1
|
Sil M, Mukherjee D, Goswami A, Nag M, Lahiri D, Bhattacharya D. Antibiofilm activity of mesoporous silica nanoparticles against the biofilm associated infections. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3617-3633. [PMID: 38051365 DOI: 10.1007/s00210-023-02872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
In pharmaceutical industries, various chemical carriers are present which are used for drug delivery to the correct target sites. The most popular and upcoming drug delivery carriers are mesoporous silica nanoparticles (MSN). The main reason for its popularity is its ability to be specific and optimize the drug delivery process in a controlled manner. Nowadays, MSNs are widely used to eradicate various microbial infections, especially the ones related to biofilms. Biofilms are sessile groups of cells that live by forming a consortium and exhibit antibacterial resistance (AMR). They exhibit AMR by extracellular polymeric substances (EPS) and various quorum sensing (QS) signaling molecules. Usually, bacterial and fungal cells are capable of forming biofilms. These biofilms are pathogenic. In the majority of the cases, biofilms cause nosocomial diseases. This review will focus on the antibiofilm activities of MSN, its mechanism of target-specific drug delivery, and its ability to disrupt the bacterial biofilms inhibiting the infection. The review will also discuss various mechanisms for the delivery of pharmaceutical molecules by the MSNs to inhibit the bacterial biofilms, and lastly, we will talk about the different types of MSNs and their antibiofilm activities.
Collapse
Affiliation(s)
- Moumita Sil
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Dipro Mukherjee
- Agricultural and Ecological Research Unit, Biological Sciences Division, Indian Statistical Institute, Kolkata, India
| | - Arunava Goswami
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, India
| | - Moupriya Nag
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India
| | - Dibyajit Lahiri
- Department of Biotechnology, Institute of Engineering and Management, Kolkata, New Town, University of Engineering and Management, Kolkata, India.
| | - Debasmita Bhattacharya
- Department of Basic Science and Humanities, Institute of Engineering and Management, Kolkata, Salt Lake, University of Engineering and Management, Kolkata, India
| |
Collapse
|
2
|
Filatova K, Domincova Bergerova E, Kazantseva N, Masar M, Suly P, Sopik T, Cisar J, Durpekova S, Sedlarik V. Design and Fabrication of Electrospun PLA-Based Silica-Modified Composite Nanofibers with Antibacterial Properties for Perspective Wound Treatment. Polymers (Basel) 2023; 15:3500. [PMID: 37688125 PMCID: PMC10490196 DOI: 10.3390/polym15173500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
The aim of this study was to develop a novel amikacin (AMI) delivery system with prolonged release based on composite electrospun nanofibers of PLA supplemented with AMI-loaded Si nanoparticles of different morphology. The resultant materials were characterized in terms of their physical properties (scanning electron microscopy, Brunauer-Emmett-Teller analysis, thermogravimetric analysis, water contact angle). High-Performance Liquid Chromatography was used to determine the AMI content in the liquid fractions obtained from the release study. The results show that nanofibers of fumed silica exhibited an aggregated, highly porous structure, whereas nanofibers of mesoporous silica had a spherical morphology. Both silica nanoparticles had a significant effect on the hydrophilic properties of PLA nanofiber surfaces. The liquid fractions were investigated to gauge the encapsulation efficiency (EE) and loading efficiency (LE) of AMI, demonstrating 66% EE and 52% LE for nanofibers of fumed silica compared to nanofibers of mesoporous silica nanoparticles (52% EE and 12.7% LE). The antibacterial activity of the AMI-loaded nanofibers was determined by the Kirby-Bauer Method. These results demonstrated that the PLA-based silica nanofibers effectively enhanced the antibacterial properties against the Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Kateryna Filatova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
- Faculty of Technology, Tomas Bata University in Zlin, Vavreckova 5669, 76001 Zlin, Czech Republic
| | - Eva Domincova Bergerova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Natalia Kazantseva
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Milan Masar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Pavol Suly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Tomas Sopik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Jaroslav Cisar
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Silvie Durpekova
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| | - Vladimir Sedlarik
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlin, Tr. T. Bati 5678, 76001 Zlin, Czech Republic
| |
Collapse
|
3
|
Gaydhane MK, Sharma CS, Majumdar S. Electrospun nanofibres in drug delivery: advances in controlled release strategies. RSC Adv 2023; 13:7312-7328. [PMID: 36891485 PMCID: PMC9987416 DOI: 10.1039/d2ra06023j] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 03/08/2023] Open
Abstract
Emerging drug-delivery systems demand a controlled or programmable or sustained release of drug molecules to improve therapeutic efficacy and patient compliance. Such systems have been heavily investigated as they offer safe, accurate, and quality treatment for numerous diseases. Amongst newly developed drug-delivery systems, electrospun nanofibres have emerged as promising drug excipients and are coming up as promising biomaterials. The inimitable characteristics of electrospun nanofibres in terms of their high surface-to-volume ratio, high porosity, easy drug encapsulation, and programmable release make them an astounding drug-delivery vehicle.
Collapse
Affiliation(s)
- Mrunalini K Gaydhane
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Chandra Shekhar Sharma
- Creative & Advanced Research Based on Nanomaterials (CARBON) Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| | - Saptarshi Majumdar
- Poly-Nano-Bio Laboratory, Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi-502285 Telangana India
| |
Collapse
|
4
|
Fabricating ZSM-5 zeolite/ polycaprolactone nano-fibers co-loaded with dexamethasone and ascorbic acid: Potential application in osteogenic differentiation of human adipose-derived stem cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Shetty K, Bhandari A, Yadav KS. Nanoparticles incorporated in nanofibers using electrospinning: A novel nano-in-nano delivery system. J Control Release 2022; 350:421-434. [PMID: 36002053 DOI: 10.1016/j.jconrel.2022.08.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/26/2022]
Abstract
Nanofibers are cutting-edge drug delivery systems that are being utilised to treat a variety of ailments. Nanofibers are mostly woven by electrospinning techniques that are majorly used in drug delivery, wound dressing, tissue engineering, sensors, etc. They have several limitations that can be addressed by developing nano-in-nano delivery techniques. Nanoparticles are incorporated into nanofibers in these nano-in-nano systems. They offer a lot of benefits over other nanosystems, including the ability to shield drugs from physical deterioration, the ability to provide prolonged drug release, high surface area to volume ratio, increased drug loading capacity and the potential to be employed in critical conditions such as cancer. These nanoparticles can be encapsulated, entrapped, or adsorbed onto nanofibers in a variety of ways. To include nanosystems into nanofibers, a variety of materials and different kinds of nanoparticles can be used. The present review gives an insight to the applications of nano - in - nano drug delivery system for different diseases/disorders. The review also brings forward the current state of these novel delivery systems along with future perspectives.
Collapse
Affiliation(s)
- Karishma Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai 400056, India
| | - Ayush Bhandari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai 400056, India
| | - Khushwant S Yadav
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS (Deemed to be University), Mumbai 400056, India.
| |
Collapse
|
6
|
Electrospun Membrane Surface Modification by Sonocoating with HA and ZnO:Ag Nanoparticles—Characterization and Evaluation of Osteoblasts and Bacterial Cell Behavior In Vitro. Cells 2022; 11:cells11091582. [PMID: 35563888 PMCID: PMC9103553 DOI: 10.3390/cells11091582] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Guided tissue regeneration and guided bone regeneration membranes are some of the most common products used for bone regeneration in periodontal dentistry. The main disadvantage of commercially available membranes is their lack of bone cell stimulation and easy bacterial colonization. The aim of this work was to design and fabricate a new membrane construct composed of electrospun poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) fibers sonocoated with layers of nanoparticles with specific properties, i.e., hydroxyapatite and bimetallic nanocomposite of zinc oxide–silver. Thus, within this study, four different variants of biomaterials were evaluated, namely: poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) biomaterial, poly(D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite biomaterial, poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano zinc oxide–silver biomaterial, and poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver biomaterial. First, it was demonstrated that the wettability of biomaterials—a prerequisite property important for ensuring desired biological response—was highly increased after the sonocoating process. Moreover, it was indicated that biomaterials composed of poly (D,L-lactic acid)/poly (lactic-co-glycolic acid) with or without a nano hydroxyapatite layer allowed proper osteoblast growth and proliferation, but did not have antibacterial properties. Addition of a nano zinc oxide–silver layer to the biomaterial inhibited growth of bacterial cells around the membrane, but at the same time induced very high cytotoxicity towards osteoblasts. Most importantly, enrichment of this biomaterial with a supplementary underlayer of nano hydroxyapatite allowed for the preservation of antibacterial properties and also a decrease in the cytotoxicity towards bone cells, associated with the presence of a nano zinc oxide–silver layer. Thus, the final structure of the composite poly (D,L-lactic acid)/poly (lactic-co-glycolic acid)/nano hydroxyapatite/nano zinc oxide–silver seems to be a promising construct for tissue engineering products, especially guided tissue regeneration/guided bone regeneration membranes. Nevertheless, additional research is needed in order to improve the developed construct, which will simultaneously protect the biomaterial from bacterial colonization and enhance the bone regeneration properties.
Collapse
|
7
|
Mirzaeei S, Ezzati A, Mehrandish S, Asare-Addo K, Nokhodchi A. An overview of guided tissue regeneration (GTR) systems designed and developed as drug carriers for management of periodontitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Li H, Xu J, Hu J, Hu Q, Fang X, Sun ZJ, Xu Z, Zhang L. Sustained release of chlorogenic acid-loaded nanomicelles alleviates bone loss in mouse periodontitis. Biomater Sci 2022; 10:5583-5595. [DOI: 10.1039/d2bm01099b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract Periodontitis is a prevalent chronic inflammatory disease that destroys the periodontal supporting tissues, impinges on oral health, and is correlative with an increased risk of systemic disease. Currently, the...
Collapse
|
9
|
Yu DG, Wang M, Ge R. Strategies for sustained drug release from electrospun multi-layer nanostructures. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1772. [PMID: 34964277 DOI: 10.1002/wnan.1772] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
Among different kinds of modified release profiles, sustained drug release (SDR) has received the most attention due to its capability to provide a "safe, efficacious, and convenient" drug delivery effect. Electrospun nanofibers have shown their popularity in this interdisciplinary field, as demonstrated by the first reports about SDRs on drug delivery applications of blended nanofibers and core-shell nanofibers. Along with the evolution of electrospinning from a single-fluid blending process to coaxial, tri-axial, side-by-side, and other multi-fluid processes, more multi-chamber nanostructures can be created through a single-step straight forward manner. These multi-chamber nanostructures can act as a powerful platform to support a wide variety of new strategies for the development of novel SDR nanomaterials. Thus, this review describes a combination history of electrospinning and SDR and its further development trend. After a summary of the presently popular multi-chamber core-shell nanostructures, 15 strategies for furnishing SDR profiles are categorized and exemplified. The perspectives of electrospun multi-chamber nanostructures for further promoting SDR are narrated. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Deng-Guang Yu
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China.,Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Menglong Wang
- School of Materials & Chemistry, University of Shanghai for Science & Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Ma B, Chen Y, Hu G, Zeng Q, Lv X, Oh DH, Fu X, Jin Y. Ovotransferrin Antibacterial Peptide Coupling Mesoporous Silica Nanoparticle as an Effective Antibiotic Delivery System for Treating Bacterial Infection In Vivo. ACS Biomater Sci Eng 2021; 8:109-118. [PMID: 34936344 DOI: 10.1021/acsbiomaterials.1c01267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antibiotic-resistant pathogens are a serious threat to global public health. The emergence of drug-resistant pathogens is due to the improper use of antibiotics, making the treatment of bacterial infections very challenging. Here, we reported an efficient antibiotic delivery nanoparticle to minimize antibiotic resistance. The nanoparticle was designed to target the bacterial membrane using mesoporous silica nanoparticles (MSNs) modified with an ovotransferrin-derived antimicrobial peptide (OVTp12), enabling the antibiotic to be delivered to the vicinity of the pathogenic bacteria. Moreover, we observed that OVTp12-modified nanoparticles effectively inhibited the growth of Escherichia coli in vitro and in vivo. The nanoparticle with high biosafety could significantly downregulate the expression of inflammation-related cytokines in infected tissues. Thus, this novel bacterial targeted nanoparticle provides advantages in minimizing bacterial drug resistance and treating bacterial infection.
Collapse
Affiliation(s)
- Bin Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yue Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Gan Hu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Deog Hwan Oh
- Department of Bioconvergence Science and Technology, College of Agriculture and Life Science, Kangwon National University, Chunchon 24341, South Korea
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
11
|
|
12
|
Serati-Nouri H, Mahmoudnezhad A, Bayrami M, Sanajou D, Tozihi M, Roshangar L, Pilehvar Y, Zarghami N. Sustained delivery efficiency of curcumin through ZSM-5 nanozeolites/electrospun nanofibers for counteracting senescence of human adipose-derived stem cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Castillo RR, Vallet-Regí M. Recent Advances Toward the Use of Mesoporous Silica Nanoparticles for the Treatment of Bacterial Infections. Int J Nanomedicine 2021; 16:4409-4430. [PMID: 34234434 PMCID: PMC8256096 DOI: 10.2147/ijn.s273064] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
It is a fact that the use of antibiotics is inducing a growing resistance on bacteria. This situation is not only the consequence of a drugs’ misuse, but a direct consequence of a widespread and continuous use. Current studies suggest that this effect could be reversed by using abandoned antibiotics to which bacteria have lost their resistance, but this is only a temporary solution that in near future would lead to new resistance problems. Fortunately, current nanotechnology offers a new life for old and new antibiotics, which could have significantly different pharmacokinetics when properly delivered; enabling new routes able to bypass acquired resistances. In this contribution, we will focus on the use of porous silica nanoparticles as functional carriers for the delivery of antibiotics and biocides in combination with additional features like membrane sensitizing and heavy metal-driven metabolic-disrupting therapies as two of the most interesting combination therapies.
Collapse
Affiliation(s)
- Rafael R Castillo
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - María Vallet-Regí
- Dpto. Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, 28040, Spain.,Centro de Investigación Biomédica en Red-CIBER, Madrid, 28029, Spain.,Instituto de Investigación Sanitaria Hospital 12 de Octubre-imas12, Madrid, 28041, Spain
| |
Collapse
|
14
|
Vidal-Gutiérrez X, Prado-Prone G, Rodil SE, Velasquillo C, Clemente I, Silva-Bermudez P, Almaguer-Flores A. Bismuth subsalicylate incorporated in polycaprolactone-gelatin membranes by electrospinning to prevent bacterial colonization. Biomed Mater 2021; 16. [PMID: 34038883 DOI: 10.1088/1748-605x/ac058d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/26/2021] [Indexed: 01/23/2023]
Abstract
Periodontitis is a chronic, multifactorial, inflammatory disease characterized by the progressive destruction of the periodontal tissues. Guided tissue regeneration (GTR), involving the use of barrier membranes, is one of the most successful clinical procedures for periodontal therapy. Nevertheless, rapid degradation of the membranes and membrane-related infections are considered two of the major reasons for GTR clinical failure. Recently, integration of non-antibiotic, antimicrobial materials to the membranes has emerged as a novel strategy to face the bacterial infection challenge, without increasing bacterial resistance. In this sense, bismuth subsalicylate (BSS) is a non-antibiotic, metal-based antimicrobial agent effective against different bacterial strains, that has been long safely used in medical treatments. Thus, the aim of the present work was to fabricate fibrillar, non-rapidly bioresorbable, antibacterial GTR membranes composed of polycaprolactone (PCL), gelatin (Gel), and BSS as the antibacterial agent. PCL-G-BSS membranes with three different BSS concentrations (2 wt./v%, 4 wt./v%, and 6 wt./v%) were developed by electrospinning and their morphology, composition, water wettability, mechanical properties, Bi release and degradation rate were characterized. The Cytotoxicity of the membranes was studiedin vitrousing human osteoblasts (hFOB) and gingival fibroblasts (HGF-1), and their antibacterial activity was tested againstAggregatibacter actinomycetemcomitans, Escherichia coli, Porphyromonas gingivalisandStaphylococcus aureus.The membranes obtained exhibited adequate mechanical properties for clinical application, and appropriate degradation rates for allowing periodontal defects regeneration. The hFOB and HGF-1 cells displayed adequate viability when in contact with the lixiviated products from the membranes, and, in general, displayed antibacterial activity against the four bacteria strains tested. Thus, the PCL-G-BSS membranes showed to be appropriate as potential barrier membranes for periodontal GTR treatments.
Collapse
Affiliation(s)
- Ximena Vidal-Gutiérrez
- Posgrado en Ciencias Médicas, Odontológicas y de la Salud, Ciencias Odontológicas, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México.,Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México.,Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Gina Prado-Prone
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México.,Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México
| | - Cristina Velasquillo
- Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Ibarra Clemente
- Dirección General, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, CDMX C.P. 14389, México
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, CDMX C.P. 04510, México
| |
Collapse
|
15
|
Ghaderpour A, Hoseinkhani Z, Yarani R, Mohammadiani S, Amiri F, Mansouri K. Altering the characterization of nanofibers by changing the electrospinning parameters and their application in tissue engineering, drug delivery, and gene delivery systems. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amir Ghaderpour
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Biology Department, Urmia Branch Islamic Azad University Urmia Iran
| | - Zohreh Hoseinkhani
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research Steno Diabetes Center Copenhagen Gentofte Denmark
| | | | - Farshid Amiri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Kamran Mansouri
- Medical Biology Research Center Health Technology Institute, Kermanshah University of Medical Sciences Kermanshah Iran
- Molecular Medicine Department, Faculty of Medicine Kermanshah University of Medical Kermanshah Iran
| |
Collapse
|
16
|
Coupling between voltage and tip-to-collector distance in polymer electrospinning: Insights from analysis of regimes, transitions and cone/jet features. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J Biomater Appl 2020; 36:55-75. [PMID: 32842852 DOI: 10.1177/0885328220952250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considering the specificity of periodontium and the unique advantages of electrospinning, this technology has been used to fabricate biodegradable tissue engineering materials for functional periodontal regeneration. For better biomedical quality, a continuous technological progress of electrospinning has been performed. Based on property of materials (natural, synthetic or composites) and additive novel methods (drug loading, surface modification, structure adjustment or 3 D technique), various novel membranes and scaffolds that could not only relief inflammation but also influence the biological behaviors of cells have been fabricated to achieve more effective periodontal regeneration. This review provides an overview of the usage of electrospinning materials in treatments of periodontitis, in order to get to know the existing research situation and find treatment breakthroughs of the periodontal diseases.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| |
Collapse
|
18
|
Chiu YJ, Zhang Z, Dziemidowicz K, Nikoletopoulos CG, Angkawinitwong U, Chen JT, Williams GR. The Effect of Solvent Vapor Annealing on Drug-Loaded Electrospun Polymer Fibers. Pharmaceutics 2020; 12:E139. [PMID: 32041349 PMCID: PMC7076406 DOI: 10.3390/pharmaceutics12020139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Electrospinning has emerged as a powerful strategy to develop controlled release drug delivery systems but the effects of post-fabrication solvent vapor annealing on drug-loaded electrospun fibers have not been explored to date. In this work, electrospun poly(ԑ-caprolactone) (PCL) fibers loaded with the hydrophobic small-molecule spironolactone (SPL) were explored. Immediately after fabrication, the fibers are smooth and cylindrical. However, during storage the PCL crystallinity in the fibers is observed to increase, demonstrating a lack of stability. When freshly-prepared fibers are annealed with acetone vapor, the amorphous PCL chains recrystallize, resulting in the fiber surfaces becoming wrinkled and yielding shish-kebab like structures. This effect does not arise after the fibers have been aged. SPL is found to be amorphously dispersed in the PCL matrix both immediately after electrospinning and after annealing. In vitro dissolution studies revealed that while the fresh fibers show a rapid burst of SPL release, after annealing more extended release profiles are observed. Both the rate and extent of release can be varied through changing the annealing time. Further, the annealed formulations are shown to be stable upon storage.
Collapse
Affiliation(s)
- Yu-Jing Chiu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (Z.Z.); (K.D.); (C.-G.N.); (U.A.)
| | - Ziwei Zhang
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (Z.Z.); (K.D.); (C.-G.N.); (U.A.)
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (Z.Z.); (K.D.); (C.-G.N.); (U.A.)
| | - Christos-Georgios Nikoletopoulos
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (Z.Z.); (K.D.); (C.-G.N.); (U.A.)
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (Z.Z.); (K.D.); (C.-G.N.); (U.A.)
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University, Hsinchu 30010, Taiwan
| | - Gareth R. Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; (Z.Z.); (K.D.); (C.-G.N.); (U.A.)
| |
Collapse
|
19
|
Skwira A, Szewczyk A, Konopacka A, Górska M, Majda D, Sądej R, Prokopowicz M. Silica-Polymer Composites as the Novel Antibiotic Delivery Systems for Bone Tissue Infection. Pharmaceutics 2019; 12:E28. [PMID: 31905860 PMCID: PMC7022428 DOI: 10.3390/pharmaceutics12010028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/25/2022] Open
Abstract
Bone tissue inflammation, osteomyelitis, is commonly caused by bacterial invasion and requires prolonged antibiotic therapy for weeks or months. Thus, the aim of this study was to develop novel silica-polymer local bone antibiotic delivery systems characterized by a sustained release of ciprofloxacin (CIP) which remain active against Staphylococcus aureus for a few weeks, and do not have a toxic effect towards human osteoblasts. Four formulations composed of ethylcellulose (EC), polydimethylsiloxane (PDMS), freeze-dried CIP, and CIP-adsorbed mesoporous silica materials (MCM-41-CIP) were prepared via solvent-evaporation blending method. All obtained composites were characterized in terms of molecular structure, morphological, and structural properties by using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDX), and X-ray diffraction (XRD), thermal stability by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and in vitro antibiotic release. The antibacterial activity against Staphylococcus aureus (ATCC 6538) as well as the in vitro cytocompatibility to human osteoblasts of obtained composites were also examined. Physicochemical results confirmed the presence of particular components (FTIR), formation of continuous polymer phase onto the surface of freeze-dried CIP or MCM-41-CIP (SEM/EDX), and semi-crystalline (composites containing freeze-dried CIP) or amorphous (composites containing MCM-41-CIP) structure (XRD). TGA and DSC analysis indicated the high thermal stability of CIP adsorbed onto the MCM-41, and higher after MCM-41-CIP coating with polymer blend. The release study revealed the significant reduction in initial burst of CIP for the composites which contained MCM-41-CIP instead of freeze-dried CIP. These composites were also characterized by the 30-day activity against S. aureus and the highest cytocompatibility to human osteoblasts in vitro.
Collapse
Affiliation(s)
- Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.)
| | - Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.)
| | - Agnieszka Konopacka
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland;
| | - Monika Górska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.G.); (R.S.)
| | - Dorota Majda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| | - Rafał Sądej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, 80-210 Gdańsk, Poland; (M.G.); (R.S.)
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; (A.S.); (A.S.)
| |
Collapse
|