1
|
Ratsma DMA, Muller M, Koedam M, Zillikens MC, van der Eerden BCJ. A role for sirtuin 1 in FGF23 activation following β-glycerophosphate treatment. Pflugers Arch 2024; 476:1279-1288. [PMID: 38772920 PMCID: PMC11271368 DOI: 10.1007/s00424-024-02974-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
Phosphate homeostasis is vital for many biological processes and disruptions in circulating levels can be detrimental. While the mechanisms behind FGF23 regulation have been regularly studied, the role of extracellular phosphate sensing and its impact on fibroblast growth factor 23 (FGF23) expression remains unclear. This study aimed to investigate the involvement of reactive oxygen species (ROS), silent information regulator 1 (SIRT1), and Hairy and Enhancer of Split-1 (HES1) in regulating FGF23 in FGF23 expressing MC3T3-E1 cells. MC3T3-E1 cells treated with β-glycerophosphate (BGP) resulted in increased Fgf23 expression. Inhibition of ROS formation by inhibition of NADPH oxidase, which is essential for ROS production, did not affect this response to BGP, suggesting ROS is not involved in this process. Moreover, treatment with tert-butyl hydroperoxide (TBHP), a ROS-inducing agent, did not increase Fgf23 expression. This suggests that ROS machinery is not involved in FGF23 stimulation as previously suggested. Nonetheless, inhibition of SIRT1 using Ex527 eliminated the Fgf23 response to BGP, indicating its involvement in FGF23 regulation after BGP treatment. Indeed, activation of SIRT1 using SRT1720 increased Fgf23 expression. Moreover, transcription factor Hes1 was upregulated by BGP treatment, which was diminished when cells were treated with Ex527 implying it is also regulated through SIRT1. These findings suggest the existence of an upstream SIRT1-HES1 axis in the regulation of FGF23 by phosphate, though we were unable to find a role for ROS in this process. Further research should provide insights into phosphate homeostasis and potential therapeutic targets for phosphate-related disorders.
Collapse
Affiliation(s)
- Danielle M A Ratsma
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Room Ee585b, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Max Muller
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Room Ee585b, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Marijke Koedam
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Room Ee585b, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Room Ee585b, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Bram C J van der Eerden
- Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Room Ee585b, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Zhu Z, Wang Z, Ma C, Zhou J, Zhang W. Isopsoralen promotes osteogenic differentiation of human jawbone marrow mesenchymal cells through Notch signaling pathway. Ann Anat 2023; 250:152156. [PMID: 37678499 DOI: 10.1016/j.aanat.2023.152156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/15/2023] [Accepted: 08/12/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The aim of this study was to investigate the effect of isopsoralen on osteogenic differentiation of human jawbone marrow mesenchymal cells and its possible mechanism. METHOD The cytotoxicity and proliferation of cells were measured by a cell counting kit 8. Alkaline phosphatase activity analysis was then used to determine the optimal concentration of isopsoralen to promote the differentiation. Western blot, qRT-PCR and Alizarin Red S staining were used to evaluate the role of Notch signaling pathway in isopsoralen-induced osteogenic differentiation. This study also investigated the anti-osteoporotic effects of ISO using in vivo osteoporosis models. RESULTS Our results showed that 1 × 10-6 mol / L isopsoralen can effectively promote the proliferation and osteogenic differentiation of cells. Moreover, we found that activation of notch signaling pathway inhibited isopsoralen-induced osteogenesis and inhibition of Notch signal promoted the differentiation of osteoblasts induced by isopsoralen. In vivo experiments revealed that ISO significantly inhibited OVX-induced bone mineral density loss and restored the impaired bone structural properties in osteoporosis model mice. CONCLUSION Our findings demonstrated that isopsoralen induced osteogenic differentiation by inhibiting Notch signaling and it might be a potential therapeutic agent for treating or preventing osteoporosis.
Collapse
Affiliation(s)
- Zhu Zhu
- Stomatology outpatient of the Air Force From Eastern Theater of PLA, Nanjing, Jiangsu, China
| | - Zitian Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changyan Ma
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Affiliated with Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Oral Special Consultation, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Zhou YH, Zhu JY, Guo Y, Tang HN, Wang F, Iqbal J, Wu HX, Hu N, Xiao F, Wang T, Li L, Zhou HD. Notch1 is a marker for in situ resting osteocytes in a 3-dimensional gel culture model. Connect Tissue Res 2023; 64:491-504. [PMID: 37227119 DOI: 10.1080/03008207.2023.2217271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/16/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE Osteocytes in vivo exhibit different functional states, but no specific marker to distinguish these is currently available. MATERIALS AND METHODS To simulate the differentiation process of pre-osteoblasts to osteocytes in vitro, MC3T3-E1 cells were cultured on type I collagen gel and a three-dimensional (3D) culture system was established. The Notch expression of osteocyte-like cells in 3D culture system was compared with that of in situ osteocytes in bone tissues. RESULTS Immunohistochemistry demonstrated that Notch1 was not detected in "resting" in situ osteocytes, but was detected in normal cultured osteocyte-like cell line MLO-Y4. Osteocytes obtained from conventional osteogenic-induced osteoblasts and long-term cultured MLO-Y4 cells could not replicate the Notch1 expression pattern from in situ osteocytes. From day 14-35 of osteogenic induction, osteoblasts in 3D culture system gradually migrated into the gel to form canaliculus-like structures similar to bone canaliculus. On day 35, stellate-shaped osteocyte-like cells were observed, and expression of DMP1 and SOST, but not Runx2, was detected. Notch1 was not detected by immunohistochemistry, and Notch1 mRNA level was not significantly different from that of in situ osteocytes. In MC3T3-E1 cells, down-regulation of Notch2 increased Notch1, Notch downstream genes (β-catenin and Nfatc1), and Dmp1. In MLO-Y4 cells, Notch2 decreased after Notch1 siRNA transfection. Downregulation of Notch1 or Notch2 decreased Nfatc1, β-catenin, and Dmp1, and increased Sost. CONCLUSIONS We established "resting state" osteocytes using an in vitro 3D model. Notch1 can be a useful marker to help differentiate the functional states of osteocytes (activated vs. resting state).
Collapse
Affiliation(s)
- Ying-Hui Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Stomatology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jia-Yu Zhu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yue Guo
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Stomatology, the Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hao-Neng Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fang Wang
- Departments of Endocrinology and Metabolism, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Junaid Iqbal
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui-Xuan Wu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Nan Hu
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Fen Xiao
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ting Wang
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Long Li
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hou-De Zhou
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory for Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Gao Y, Fu Z, Guan J, Liu X, Zhang Q. The role of Notch signaling pathway in metabolic bone diseases. Biochem Pharmacol 2023; 207:115377. [PMID: 36513140 DOI: 10.1016/j.bcp.2022.115377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Metabolic bone diseases is the third most common endocrine diseases after diabetes and thyroid diseases. More than 500 million people worldwide suffer from metabolic bone diseases. The generation and development of bone metabolic diseases is a complex process regulated by multiple signaling pathways, among which the Notch signaling pathway is one of the most important pathways. The Notch signaling pathway regulates the differentiation and function of osteoblasts and osteoclasts, and affects the process of cartilage formation, bone formation and bone resorption. Genetic mutations in upstream and downstream of Notch signaling genes can lead to a series of metabolic bone diseases, such as Alagille syndrome, Adams-Oliver syndrome and spondylocostal dysostosis. In this review, we analyzed the mechanisms of Notch ligands, Notch receptors and signaling molecules in the process of signal transduction, and summarized the progress on the pathogenesis and clinical manifestations of bone metabolic diseases caused by Notch gene mutation. We hope to draw attention to the role of the Notch signaling pathway in metabolic bone diseases and provide new ideas and approaches for the diagnosis and treatment of metabolic bone diseases.
Collapse
Affiliation(s)
- Yongguang Gao
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| | - Zhanda Fu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Junxia Guan
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Xinhua Liu
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
| | - Qing Zhang
- Tangshan Key Laboratory of Green Speciality Chemicals, Department of Chemistry, Tangshan Normal University, Tangshan 063000, China.
| |
Collapse
|
5
|
Agoro R, Ni P, Noonan ML, White KE. Osteocytic FGF23 and Its Kidney Function. Front Endocrinol (Lausanne) 2020; 11:592. [PMID: 32982979 PMCID: PMC7485387 DOI: 10.3389/fendo.2020.00592] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Osteocytes, which represent up to 95% of adult skeletal cells, are deeply embedded in bone. These cells exhibit important interactive abilities with other bone cells such as osteoblasts and osteoclasts to control skeletal formation and resorption. Beyond this local role, osteocytes can also influence the function of distant organs due to the presence of their sophisticated lacunocanalicular system, which connects osteocyte dendrites directly to the vasculature. Through these networks, osteocytes sense changes in circulating metabolites and respond by producing endocrine factors to control homeostasis. One critical function of osteocytes is to respond to increased blood phosphate and 1,25(OH)2 vitamin D (1,25D) by producing fibroblast growth factor-23 (FGF23). FGF23 acts on the kidneys through partner fibroblast growth factor receptors (FGFRs) and the co-receptor Klotho to promote phosphaturia via a downregulation of phosphate transporters, as well as the control of vitamin D metabolizing enzymes to reduce blood 1,25D. In the first part of this review, we will explore the signals involved in the positive and negative regulation of FGF23 in osteocytes. In the second portion, we will bridge bone responses with the review of current knowledge on FGF23 endocrine functions in the kidneys.
Collapse
Affiliation(s)
- Rafiou Agoro
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Pu Ni
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Megan L. Noonan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kenneth E. White
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Medicine/Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|