-753. [PMID: 33094643 DOI: 10.1177/0960327120968857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress is considered a key hallmark of preeclampsia, which causes the dysregulation of trophoblast cells, and it contributes to the pathogenesis of preeclampsia. Emerging evidence has suggested bromodomain-containing protein 4 (BRD4) as a key regulator of oxidative stress in multiple cell types. However, whether BRD4 participates in regulating oxidative stress in trophoblast cells remains undetermined. The current study was designed to explore the potential function of BRD4 in the regulation of oxidative stress in trophoblast cells. Our data revealed that BRD4 expression was elevated in trophoblast cells stimulated with hydrogen peroxide. Exposure to hydrogen peroxide caused marked decreases in the levels of proliferation and invasion but promoted apoptosis and the production of ROS in trophoblast cells. Knockdown of BRD4, or treatment with a BRD4 inhibitor, markedly increased the levels of cell proliferation and invasion and decreased apoptosis and ROS production following the hydrogen peroxide challenge. Further data indicated that suppression of BRD4 markedly decreased the expression levels of Keap1, but increased the nuclear expression of Nrf2 and enhanced Nrf2-mediated transcriptional activity. BRD4 inhibition-mediated protective effects were markedly reversed by Keap1 overexpression or Nrf2 inhibition. Overall, these results demonstrated that BRD4 inhibition attenuated hydrogen peroxide-induced oxidative stress injury in trophoblast cells by enhancing Nrf2 activation via the downregulation of Keap1. Our study highlights the potential importance of the BRD4/Keap1/Nrf2 axis in the modulation of the oxidative stress response in trophoblast cells. Targeted inhibition of BRD4 may offer new opportunities for the development of innovative therapeutic approaches to treat preeclampsia.
Collapse
Affiliation(s)
- Yiqing Wu
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women's and Children's Hospital, Xi'an, Shaanxi, China
| | - Fan Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yimin Cheng
- The Hospital of Xi'an Shiyou University, Xi'an, Shaanxi, China
| | - Xiaoling Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of 117799Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
12
|
Yang T, Zhang F. Targeting Transcription Factor Nrf2 (Nuclear Factor Erythroid 2-Related Factor 2) for the Intervention of Vascular Cognitive Impairment and Dementia. Arterioscler Thromb Vasc Biol 2020; 41:97-116. [PMID: 33054394 DOI: 10.1161/atvbaha.120.314804] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Vascular cognitive impairment and dementia (VCID) is an age-related, mild to severe mental disability due to a broad panel of cerebrovascular disorders. Its pathobiology involves neurovascular dysfunction, blood-brain barrier disruption, white matter damage, microRNAs, oxidative stress, neuroinflammation, and gut microbiota alterations, etc. Nrf2 (Nuclear factor erythroid 2-related factor 2) is the master regulator of redox status and controls the transcription of a panel of antioxidative and anti-inflammatory genes. By interacting with NF-κB (nuclear factor-κB), Nrf2 also fine-tunes the cellular oxidative and inflammatory balance. Aging is associated with Nrf2 dysfunction, and increasing evidence has proved the role of Nrf2 in mitigating the VCID process. Based on VCID pathobiologies and Nrf2 studies from VCID and other brain diseases, we point out several hypothetical Nrf2 targets for VCID management, including restoration of endothelial function and neurovascular coupling, preservation of blood-brain barrier integrity, reduction of amyloidopathy, promoting white matter integrity, and mitigating oxidative stress and neuroinflammation. Collectively, the Nrf2 pathway could be a promising direction for future VCID research. Targeting Nrf2 would shed light on VCID managing strategies.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| | - Feng Zhang
- Department of Neurology, Pittsburgh Institute of Brain Disorders and Recovery, University of Pittsburgh, PA
| |
Collapse
|
13
|
Wang K, Ru J, Zhang H, Chen J, Lin X, Lin Z, Wen M, Huang L, Ni H, Zhuge Q, Yang S. Melatonin Enhances the Therapeutic Effect of Plasma Exosomes Against Cerebral Ischemia-Induced Pyroptosis Through the TLR4/NF-κB Pathway. Front Neurosci 2020; 14:848. [PMID: 33013286 PMCID: PMC7461850 DOI: 10.3389/fnins.2020.00848] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Ischemic stroke-induced inflammation and inflammasome-dependent pyroptotic neural death cause serious neurological injury. Nano-sized plasma exosomes have exhibited therapeutic potential against ischemia and reperfusion injury by ameliorating inflammation. To enhance its therapeutic potential in patients with ischemic injury, we isolated exosomes from melatonin-treated rat plasma and assessed the neurological protective effect in a rat model of focal cerebral ischemia. Methods Basal plasma exosomes and melatonin-treated plasma exosomes were isolated and intravenously injected into a rat model of focal cerebral ischemia. Neurological recovery was evaluated by determining the modified neurological severity score (mNSS), infarct volume, and brain water content. Pyroptosis in the ischemic cortex was detected through dUTP nick-end labeling (TUNEL) assay, lactate dehydrogenase (LDH) release, and gasdermin D (GSDMD) cleavage. NLRP3 inflammasome assembly and global inflammatory cytokine secretion were detected by enzyme-linked immunosorbent assay (ELISA) and Western blot assay. In immunized Sprague-Dawley rats, microglia pyroptosis was determined through a positive percentage of IBA1+ and caspase-1 (p20)+ cells. Finally, the microRNA (miRNA) profiles in melatonin-treated plasma exosomes were analyzed by exosome miRNA microarray analysis. Results Melatonin treatment enhanced plasma exosome therapeutic effects against ischemia-induced inflammatory responses and inflammasome-mediated pyroptosis. In addition, we confirmed that ischemic stroke-induced pyroptotic cell death occurred in the microglia and neuron, while the administration of melatonin-treated exosomes further effectively decreased the infarct volume and improved recovery of function via regulation of the TLR4/NF-κB signaling pathway. Finally, the altered miRNA profiles in the melatonin-treated plasma exosomes demonstrated the regulatory mechanisms involved in neurological recovery after ischemic injury. Conclusion This study suggests that nano-sized plasma exosomes with melatonin pretreatment might be a more effective strategy for patients with ischemic brain injury. Further exploration of key molecules in the plasma exosome may provide increased therapeutic value for cerebral ischemic injury.
Collapse
Affiliation(s)
- Kankai Wang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junnan Ru
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengli Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiayu Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxiao Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Min Wen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijie Huang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Yang G, Zhao Y. Overexpression of miR-146b-5p Ameliorates Neonatal Hypoxic Ischemic Encephalopathy by Inhibiting IRAK1/TRAF6/TAK1/NF-αB Signaling. Yonsei Med J 2020; 61:660-669. [PMID: 32734729 PMCID: PMC7393297 DOI: 10.3349/ymj.2020.61.8.660] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Neonatal hypoxic ischemic encephalopathy (HIE) is an essential factor underlying neonatal death and disability. This study sought to explore the role of miR-146b-5p in regulating neonatal HIE. MATERIALS AND METHODS In vitro and in vivo HIE models were established in PC12 cells and 10-day neonatal Sprague Dawley rats, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to assess miR-146b-5p expression and inflammatory factors [interleukin (IL)-6 and tumor necrosis factor (TNF)-α] in brain lesions and PC12 cells, while enzyme-linked immunosorbent assay was employed to detect the expression of oxidative stress factors (SOD and GSH-Px). Gain- and loss-assays of miR-146b-5p were conducted to verify its role in modulating the viability and apoptosis of PC12 cells under oxygen-glucose deprivation (OGD) treatment. Expression of TLR4, IRAK1, TRAF6, TAK1, and NF-κB were examined by qRT-PCR and/or Western blot. Dual luciferase activity assay was conducted to identify relationships between miR-146b-5p and IRAK1. RESULTS In the HIE models, significant oxidative stress and inflammatory responses emerged upon upregulation of TLR4/IRAK1/TRAF6/TAK1/NF-κB signaling. Overexpression of miR-146b-5p greatly inhibited OGD-induced PC12 cell injury, inflammatory responses, and oxidative stress. Inhibiting miR-146b-5p, however, had the opposite effects. IRAK1 was found to be a target of miR-146b-5p, and miR-146b-5p overexpression suppressed the activation of IRAK1/TRAF6/TAK1/NF-κB signaling. CONCLUSION This study demonstrated that miR-146b-5p overexpression alleviates HIE-induced neuron injury by inhibiting the IRAK1/TRAF6/TAK1/NF-κB pathway.
Collapse
Affiliation(s)
- Guang Yang
- Department of Pediatrics, Shanxi Medical University, Taiyuan, China
- Neonatal Internal Medicine, Shanxi Children's Hospital, Taiyuan, China.
| | - Yuan Zhao
- Neonatal Internal Medicine, Shanxi Children's Hospital, Taiyuan, China
| |
Collapse
|
15
|
Chen L, Yu L, Zhang R, Zhu L, Shen W. Correlation of microRNA-146a/b with disease risk, biochemical indices, inflammatory cytokines, overall disease severity, and prognosis of sepsis. Medicine (Baltimore) 2020; 99:e19754. [PMID: 32481361 DOI: 10.1097/md.0000000000019754] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Previous studies have indicated the association of microRNA-146a/b (miR-146a/miR-146b) with pro-inflammatory cytokines production, lipopolysaccharide-mediated injuries and organ dysfunction, however, the correlation of miR-146a/miR-146b with disease risk, disease severity, biochemical indices, inflammatory cytokines and mortality of sepsis has not been explored, which was investigated in the present study. METHODS In total, 180 sepsis patients and 180 healthy controls were enrolled. The peripheral blood samples were collected from sepsis patients within 24 hour after admission and from healthy controls at enrolment. Furthermore, MiR-146a/miR-146b expressions in plasma were detected by reverse transcription quantitative polymerase chain reaction. RESULTS MiR-146a and miR-146b expressions were higher in sepsis patients compared to healthy controls. MiR-146a (AUC: 0.774, 95%CI: 0.727-0.820) and miR-146b (AUC: 0.897, 95%CI: 0.865-0.929) were both of good value in predicting increased sepsis risk, among which miR-146b presented a superior predictive value. In sepsis patients, MiR-146a expression was positively associated with miR-146b expression. Besides, MiR-146a and miR-146b expressions were positively correlated with acute pathologic and chronic health evaluation II score, sequential organ failure assessment score, serum creatinine, C-reactive protein, tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-17, while negatively correlated with albumin. Based on the survival status in 28-day follow-up, MiR-146a and miR-146b expression were both increased in survivors compared to deaths. miR-146b presented relatively good predictive for increased 28-day mortality risk (AUC: 0.703, 95%CI: 0.617-0.788), but MiR-146a was of poor value in predicting increased 28-day mortality risk (AUC: 0.599, 95%CI: 0.511-0.688). CONCLUSION MiR-146b presents superior potential as a prognostic biomarker in sepsis patients compared to MiR-146a, which implies the clinical application of miR-146b in disease management of sepsis.
Collapse
Affiliation(s)
- Li Chen
- Clinical Laboratory, the Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University
| | - Lili Yu
- Department of Hepatobiliary & Pancreatic Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rixin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhu
- Department of Hepatobiliary & Pancreatic Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanqi Shen
- Department of Hepatobiliary & Pancreatic Surgery, the Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Belov Kirdajova D, Kriska J, Tureckova J, Anderova M. Ischemia-Triggered Glutamate Excitotoxicity From the Perspective of Glial Cells. Front Cell Neurosci 2020; 14:51. [PMID: 32265656 PMCID: PMC7098326 DOI: 10.3389/fncel.2020.00051] [Citation(s) in RCA: 232] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of “neuron-centric” approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
Collapse
Affiliation(s)
- Denisa Belov Kirdajova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Kriska
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Jana Tureckova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia.,Second Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
17
|
Morgado-Pascual JL, Rayego-Mateos S, Tejedor L, Suarez-Alvarez B, Ruiz-Ortega M. Bromodomain and Extraterminal Proteins as Novel Epigenetic Targets for Renal Diseases. Front Pharmacol 2019; 10:1315. [PMID: 31780938 PMCID: PMC6857099 DOI: 10.3389/fphar.2019.01315] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Epigenetic mechanisms, especially DNA methylation and histone modifications, are dynamic processes that regulate the gene expression transcriptional program in normal and diseased states. The bromodomain and extraterminal (BET) protein family (BRD2, BRD3, BRD4, and BRDT) are epigenetic readers that, via bromodomains, regulate gene transcription by binding to acetylated lysine residues on histones and master transcriptional factors. Experimental data have demonstrated the involvement of some BET proteins in many pathological conditions, including tumor development, infections, autoimmunity, and inflammation. Selective bromodomain inhibitors are epigenetic drugs that block the interaction between BET proteins and acetylated proteins, thus exerting beneficial effects. Recent data have described the beneficial effect of BET inhibition on experimental renal diseases. Emerging evidence underscores the importance of environmental modifications in the origin of pathological features in chronic kidney diseases (CKD). Several cellular processes such as oxidation, metabolic disorders, cytokines, inflammation, or accumulated uremic toxins may induce epigenetic modifications that regulate key processes involved in renal damage and in other pathological conditions observed in CKD patients. Here, we review how targeting bromodomains in BET proteins may regulate essential processes involved in renal diseases and in associated complications found in CKD patients, such as cardiovascular damage, highlighting the potential of epigenetic therapeutic strategies against BET proteins for CKD treatment and associated risks.
Collapse
Affiliation(s)
- Jose Luis Morgado-Pascual
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Sandra Rayego-Mateos
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Vascular and Renal Translational Research Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Lleida, Spain
| | - Lucia Tejedor
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Red de Investigación Renal (REDinREN), Madrid, Spain.,Translational Immunology Laboratory, Health Research Institute of the Principality of Asturias (ISPA), Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, IIS-Fundación Jiménez Díaz, Universidad Autónoma Madrid, Madrid, Spain.,Red de Investigación Renal (REDinREN), Madrid, Spain
| |
Collapse
|