1
|
Wu L, Xu Y, Qi K, Jiang X, He M, Cui Y, Bao J, Gu C, Zhang S. Self S-RNase reduces the expression of two pollen-specific COBRA genes to inhibit pollen tube growth in pear. MOLECULAR HORTICULTURE 2023; 3:26. [PMID: 38037174 PMCID: PMC10691131 DOI: 10.1186/s43897-023-00074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Due to self-incompatibility (SI) prevents self-fertilization, natural or artificial cross-pollination has been conducted in many orchards to stabilize fruit yield. However, it is still puzzled which routes of self S-RNase arresting pollen tube growth. Herein, 17 COBRA genes were isolated from pear genome. Of these genes, the pollen-specifically expressed PbCOB.A.1 and PbCOB.A.2 positively mediates pollen tube growth. The promoters of PbCOB.A.1 and/or PbCOB.A.2 were bound and activated by PbABF.E.2 (an ABRE-binding factor) and PbC2H2.K16.2 (a C2H2-type zinc finger protein). Notably, the expressions of PbCOB.A.1, PbCOB.A.2, and PbC2H2.K16.2 were repressed by self S-RNase, suggesting that self S-RNase reduces the expression of PbCOB.A.1 and PbCOB.A.2 by decreasing the expression of their upstream factors, such as PbC2H2.K16.2, to arrest pollen tube growth. PbCOB.A.1 or PbCOB.A.2 accelerates the growth of pollen tubes treated by self S-RNase, but can hardly affect level of reactive oxygen species and deploymerization of actin cytoskeleton in pollen tubes and cannot physically interact with any reported proteins involved in SI. These results indicate that PbCOB.A.1 and PbCOB.A.2 may not relieve S-RNase toxicity in incompatible pollen tube. The information provides a new route to elucidate the arresting pollen tube growth during SI reaction.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Xu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xueting Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min He
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanbo Cui
- Nanjing Ningcui Biological Seed Company Limited, Nanjing, Jiangsu, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Analysis of the C2H2 Gene Family in Maize ( Zea mays L.) under Cold Stress: Identification and Expression. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010122. [PMID: 36676071 PMCID: PMC9863836 DOI: 10.3390/life13010122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023]
Abstract
The C2H2 zinc finger protein is one of the most common zinc finger proteins, widely exists in eukaryotes, and plays an important role in plant growth and development, as well as in salt, low-temperature, and drought stress and other abiotic stress responses. In this study, C2H2 members were identified and analyzed from the low-temperature tolerant transcriptome sequencing data of maize seedlings. The chromosome position, physical and chemical properties, evolution analysis, gene structure, conservative motifs, promoter cis elements and collinearity relationships of gene the family members were analyzed using bioinformatics, and the expression of the ZmC2H2 gene family under cold stress was analyzed by fluorescent quantitative PCR. The results showed that 150 members of the C2H2 zinc finger protein family were identified, and their protein lengths ranged from 102 to 1223 bp. The maximum molecular weight of the ZmC2H2s was 135,196.34, and the minimum was 10,823.86. The isoelectric point of the ZmC2H2s was between 33.21 and 94.1, and the aliphatic index was 42.07-87.62. The promoter cis element analysis showed that the ZmC2H2 family contains many light-response elements, plant hormone-response elements, and stress-response elements. The analysis of the transcriptome data showed that most of the ZmC2H2 genes responded to cold stress, and most of the ZmC2H2 genes were highly expressed in cold-tolerant materials and lowly expressed in cold-sensitive materials. The real-time quantitative PCR (qRT-PCR) analysis showed that ZmC2H2-69, ZmC2H2-130, and ZmC2H2-76 were significantly upregulated, and that ZmC2H2-149, ZmC2H2-33, and ZmC2H2-38 were significantly downregulated. It is hypothesized that these genes, which function in different metabolic pathways, may play a key role in the maize cold response. These genes could be further studied as candidate genes. This study provides a theoretical reference for further study on the function analysis of the maize C2H2 gene family.
Collapse
|
3
|
Puentes-Romero AC, González SA, González-Villanueva E, Figueroa CR, Ruiz-Lara S. AtZAT4, a C 2H 2-Type Zinc Finger Transcription Factor from Arabidopsis thaliana, Is Involved in Pollen and Seed Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151974. [PMID: 35956451 PMCID: PMC9370812 DOI: 10.3390/plants11151974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Accepted: 07/27/2022] [Indexed: 06/01/2023]
Abstract
Pollen plays an essential role in plant fertility by delivering the male gametes to the embryo sac before double fertilization. In several plant species, including Arabidopsis, C2H2-type zinc-finger transcription factors (TFs) have been involved in different stages of pollen development and maturation. ZINC FINGER of Arabidopsis thaliana 4 (AtZAT4) is homologous to such TFs and subcellular localization analysis has revealed that AtZAT4 is located in the nucleus. Moreover, analysis of AtZAT4 expression revealed strong levels of it in flowers and siliques, suggesting a role of the encoded protein in the regulation of genes that are associated with reproductive development. We characterized a T-DNA insertional heterozygous mutant Atzat4 (+/−). The relative gene expression analysis of Atzat4 (+/−) showed significant transcript reductions in flowers and siliques. Furthermore, the Atzat4 (+/−) phenotypic characterization revealed defects in the male germline, showing a reduction in pollen tube germination and elongation. Atzat4 (+/−) presented reduced fertility, characterized by a smaller silique size compared to the wild type (WT), and a lower number of seeds per silique. Additionally, seeds displayed lower viability and germination. Altogether, our data suggest a role for AtZAT4 in fertilization and seed viability, through the regulation of gene expression associated with reproductive development.
Collapse
Affiliation(s)
- A. Carolina Puentes-Romero
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| | - Sebastián A. González
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Enrique González-Villanueva
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
| | - Carlos R. Figueroa
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
- Laboratory of Plant Molecular Physiology, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Institute of Biological Sciences, Universidad de Talca, Talca 3460000, Chile; (A.C.P.-R.); (S.A.G.); (E.G.-V.)
- Millenium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8340755, Chile;
| |
Collapse
|
4
|
Zhang J, Tian M, Chen K, Yan G, Xiong J, Miao W. Zfp1, a Cys2His2 zinc finger protein is required for meiosis initiation in Tetrahymena thermophila. Cell Cycle 2022; 21:1422-1433. [PMID: 35293272 PMCID: PMC9345619 DOI: 10.1080/15384101.2022.2053449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Meiosis is an important and highly conserved process that occurs during eukaryotic sexual reproduction. Diverse mechanisms are responsible for meiosis initiation among eukaryotes, and transcription factors have been established to have an important role in many species. However, the specific function of transcription factors in initiating meiosis in ciliates is unknown. Here we show that a putative Cys2His2 zinc finger-containing transcription factor encoded by the ZFP1 gene is specifically expressed during sexual reproduction in Tetrahymena thermophila. Meiosis is not initiated in the cells lacking ZFP1. Transcriptome sequencing analyses reveal that Zfp1 is required for the expression of many meiosis-specific genes. Our results indicate that Zfp1 could be a transcriptional activator required for meiosis initiation in T. thermophila.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Miao Tian
- Department of Chromosome Biology and Max F. Perutz Laboratories, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Guanxiong Yan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, Shanghai, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China.,CAS Center for Excellence in Animal Evolution and Genetics, Kunming, Yunnan, China
| |
Collapse
|
5
|
Cui H, Chen J, Liu M, Zhang H, Zhang S, Liu D, Chen S. Genome-Wide Analysis of C2H2 Zinc Finger Gene Family and Its Response to Cold and Drought Stress in Sorghum [ Sorghum bicolor (L.) Moench]. Int J Mol Sci 2022; 23:ijms23105571. [PMID: 35628380 PMCID: PMC9146226 DOI: 10.3390/ijms23105571] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
C2H2 zinc finger protein (C2H2-ZFP) is one of the most important transcription factor families in higher plants. In this study, a total of 145 C2H2-ZFPs was identified in Sorghum bicolor and randomly distributed on 10 chromosomes. Based on the phylogenetic tree, these zinc finger gene family members were divided into 11 clades, and the gene structure and motif composition of SbC2H2-ZFPs in the same clade were similar. SbC2H2-ZFP members located in the same clade contained similar intron/exon and motif patterns. Thirty-three tandem duplicated SbC2H2-ZFPs and 24 pairs of segmental duplicated genes were identified. Moreover, synteny analysis showed that sorghum had more collinear regions with monocotyledonous plants such as maize and rice than did dicotyledons such as soybean and Arabidopsis. Furthermore, we used quantitative RT-PCR (qRT-PCR) to analyze the expression of C2H2-ZFPs in different organs and demonstrated that the genes responded to cold and drought. For example, Sobic.008G088842 might be activated by cold but is inhibited in drought in the stems and leaves. This work not only revealed an important expanded C2H2-ZFP gene family in Sorghum bicolor but also provides a research basis for determining the role of C2H2-ZFPs in sorghum development and abiotic stress resistance.
Collapse
Affiliation(s)
- Huiying Cui
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
- Correspondence: (H.C.); (S.C.)
| | - Jiaqi Chen
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Mengjiao Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Hongzhi Zhang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Shuangxi Zhang
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Dan Liu
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
| | - Shaolin Chen
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China; (J.C.); (M.L.); (H.Z.); (S.Z.); (D.L.)
- Biomass Energy Center for Arid and Semi-Arid Lands, Northwest A&F University, Xianyang 712100, China
- Correspondence: (H.C.); (S.C.)
| |
Collapse
|
6
|
Han G, Li Y, Qiao Z, Wang C, Zhao Y, Guo J, Chen M, Wang B. Advances in the Regulation of Epidermal Cell Development by C2H2 Zinc Finger Proteins in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:754512. [PMID: 34630497 PMCID: PMC8497795 DOI: 10.3389/fpls.2021.754512] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/31/2021] [Indexed: 05/31/2023]
Abstract
Plant epidermal cells, such as trichomes, root hairs, salt glands, and stomata, play pivotal roles in the growth, development, and environmental adaptation of terrestrial plants. Cell fate determination, differentiation, and the formation of epidermal structures represent basic developmental processes in multicellular organisms. Increasing evidence indicates that C2H2 zinc finger proteins play important roles in regulating the development of epidermal structures in plants and plant adaptation to unfavorable environments. Here, we systematically summarize the molecular mechanism underlying the roles of C2H2 zinc finger proteins in controlling epidermal cell formation in plants, with an emphasis on trichomes, root hairs, and salt glands and their roles in plant adaptation to environmental stress. In addition, we discuss the possible roles of homologous C2H2 zinc finger proteins in trichome development in non-halophytes and salt gland development in halophytes based on bioinformatic analysis. This review provides a foundation for further study of epidermal cell development and abiotic stress responses in plants.
Collapse
|
7
|
Haider MU, Hussain M, Farooq M, Ul-Allah S, Ansari MJ, Alwahibi MS, Farooq S. Zinc biofortification potential of diverse mungbean [Vigna radiata (L.) Wilczek] genotypes under field conditions. PLoS One 2021; 16:e0253085. [PMID: 34161364 PMCID: PMC8221514 DOI: 10.1371/journal.pone.0253085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/27/2021] [Indexed: 12/04/2022] Open
Abstract
Zinc (Zn) is an important micronutrient for crop plants and essential for human health. The Zn-deficiency is an important malnutrition problem known globally. Biofortified foods could overcome Zn deficiency in humans. Mungbean [Vigna radiata (L.) Wilczek] is an important, pulse crop frequently grown in arid and semi-arid regions of the world. Mungbean could provide essential micronutrients, including Zn to humans. Therefore, it is very important to investigate the impact of Zn fertilization on the yield and grain biofortification of mungbean. Twelve mungbean genotypes (i.e., NM-28, NM-2011, NM-13-1, NM-2006, NM-51, NM-54, NM-19-19, NM-92, NM-121-25, NM-20-21, 7006, 7008) were assessed for their genetic diversity followed by Zn-biofortification, growth and yield under control (0 kg ha-1) and Zn-fertilized (10 kg ha-1) conditions. Data relating to allometric traits, yield components, grain yield and grain Zn contents were recorded. Zinc fertilization improved entire allometric and yield-related traits. Grain yield of different genotypes ranged from 439 to 904 kg ha-1 under control and 536 to 1462 kg ha-1 under Zn-fertilization. Zinc concentration in the grains varied from 15.50 to 45.60 mg kg-1 under control and 18.53 to 64.23 mg kg-1 under Zn-fertilized conditions. The tested genotypes differed in their Zn-biofortification potential. The highest and the lowest grain Zn contents were noted for genotypes NM-28 and NM-121-25, respectively. Significant variation in yield and Zn-biofortification indicated the potential for improvement in mungbean yield and grain Zn-biofortification. The genotypes NM-28 and NM-2006 could be used in breeding programs for improvement in grain Zn concentration due to their high Zn uptake potential. Nonetheless, all available genotypes in the country should be screened for their Zn-biofortification potential.
Collapse
Affiliation(s)
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Farooq
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, Bahauddin Zakariya University, Layyah, Pakistan
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University, Bareilly, India
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shahid Farooq
- Departmnet of Agronomy, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Pakistan
| |
Collapse
|
8
|
Ma X, Wu Y, Zhang G. Formation pattern and regulatory mechanisms of pollen wall in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 260:153388. [PMID: 33706055 DOI: 10.1016/j.jplph.2021.153388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 05/06/2023]
Abstract
In angiosperms, mature pollen is wrapped by a pollen wall, which is important for maintaining pollen structure and function. Pollen walls provide protection from various environmental stresses and preserve pollen germination and pollen tube growth. The pollen wall structure has been described since pollen ultrastructure investigations began in the 1960s. Pollen walls, which are the most intricate cell walls in plants, are composed of two layers: the exine layer and intine layer. Pollen wall formation is a complex process that occurs via a series of biological events that involve a large number of genes. In recent years, many reports have described the molecular mechanisms of pollen exine development. The formation process includes the development of the callose wall, the wavy morphology of primexine, the biosynthesis and transport of sporopollenin in the tapetum, and the deposition of the pollen coat. The formation mechanism of the intine layer is different from that of the exine layer. However, few studies have focused on the regulatory mechanisms of intine development. The primary component of the intine layer is pectin, which plays an essential role in the polar growth of pollen tubes. Demethylesterified pectin is mainly distributed in the shank region of the pollen tube, which can maintain the hardness of the pollen tube wall. Methylesterified pectin is mainly located in the top region, which is beneficial for improving the plasticity of the pollen tube top. In this review, we summarize the developmental process of the anther, pollen and pollen wall in Arabidopsis; furthermore, we describe the research progress on the pollen wall formation pattern and its molecular mechanisms in detail.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yu Wu
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Genfa Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
9
|
Genome-Wide Identification and Expression Patterns of the C2H2-Zinc Finger Gene Family Related to Stress Responses and Catechins Accumulation in Camellia sinensis [L.] O. Kuntze. Int J Mol Sci 2021; 22:ijms22084197. [PMID: 33919599 PMCID: PMC8074030 DOI: 10.3390/ijms22084197] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 11/18/2022] Open
Abstract
The C2H2-zinc finger protein (C2H2-ZFP) is essential for the regulation of plant development and widely responsive to diverse stresses including drought, cold and salt stress, further affecting the late flavonoid accumulation in higher plants. Tea is known as a popular beverage worldwide and its quality is greatly dependent on the physiological status and growing environment of the tea plant. To date, the understanding of C2H2-ZFP gene family in Camellia sinensis [L.] O. Kuntze is not yet available. In the present study, 134 CsC2H2-ZFP genes were identified and randomly distributed on 15 chromosomes. The CsC2H2-ZFP gene family was classified into four clades and gene structures and motif compositions of CsC2H2-ZFPs were similar within the same clade. Segmental duplication and negative selection were the main forces driving the expansion of the CsC2H2-ZFP gene family. Expression patterns suggested that CsC2H2-ZFPs were responsive to different stresses including drought, salt, cold and methyl jasmonate (MeJA) treatment. Specially, several C2H2-ZFPs showed a significant correlation with the catechins content and responded to the MeJA treatment, which might contribute to the tea quality and specialized astringent taste. This study will lay the foundations for further research of C2H2-type zinc finger proteins on the stress responses and quality-related metabolites accumulation in C. sinensis.
Collapse
|
10
|
Comprehensive Genomic Analysis and Expression Profiling of the C2H2 Zinc Finger Protein Family Under Abiotic Stresses in Cucumber ( Cucumis sativus L.). Genes (Basel) 2020; 11:genes11020171. [PMID: 32041281 PMCID: PMC7074296 DOI: 10.3390/genes11020171] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 11/17/2022] Open
Abstract
Cucumber is one of the most important vegetables in the world. The C2H2 zinc finger protein (C2H2-ZFP) family plays an important role in the growth development and abiotic stress responses of plants. However, there have been no systematic studies on cucumber. In this study, we performed a genome-wide study of C2H2-ZFP genes and analyzed their chromosomal location, gene structure, conservation motif, and transcriptional expression. In total, 101 putative cucumber C2H2-ZFP genes were identified and divided into six groups (I–VI). RNA-seq transcriptome data on different organs revealed temporal and spatial expression specificity of the C2H2-ZFP genes. Expression analysis of sixteen selected C2H2-ZFP genes in response to cold, drought, salt, and abscisic acid (ABA) treatments by real-time quantitative polymerase chain reaction showed that C2H2-ZFP genes may be involved in different signaling pathways. These results provide valuable information for studying the function of cucumber C2H2-ZFP genes in the future.
Collapse
|
11
|
Lyu T, Liu W, Hu Z, Xiang X, Liu T, Xiong X, Cao J. Molecular characterization and expression analysis reveal the roles of Cys 2/His 2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. PLANT MOLECULAR BIOLOGY 2020; 102:123-141. [PMID: 31776846 DOI: 10.1007/s11103-019-00935-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.
Collapse
Affiliation(s)
- Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xun Xiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|