1
|
Filippi A, Deculescu-Ioniță T, Hudiță A, Baldasici O, Gălățeanu B, Mocanu MM. Molecular Mechanisms of Dietary Compounds in Cancer Stem Cells from Solid Tumors: Insights into Colorectal, Breast, and Prostate Cancer. Int J Mol Sci 2025; 26:631. [PMID: 39859345 PMCID: PMC11766403 DOI: 10.3390/ijms26020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC. In this review, after a brief introduction to SC and CSC, we analyze the effects of phenolic and non-phenolic dietary compounds and we highlight the molecular mechanisms that are shown to link diets to CSC activation in colon, breast, and prostate cancer. We focus the analysis on specific markers such as sphere formation, CD surface markers, epithelial-mesenchymal transition (EMT), Oct4, Nanog, Sox2, and aldehyde dehydrogenase 1 (ALDH1) and on the major signaling pathways such as PI3K/Akt/mTOR, NF-κB, Notch, Hedgehog, and Wnt/β-catenin in CSC. In conclusion, a better understanding of how bioactive compounds in our diets influence the dynamics of CSC can raise valuable awareness towards reducing cancer risk.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Teodora Deculescu-Ioniță
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Oana Baldasici
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
2
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Klekowski J, Chabowski M, Krzystek-Korpacka M, Fleszar M. The Utility of Lipidomic Analysis in Colorectal Cancer Diagnosis and Prognosis-A Systematic Review of Recent Literature. Int J Mol Sci 2024; 25:7722. [PMID: 39062964 PMCID: PMC11277303 DOI: 10.3390/ijms25147722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and lethal malignancies. Lipidomic investigations have revealed numerous disruptions in lipid profiles across various cancers. Studies on CRC exhibit potential for identifying novel diagnostic or prognostic indicators through lipidomic signatures. This review examines recent literature regarding lipidomic markers for CRC. PubMed database was searched for eligible articles concerning lipidomic biomarkers of CRC. After selection, 36 articles were included in the review. Several studies endeavor to establish sets of lipid biomarkers that demonstrate promising potential to diagnose CRC based on blood samples. Phosphatidylcholine, phosphatidylethanolamine, ceramides, and triacylglycerols (TAGs) appear to offer the highest diagnostic accuracy. In tissues, lysophospholipids, ceramides, and TAGs were among the most altered lipids, while unsaturated fatty acids also emerged as potential biomarkers. In-depth analysis requires both cell culture and animal studies. CRC involves multiple lipid metabolism alterations. Although numerous lipid species have been suggested as potential diagnostic markers, the establishment of standardized methods and the conduct of large-scale studies are necessary to facilitate their clinical application.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 50-556 Wroclaw, Poland
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
| | - Mariusz Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
- Omics Research Center, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
4
|
Du J, Qin H. Lipid metabolism dynamics in cancer stem cells: potential targets for cancers. Front Pharmacol 2024; 15:1367981. [PMID: 38994204 PMCID: PMC11236562 DOI: 10.3389/fphar.2024.1367981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer stem cells (CSCs) represent a small subset of heterogeneous cells within tumors that possess the ability to self-renew and initiate tumorigenesis. They serve as potential drivers for tumor initiation, metastasis, recurrence, and drug resistance. Recent research has demonstrated that the stemness preservation of CSCs is heavily reliant on their unique lipid metabolism alterations, enabling them to maintain their own environmental homeostasis through various mechanisms. The primary objectives involve augmenting intracellular fatty acid (FA) content to bolster energy supply, promoting β-oxidation of FA to optimize energy utilization, and elevating the mevalonate (MVA) pathway for efficient cholesterol synthesis. Additionally, lipid droplets (LDs) can serve as alternative energy sources in the presence of glycolysis blockade in CSCs, thereby safeguarding FA from peroxidation. Furthermore, the interplay between autophagy and lipid metabolism facilitates rapid adaptation of CSCs to the harsh microenvironment induced by chemotherapy. In this review, we comprehensively review recent studies pertaining to lipid metabolism in CSCs and provide a concise overview of the indispensable role played by LDs, FA, cholesterol metabolism, and autophagy in maintaining the stemness of CSCs.
Collapse
Affiliation(s)
- Juan Du
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| |
Collapse
|
5
|
Gupta A, Das D, Taneja R. Targeting Dysregulated Lipid Metabolism in Cancer with Pharmacological Inhibitors. Cancers (Basel) 2024; 16:1313. [PMID: 38610991 PMCID: PMC11010992 DOI: 10.3390/cancers16071313] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic plasticity is recognised as a hallmark of cancer cells, enabling adaptation to microenvironmental changes throughout tumour progression. A dysregulated lipid metabolism plays a pivotal role in promoting oncogenesis. Oncogenic signalling pathways, such as PI3K/AKT/mTOR, JAK/STAT, Hippo, and NF-kB, intersect with the lipid metabolism to drive tumour progression. Furthermore, altered lipid signalling in the tumour microenvironment contributes to immune dysfunction, exacerbating oncogenesis. This review examines the role of lipid metabolism in tumour initiation, invasion, metastasis, and cancer stem cell maintenance. We highlight cybernetic networks in lipid metabolism to uncover avenues for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
| | | | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Singapore
| |
Collapse
|
6
|
Wang K, Lu Y, Li H, Zhang J, Ju Y, Ouyang M. Role of long non-coding RNAs in metabolic reprogramming of gastrointestinal cancer cells. Cancer Cell Int 2024; 24:15. [PMID: 38184562 PMCID: PMC10770979 DOI: 10.1186/s12935-023-03194-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024] Open
Abstract
Metabolic reprogramming, which is recognized as a hallmark of cancer, refers to the phenomenon by which cancer cells change their metabolism to support their increased biosynthetic demands. Tumor cells undergo substantial alterations in metabolic pathways, such as glycolysis, oxidative phosphorylation, pentose phosphate pathway, tricarboxylic acid cycle, fatty acid metabolism, and amino acid metabolism. Latest studies have revealed that long non-coding RNAs (lncRNAs), a group of non-coding RNAs over 200 nucleotides long, mediate metabolic reprogramming in tumor cells by regulating the transcription, translation and post-translational modification of metabolic-related signaling pathways and metabolism-related enzymes through transcriptional, translational, and post-translational modifications of genes. In addition, lncRNAs are closely related to the tumor microenvironment, and they directly or indirectly affect the proliferation and migration of tumor cells, drug resistance and other processes. Here, we review the mechanisms of lncRNA-mediated regulation of glucose, lipid, amino acid metabolism and tumor immunity in gastrointestinal tumors, aiming to provide more information on effective therapeutic targets and drug molecules for gastrointestinal tumors.
Collapse
Affiliation(s)
- Kang Wang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Yan Lu
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
| | - Haibin Li
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China
| | - Jun Zhang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China
- Guangdong Medical University, Dongguan, 523808, China
| | - Yongle Ju
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| | - Manzhao Ouyang
- Department of Gastrointestinal Surgery, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde Foshan), Shunde, Foshan, 528300, Guangdong, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
7
|
Guo Z, Huo X, Li X, Jiang C, Xue L. Advances in regulation and function of stearoyl-CoA desaturase 1 in cancer, from bench to bed. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2773-2785. [PMID: 37450239 DOI: 10.1007/s11427-023-2352-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/23/2023] [Indexed: 07/18/2023]
Abstract
Stearoyl-CoA desaturase 1 (SCD1) converts saturated fatty acids to monounsaturated fatty acids. The expression of SCD1 is increased in many cancers, and the altered expression contributes to the proliferation, invasion, sternness and chemoresistance of cancer cells. Recently, more evidence has been reported to further support the important role of SCD1 in cancer, and the regulation mechanism of SCD1 has also been focused. Multiple factors are involved in the regulation of SCD1, including metabolism, diet, tumor microenvironment, transcription factors, non-coding RNAs, and epigenetics modification. Moreover, SCD1 is found to be involved in regulating ferroptosis resistance. Based on these findings, SCD1 has been considered as a potential target for cancer treatment. However, the resistance of SCD1 inhibition may occur in certain tumors due to tumor heterogeneity and metabolic plasticity. This review summarizes recent advances in the regulation and function of SCD1 in tumors and discusses the potential clinical application of targeting SCD1 for cancer treatment.
Collapse
Affiliation(s)
- Zhengyang Guo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Huo
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xianlong Li
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Changtao Jiang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, 100191, China.
| | - Lixiang Xue
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
8
|
Khan SU, Rayees S, Sharma P, Malik F. Targeting redox regulation and autophagy systems in cancer stem cells. Clin Exp Med 2023; 23:1405-1423. [PMID: 36473988 DOI: 10.1007/s10238-022-00955-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
Cancer is a dysregulated cellular level pathological condition that results in tumor formation followed by metastasis. In the heterogeneous tumor architecture, cancer stem cells (CSCs) are essential to push forward the progression of tumors due to their strong pro-tumor properties such as stemness, self-renewal, plasticity, metastasis, and being poorly responsive to radiotherapy and chemotherapeutic agents. Cancer stem cells have the ability to withstand various stress pressures by modulating transcriptional and translational mechanisms, and adaptable metabolic changes. Owing to CSCs heterogeneity and plasticity, these cells display varied metabolic and redox profiles across different types of cancers. It has been established that there is a disparity in the levels of Reactive Oxygen Species (ROS) generated in CSCs vs Non-CSC and these differential levels are detected across different tumors. CSCs have unique metabolic demands and are known to change plasticity during metastasis by passing through the interchangeable epithelial and mesenchymal-like phenotypes. During the metastatic process, tumor cells undergo epithelial to mesenchymal transition (EMT) thus attaining invasive properties while leaving the primary tumor site, similarly during the course of circulation and extravasation at a distant organ, these cells regain their epithelial characteristics through Mesenchymal to Epithelial Transition (MET) to initiate micrometastasis. It has been evidenced that levels of Reactive Oxygen Species (ROS) and associated metabolic activities vary between the epithelial and mesenchymal states of CSCs. Similarly, the levels of oxidative and metabolic states were observed to get altered in CSCs post-drug treatments. As oxidative and metabolic changes guide the onset of autophagy in cells, its role in self-renewal, quiescence, proliferation and response to drug treatment is well established. This review will highlight the molecular mechanisms useful for expanding therapeutic strategies based on modulating redox regulation and autophagy activation to targets. Specifically, we will account for the mounting data that focus on the role of ROS generated by different metabolic pathways and autophagy regulation in eradicating stem-like cells hereafter referred to as cancer stem cells (CSCs).
Collapse
Affiliation(s)
- Sameer Ullah Khan
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sheikh Rayees
- PK PD Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Pankaj Sharma
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Chen W, Chen X, Zhao Z, Li M, Dong S, Hu S, Li X, Feng M, Chen K, Zhong S, He C. Pan-Cancer Identification of Prognostic-Associated Metabolic Pathways. BIOLOGY 2023; 12:1129. [PMID: 37627013 PMCID: PMC10452188 DOI: 10.3390/biology12081129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
Metabolic dysregulation has been reported involving in the clinical outcomes of multiple cancers. However, systematical identification of the impact of metabolic pathways on cancer prognosis is still lacking. Here, we performed a pan-cancer analysis of popular metabolic checkpoint genes and pathways with cancer prognosis by integrating information of clinical survival with gene expression and pathway activity in multiple cancer patients. By discarding the effects of age and sex, we revealed extensive and significant associations between the survival of cancer patients and the expression of metabolic checkpoint genes, as well as the activities of three primary metabolic pathways: amino acid metabolism, carbohydrate metabolism, lipid metabolism, and eight nonprimary metabolic pathways. Among multiple cancers, we found the survival of kidney renal clear cell carcinoma and low-grade glioma exhibit high metabolic dependence. Our work systematically assesses the impact of metabolic checkpoint genes and pathways on cancer prognosis, providing clues for further study of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wenbo Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xin Chen
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenyu Zhao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Menglu Li
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Dong
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Sheng Hu
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Xiaoyu Li
- Department of Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China
| | - Mingqian Feng
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ke Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| | - Shan Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chunjiang He
- School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
10
|
Skubisz K, Dąbkowski K, Samborowska E, Starzyńska T, Deskur A, Ambrozkiewicz F, Karczmarski J, Radkiewicz M, Kusnierz K, Kos-Kudła B, Sulikowski T, Cybula P, Paziewska A. Serum Metabolite Biomarkers for Pancreatic Tumors: Neuroendocrine and Pancreatic Ductal Adenocarcinomas-A Preliminary Study. Cancers (Basel) 2023; 15:3242. [PMID: 37370852 DOI: 10.3390/cancers15123242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Pancreatic cancer is the most common pancreatic solid malignancy with an aggressive clinical course and low survival rate. There are a limited number of reliable prognostic biomarkers and a need to understand the pathogenesis of pancreatic tumors; neuroendocrine (PNET) and pancreatic ductal adenocarcinomas (PDAC) encouraged us to analyze the serum metabolome of pancreatic tumors and disturbances in the metabolism of PDAC and PNET. METHODS Using the AbsoluteIDQ® p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) with liquid chromatography-mass spectrometry (LC-MS), we identified changes in metabolite profiles and disrupted metabolic pathways serum of NET and PDAC patients. RESULTS The concentration of six metabolites showed statistically significant differences between the control group and PDAC patients (p.adj < 0.05). Glutamine (Gln), acetylcarnitine (C2), and citrulline (Cit) presented a lower concentration in the serum of PDAC patients, while phosphatidylcholine aa C32:0 (PC aa C32:0), sphingomyelin C26:1 (SM C26:1), and glutamic acid (Glu) achieved higher concentrations compared to serum samples from healthy individuals. Five of the tested metabolites: C2 (FC = 8.67), and serotonin (FC = 2.68) reached higher concentration values in the PNET serum samples compared to PDAC, while phosphatidylcholine aa C34:1 (PC aa C34:1) (FC = -1.46 (0.68)) had a higher concentration in the PDAC samples. The area under the curves (AUC) of the receiver operating characteristic (ROC) curves presented diagnostic power to discriminate pancreatic tumor patients, which were highest for acylcarnitines: C2 with AUC = 0.93, serotonin with AUC = 0.85, and PC aa C34:1 with AUC = 0.86. CONCLUSIONS The observations presented provide better insight into the metabolism of pancreatic tumors, and improve the diagnosis and classification of tumors. Serum-circulating metabolites can be easily monitored without invasive procedures and show the present clinical patients' condition, helping with pharmacological treatment or dietary strategies.
Collapse
Affiliation(s)
- Karolina Skubisz
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Pediatric Hospital of Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Krzysztof Dąbkowski
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Anna Deskur
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic
| | - Jakub Karczmarski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Mariusz Radkiewicz
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Katarzyna Kusnierz
- The Department of Gastrointestinal Surgery, Medical University of Silesia, 40-752 Katowice, Poland
| | - Beata Kos-Kudła
- Department of Endocrinology and Neuroendocrine Tumours, Department of Pathophysiology and Endocrinology, Medical University of Silesia, 40-752 Katowice, Poland
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland
| | - Patrycja Cybula
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| |
Collapse
|
11
|
Guo Z, Bergeron KF, Lingrand M, Mounier C. Unveiling the MUFA-Cancer Connection: Insights from Endogenous and Exogenous Perspectives. Int J Mol Sci 2023; 24:9921. [PMID: 37373069 DOI: 10.3390/ijms24129921] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Monounsaturated fatty acids (MUFAs) have been the subject of extensive research in the field of cancer due to their potential role in its prevention and treatment. MUFAs can be consumed through the diet or endogenously biosynthesized. Stearoyl-CoA desaturases (SCDs) are key enzymes involved in the endogenous synthesis of MUFAs, and their expression and activity have been found to be increased in various types of cancer. In addition, diets rich in MUFAs have been associated with cancer risk in epidemiological studies for certain types of carcinomas. This review provides an overview of the state-of-the-art literature on the associations between MUFA metabolism and cancer development and progression from human, animal, and cellular studies. We discuss the impact of MUFAs on cancer development, including their effects on cancer cell growth, migration, survival, and cell signaling pathways, to provide new insights on the role of MUFAs in cancer biology.
Collapse
Affiliation(s)
- Zhiqiang Guo
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Karl-Frédérik Bergeron
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| | - Marine Lingrand
- Department of Biochemistry, McGill University, Montréal, QC H3A 1A3, Canada
| | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H3P 3P8, Canada
| |
Collapse
|
12
|
Lee H, Ha S, Choi S, Do S, Yoon S, Kim YK, Kim WY. Oncogenic Impact of TONSL, a Homologous Recombination Repair Protein at the Replication Fork, in Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24119530. [PMID: 37298484 DOI: 10.3390/ijms24119530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
We investigated the role of TONSL, a mediator of homologous recombination repair (HRR), in stalled replication fork double-strand breaks (DSBs) in cancer. Publicly available clinical data (tumors from the ovary, breast, stomach and lung) were analyzed through KM Plotter, cBioPortal and Qomics. Cancer stem cell (CSC)-enriched cultures and bulk/general mixed cell cultures (BCCs) with RNAi were employed to determine the effect of TONSL loss in cancer cell lines from the ovary, breast, stomach, lung, colon and brain. Limited dilution assays and ALDH assays were used to quantify the loss of CSCs. Western blotting and cell-based homologous recombination assays were used to identify DNA damage derived from TONSL loss. TONSL was expressed at higher levels in cancer tissues than in normal tissues, and higher expression was an unfavorable prognostic marker for lung, stomach, breast and ovarian cancers. Higher expression of TONSL is partly associated with the coamplification of TONSL and MYC, suggesting its oncogenic role. The suppression of TONSL using RNAi revealed that it is required in the survival of CSCs in cancer cells, while BCCs could frequently survive without TONSL. TONSL dependency occurs through accumulated DNA damage-induced senescence and apoptosis in TONSL-suppressed CSCs. The expression of several other major mediators of HRR was also associated with worse prognosis, whereas the expression of error-prone nonhomologous end joining molecules was associated with better survival in lung adenocarcinoma. Collectively, these results suggest that TONSL-mediated HRR at the replication fork is critical for CSC survival; targeting TONSL may lead to the effective eradication of CSCs.
Collapse
Affiliation(s)
- Hani Lee
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sojung Ha
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Soomin Do
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sukjoon Yoon
- Department of Biological Sciences, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Yong Kee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Muscle Physiome Research Center, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Research Institute of Pharmacal Research, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Republic of Korea
- Research Institute of Pharmacal Research, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
13
|
Min JY, Kim DH. Stearoyl-CoA Desaturase 1 as a Therapeutic Biomarker: Focusing on Cancer Stem Cells. Int J Mol Sci 2023; 24:ijms24108951. [PMID: 37240297 DOI: 10.3390/ijms24108951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The dysregulation of lipid metabolism and alterations in the ratio of monounsaturated fatty acids (MUFAs) to saturated fatty acids (SFAs) have been implicated in cancer progression and stemness. Stearoyl-CoA desaturase 1 (SCD1), an enzyme involved in lipid desaturation, is crucial in regulating this ratio and has been identified as an important regulator of cancer cell survival and progression. SCD1 converts SFAs into MUFAs and is important for maintaining membrane fluidity, cellular signaling, and gene expression. Many malignancies, including cancer stem cells, have been reported to exhibit high expression of SCD1. Therefore, targeting SCD1 may provide a novel therapeutic strategy for cancer treatment. In addition, the involvement of SCD1 in cancer stem cells has been observed in various types of cancer. Some natural products have the potential to inhibit SCD1 expression/activity, thereby suppressing cancer cell survival and self-renewal activity.
Collapse
Affiliation(s)
- Jin-Young Min
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16227, Gyeonggi-do, Republic of Korea
| | - Do-Hee Kim
- Department of Chemistry, College of Convergence and Integrated Science, Kyonggi University, Suwon 16227, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Sambruni G, Macandog AD, Wirbel J, Cagnina D, Catozzi C, Dallavilla T, Borgo F, Fazio N, Fumagalli-Romario U, Petz WL, Manzo T, Ravenda SP, Zeller G, Nezi L, Schaefer MH. Location and condition based reconstruction of colon cancer microbiome from human RNA sequencing data. Genome Med 2023; 15:32. [PMID: 37131219 PMCID: PMC10155404 DOI: 10.1186/s13073-023-01180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND The association between microbes and cancer has been reported repeatedly; however, it is not clear if molecular tumour properties are connected to specific microbial colonisation patterns. This is due mainly to the current technical and analytical strategy limitations to characterise tumour-associated bacteria. METHODS Here, we propose an approach to detect bacterial signals in human RNA sequencing data and associate them with the clinical and molecular properties of the tumours. The method was tested on public datasets from The Cancer Genome Atlas, and its accuracy was assessed on a new cohort of colorectal cancer patients. RESULTS Our analysis shows that intratumoural microbiome composition is correlated with survival, anatomic location, microsatellite instability, consensus molecular subtype and immune cell infiltration in colon tumours. In particular, we find Faecalibacterium prausnitzii, Coprococcus comes, Bacteroides spp., Fusobacterium spp. and Clostridium spp. to be strongly associated with tumour properties. CONCLUSIONS We implemented an approach to concurrently analyse clinical and molecular properties of the tumour as well as the composition of the associated microbiome. Our results may improve patient stratification and pave the path for mechanistic studies on microbiota-tumour crosstalk.
Collapse
Affiliation(s)
- Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Angeli D Macandog
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Danilo Cagnina
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Carlotta Catozzi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Francesca Borgo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
- Center for Omics Sciences, IRCCS San Raffaele Institute, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Wanda L Petz
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona P Ravenda
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
15
|
Zhang Y, Wang Y, Zhao G, Orsulic S, Matei D. Metabolic dependencies and targets in ovarian cancer. Pharmacol Ther 2023; 245:108413. [PMID: 37059310 DOI: 10.1016/j.pharmthera.2023.108413] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/16/2023]
Abstract
Reprogramming of cellular metabolism is a hallmark of cancer. Cancer cells undergo metabolic adaptations to maintain tumorigenicity and survive under the attack of immune cells and chemotherapy in the tumor microenvironment. Metabolic alterations in ovarian cancer in part overlap with findings from other solid tumors and in part reflect unique traits. Altered metabolic pathways not only facilitate ovarian cancer cells' survival and proliferation but also endow them to metastasize, acquire resistance to chemotherapy, maintain cancer stem cell phenotype and escape the effects of anti-tumor immune defense. In this review, we comprehensively review the metabolic signatures of ovarian cancer and their impact on cancer initiation, progression, and resistance to treatment. We highlight novel therapeutic strategies targeting metabolic pathways under development.
Collapse
Affiliation(s)
- Yaqi Zhang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinu Wang
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Guangyuan Zhao
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Driskill Graduate Training Program in Life Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sandra Orsulic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Jesse Brown VA Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
16
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
Niu H, Lei A, Tian H, Yao W, Liu Y, Li C, An X, Chen X, Zhang Z, Wu J, Yang M, Huang J, Cheng F, Zhao J, Hua J, Liu S, Luo J. Scd1 Deficiency in Early Embryos Affects Blastocyst ICM Formation through RPs-Mdm2-p53 Pathway. Int J Mol Sci 2023; 24:ijms24021750. [PMID: 36675264 PMCID: PMC9864350 DOI: 10.3390/ijms24021750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Embryos contain a large number of lipid droplets, and lipid metabolism is gradually activated during embryonic development to provide energy. However, the regulatory mechanisms remain to be investigated. Stearoyl-CoA desaturase 1 (Scd1) is a fatty acid desaturase gene that is mainly involved in intracellular monounsaturated fatty acid production, which takes part in many physiological processes. Analysis of transcripts at key stages of embryo development revealed that Scd1 was important and expressed at an increased level during the cleavage and blastocyst stages. Knockout Scd1 gene by CRISPR/Cas9 from zygotes revealed a decrease in lipid droplets (LDs) and damage in the inner cell mass (ICM) formation of blastocyst. Comparative analysis of normal and knockout embryo transcripts showed a suppression of ribosome protein (RPs) genes, leading to the arrest of ribosome biogenesis at the 2-cell stage. Notably, the P53-related pathway was further activated at the blastocyst stage, which eventually caused embryonic development arrest and apoptosis. In summary, Scd1 helps in providing energy for embryonic development by regulating intra-embryonic lipid droplet formation. Moreover, deficiency activates the RPs-Mdm2-P53 pathway due to ribosomal stress and ultimately leads to embryonic development arrest. The present results suggested that Scd1 gene is essential to maintain healthy development of embryos by regulating energy support.
Collapse
Affiliation(s)
- Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Anmin Lei
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ying Liu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xuetong An
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhifei Zhang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Min Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jiangtao Huang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Fei Cheng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jianqing Zhao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jinlian Hua
- Shaanxi Stem Cell Engineering and Technology Research Center, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6018, Australia
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Correspondence:
| |
Collapse
|
18
|
Chen D, Zhou X, Yan P, Yang C, Li Y, Han L, Ren X. Lipid metabolism reprogramming in colorectal cancer. J Cell Biochem 2023; 124:3-16. [PMID: 36334309 DOI: 10.1002/jcb.30347] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
The hallmark feature of metabolic reprogramming is now considered to be widespread in many malignancies, including colorectal cancer (CRC). Of the gastrointestinal tumors, CRC is one of the most common with a high metastasis rate and long insidious period. The incidence and mortality of CRC has increased in recent years. Metabolic reprogramming also has a significant role in the development and progression of CRC, especially lipid metabolic reprogramming. Many studies have reported that lipid metabolism reprogramming is similar to the Warburg effect with typical features affecting tumor biology including proliferation, migration, local invasion, apoptosis, and other biological behaviors of cancer cells. Therefore, studying the role of lipid metabolism in the occurrence and development of CRC will increase our understanding of its pathogenesis, invasion, metastasis, and other processes and provide new directions for the treatment of CRC. In this paper, we mainly describe the molecular mechanism of lipid metabolism reprogramming and its important role in the occurrence and development of CRC. In addition, to provide reference for subsequent research and clinical diagnosis and treatment we also review the treatments of CRC that target lipid metabolism.
Collapse
Affiliation(s)
- Dan Chen
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Xuebing Zhou
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - PengYu Yan
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunyu Yang
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Yuan Li
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| | - Longzhe Han
- Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China.,Department of Pathology, Affiliated Hospital of Yanbian University, Yanji, China
| | - Xiangshan Ren
- Department of Pathology & Cancer Research Center, Yanbian University Medical College, Yanji, China.,Key Laboratory of Pathobiology, Yanbian University, State Ethnic Affairs Commission, Yanji, China
| |
Collapse
|
19
|
Hoxha M, Zappacosta B. A review on the role of fatty acids in colorectal cancer progression. Front Pharmacol 2022; 13:1032806. [PMID: 36578540 PMCID: PMC9791100 DOI: 10.3389/fphar.2022.1032806] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of mortality in cancer patients. The role of fatty acids (FA) and their metabolism in cancer, particularly in CRC raises a growing interest. In particular, dysregulation of synthesis, desaturation, elongation, and mitochondrial oxidation of fatty acids are involved. Here we review the current evidence on the link between cancer, in particular CRC, and fatty acids metabolism, not only to provide insight on its pathogenesis, but also on the development of novel biomarkers and innovative pharmacological therapies that are based on FAs dependency of cancer cells.
Collapse
|
20
|
Huang Y, Zhou J, Zhong H, Xie N, Zhang FR, Zhang Z. Identification of a novel lipid metabolism-related gene signature for predicting colorectal cancer survival. Front Genet 2022; 13:989327. [PMID: 36147494 PMCID: PMC9485806 DOI: 10.3389/fgene.2022.989327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor worldwide. Lipid metabolism is a prerequisite for the growth, proliferation and invasion of cancer cells. However, the lipid metabolism-related gene signature and its underlying molecular mechanisms remain unclear. The aim of this study was to establish a lipid metabolism signature risk model for survival prediction in CRC and to investigate the effect of gene signature on the immune microenvironment. Lipid metabolism-mediated genes (LMGs) were obtained from the Molecular Signatures Database. The consensus molecular subtypes were established using "ConsensusClusterPlus" based on LMGs and the cancer genome atlas (TCGA) data. The risk model was established using univariate and multivariate Cox regression with TCGA database and independently validated in the international cancer genome consortium (ICGC) datasets. Immune infiltration in the risk model was developed using CIBERSORT and xCell analyses. A total of 267 differentially expressed genes (DEGs) were identified between subtype 1 and subtype 2 from consensus molecular subtypes, including 153 upregulated DEGs and 114 downregulated DEGs. 21 DEGs associated with overall survival (OS) were selected using univariate Cox regression analysis. Furthermore, a prognostic risk model was constructed using the risk coefficients and gene expression of eleven-gene signature. Patients with a high-risk score had poorer OS compared with patients in the low-risk score group (p = 3.36e-07) in the TCGA cohort and the validationdatasets (p = 4.03e-05). Analysis of immune infiltration identified multiple T cells were associated with better prognosis in the low-risk group, including Th2 cells (p = 0.0208), regulatory T cells (p = 0.0425), and gammadelta T cells (p = 0.0112). A nomogram integrating the risk model and clinical characteristics was further developed to predict the prognosis of patients with CRC. In conclusion, our study revealed that the expression of lipid-metabolism genes were correlated with the immune microenvironment. The eleven-gene signature might be useful for prediction the prognosis of CRC patients.
Collapse
Affiliation(s)
- Yanpeng Huang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | | | - Haibin Zhong
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Ning Xie
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Fei-Ran Zhang
- Department of General Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Zhanmin Zhang
- Department of Cancer Center, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Fayyazpour P, Alizadeh E, Hosseini V, Kalantary-Charvadeh A, Niafar M, Sadra V, Norouzi Z, Saebnazar A, Mehdizadeh A, Darabi M. Fatty acids of type 2 diabetic serum decrease the stemness properties of human adipose-derived mesenchymal stem cells. J Cell Biochem 2022; 123:1157-1170. [PMID: 35722966 DOI: 10.1002/jcb.30270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 03/26/2022] [Accepted: 04/20/2022] [Indexed: 11/11/2022]
Abstract
In type 2 diabetes, dyslipidemia and increased serum free fatty acids (FFAs) exacerbate the development of the disease through a negative effect on insulin secretion. Adipose-derived mesenchymal stem cells (AdMSCs) play a key role in regenerative medicine, and these cells can potentially be applied as novel therapeutic resources in the treatment of diabetes. In this study, AdMSCs were treated with diabetic or nondiabetic serum FFAs isolated from women of menopausal age. Serum FFAs were analyzed using gas-liquid chromatography. The expression level of the stemness markers CD49e and CD90 and the Wnt signaling target genes Axin-2 and c-Myc were evaluated using real-time PCR. The proliferation rate and colony formation were also assessed using a BrdU assay and crystal violet staining, respectively. The level of glutathione was assessed using cell fluorescence staining. Compared to nondiabetic serum, diabetic serum contained a higher percentage of oleate (1.5-fold, p < 0.01). In comparison with nondiabetic FFAs, diabetic FFAs demonstrated decreasing effects on the expression of CD90 (-51%, p < 0.001) and c-Myc (-48%, p < 0.05), and proliferation rate (-35%, p < 0.001), colony formation capacity (-50%, p < 0.01), and GSH levels (-62%, p < 0.05). The negative effect of the FFAs of diabetic serum on the stemness characteristics may impair the regenerative capabilities of AdMSCs.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Kalantary-Charvadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mitra Niafar
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Sadra
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Norouzi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysan Saebnazar
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Darabi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Internal Medicine IV, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
22
|
Sun M, Chen X, Yang Z. Single cell mass spectrometry studies reveal metabolomic features and potential mechanisms of drug-resistant cancer cell lines. Anal Chim Acta 2022; 1206:339761. [PMID: 35473873 PMCID: PMC9046687 DOI: 10.1016/j.aca.2022.339761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/28/2022]
Abstract
Irinotecan (Iri) is a key drug to treat metastatic colorectal cancer, but its clinical activity is often limited by de novo and acquired drug resistance. Studying the underlying mechanisms of drug resistance is necessary for developing novel therapeutic strategies. In this study, we used both regular and irinotecan-resistant (Iri-resistant) colorectal cell lines as models, and performed single cell mass spectrometry (SCMS) metabolomics studies combined with analyses from cytotoxicity assay, western blot, flow cytometry, quantitative real-time polymerase chain reaction (qPCR), and reactive oxygen species (ROS). Our SCMS results indicate that Iri-resistant cancer cells possess higher levels of unsaturated lipids compared with the regular cancer cells. In addition, multiple protein biomarkers and their corresponding mRNAs of colon cancer stem cells are overexpressed in Iri-resistance cells. Particularly, stearoyl-CoA desaturase 1 (SCD1) is upregulated with the development of drug resistance in Iri-resistant cells, whereas inhibiting the activity of SCD1 efficiently increase their sensitivity to Iri treatment. In addition, we demonstrated that SCD1 directly regulates the expression of ALDH1A1, which contributes to the cancer stemness and ROS level in Iri-resistant cell lines.
Collapse
|
23
|
Tian H, Niu H, Luo J, Yao W, Chen X, Wu J, Geng Y, Gao W, Lei A, Gao Z, Tian X, Zhao X, Shi H, Li C, Hua J. Knockout of Stearoyl-CoA Desaturase 1 Decreased Milk Fat and Unsaturated Fatty Acid Contents of the Goat Model Generated by CRISPR/Cas9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4030-4043. [PMID: 35343224 DOI: 10.1021/acs.jafc.2c00642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Goat milk contains a rich source of nutrients, especially unsaturated fatty acids. However, the regulatory mechanism of milk fat and fatty acid synthesis remains unclear. Stearoyl-CoA desaturase 1 (SCD1) is the key enzyme catalyzing monounsaturated fatty acid synthesis and is essential for milk lipid metabolism. To explore milk lipid synthesis mechanism in vivo, SCD1-knockout goats were generated through CRISPR/Cas9 technology for the first time. SCD1 deficiency did not influence goat growth or serum biochemistry. Plasma phosphatidylcholines increased by lipidomics after SCD1 knockout in goats. Whole-blood RNA-seq indicated alterations in biosynthesis of unsaturated fatty acid synthesis, cAMP, ATPase activity, and Wnt signaling pathways. In SCD1-knockout goats, milk fat percentage and unsaturated fatty acid levels were reduced but other milk components were unchanged. Milk lipidomics revealed decreased triacylglycerols and diacylglycerols levels, and the differential abundance of lipids were enriched in glycerolipid, glycerophospholipids, and thermogenesis metabolism pathways. In milk fat globules, the expression levels of genes related to fatty acid and TAG synthesis including SREBP1 were reduced. ATP content and AMPK activity were promoted, and p-p70S6K protein level was suppressed in SCD1-knockout goat mammary epithelial cells, suggesting that SCD1 affected milk lipid metabolism by influencing AMPK-mTORC1/p70S6K-SREBP1 pathway. The integrative analysis of gene expression levels and lipidomics of milk revealed a crucial role of SCD1 in glycerolipids and glycerophospholipids metabolism pathways. Our observations indicated that SCD1 regulated the synthesis of milk fat and unsaturated fatty acid in goat by affecting lipid metabolism gene expression and lipid metabolic pathways. These findings would be essential for improving goat milk nutritional value which is beneficial to human health.
Collapse
Affiliation(s)
- Huibin Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Niu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jun Luo
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Weiwei Yao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoying Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Wu
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanan Geng
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wenchang Gao
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anmin Lei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhimin Gao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiue Tian
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoe Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
24
|
Wang SY, Hu QC, Wu T, Xia J, Tao XA, Cheng B. Abnormal lipid synthesis as a therapeutic target for cancer stem cells. World J Stem Cells 2022; 14:146-162. [PMID: 35432735 PMCID: PMC8963380 DOI: 10.4252/wjsc.v14.i2.146] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 02/20/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) comprise a subpopulation of cancer cells with stem cell properties, which exhibit the characteristics of high tumorigenicity, self-renewal, and tumor initiation and are associated with the occurrence, metastasis, therapy resistance, and relapse of cancer. Compared with differentiated cells, CSCs have unique metabolic characteristics, and metabolic reprogramming contributes to the self-renewal and maintenance of stem cells. It has been reported that CSCs are highly dependent on lipid metabolism to maintain stemness and satisfy the requirements of biosynthesis and energy metabolism. In this review, we demonstrate that lipid anabolism alterations promote the survival of CSCs, including de novo lipogenesis, lipid desaturation, and cholesterol synthesis. In addition, we also emphasize the molecular mechanism underlying the relationship between lipid synthesis and stem cell survival, the signal trans-duction pathways involved, and the application prospect of lipid synthesis reprogramming in CSC therapy. It is demonstrated that the dependence on lipid synthesis makes targeting of lipid synthesis metabolism a promising therapeutic strategy for eliminating CSCs. Targeting key molecules in lipid synthesis will play an important role in anti-CSC therapy.
Collapse
Affiliation(s)
- Si-Yu Wang
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Qin-Chao Hu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Tong Wu
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Juan Xia
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Xiao-An Tao
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| | - Bin Cheng
- Department of Oral Medicine, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510000, Guangdong Province, China
| |
Collapse
|
25
|
Xie X, Chen C, Feng S, Zuo S, Zhao X, Li H. Acyl-CoA Thioesterase 7 is Transcriptionally Activated by Krüppel-Like Factor 13 and Promotes the Progression of Hepatocellular Carcinoma. J Hepatocell Carcinoma 2022; 8:1623-1641. [PMID: 34993160 PMCID: PMC8711737 DOI: 10.2147/jhc.s338353] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose Acyl-CoA thioesterase 7(ACOT7) plays an important role in the metabolism of fatty acids. Hepatocellular carcinoma (HCC) has an abnormal lipid profile, and the role of ACOT7 in hepatocellular carcinoma has not been detailedly elucidated. Therefore, we conducted the study to explore the role of ACOT7 in HCC. Materials and Methods The ACOT7 and Krüppel-like factor 13 (KLF13) mRNA expression levels were obtained from The Cancer Genome Atlas (TCGA) database. Bioinformatics analysis identified the underlying upstream regulator of ACOT7. Quantitative real-time PCR was used to detect the expression of mRNA, and immunohistochemical staining and Western blotting were used to detect the expression of protein. Cell Counting Kit-8 and EdU assays were employed to assess the proliferation of HCC cells. Wound-healing and Transwell migration assays were utilized to test the migration ability of HCC cells. Dual-luciferase reporter assay and ChIP assay were used to explore the potential mechanism. Gas chromatography-mass spectrometer was used to analyze the content of free fatty acids. Xenograft tumour growth was used to evaluate the effect of ACOT7 in vivo. Results According to The Cancer Genome Atlas (TCGA) database, ACOT7 mRNA was found to be upregulated and predicted the poor prognosis. Overexpression of ACOT7 enhanced the proliferation, migration and invasion abilities of HCC cells in vitro, as well as the HCC cells proliferation in vivo. Moreover, ACOT7 overexpression increased the yield of the monounsaturated fatty acid Oleic acid (C18:1), which strengthened the proliferation and migration abilities of HCC cells. Mechanistically, KLF13 transcriptionally promoted ACOT7 expression. Further, KLF13 was also overexpressed in HCC tissues and facilitated HCC progression. Conclusion Acyl-CoA thioesterase 7 is transcriptionally activated by Krüppel-like factor 13 and promotes the progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xingming Xie
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Chaochun Chen
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu Feng
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.,Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Xueke Zhao
- Department of Infectious Diseases, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Haiyang Li
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, People's Republic of China.,Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
26
|
Luo J, Peng J, Xiao W, Huang S, Cao Y, Wang T, Wang X. A novel necroptosis-related lncRNA signature for predicting prognosis and immune response of colon cancer. Front Genet 2022; 13:984696. [PMID: 36092933 PMCID: PMC9453677 DOI: 10.3389/fgene.2022.984696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Numerous lncRNAs have been shown to affect colon cancer (CC) progression, and tumor necroptosis is regulated by several of them. However, the prognostic value of necroptosis-related lncRNA in CC has rarely been reported. In this study, a necroptosis-related lncRNA prognostic model was constructed, which can provide a reference for clinical diagnosis and treatment. Methods: The Cancer Genome Atlas (TCGA) database provided gene expression and lncRNA sequencing data for CC patients, and GSEA provided necroptosis gene data. Differentially expressed necroptosis-related lncRNAs related to prognosis were identified by differential expression analysis, Pearson correlation analysis, and least absolute shrinkage and selection operator (LASSO) regression. Based on the results of the multivariate COX regression analysis, a risk scoring model was constructed, A Kaplan-Meier analysis was performed to compare overall survival (OS) between low-risk and high-risk groups. A nomogram was then developed and validated based on the clinical data and risk scores of CC patients. In addition, Gene Set Enrichment Analysis (GSEA) and immune correlation analysis were conducted to explore the possible pathways and immune regulatory effects of these necroptosis-related lncRNAs. Results: In total, we identified 326 differentially expressed necroptosis-related lncRNAs in the TCGA database. Survival analysis showed that the OS of patients in the low-risk group was significantly better than that in the high-risk group (p < 0.05). Finally, 10 prognostic necroptosis-related lncRNAs were used to construct the nomogram. The composite nomogram prediction model evaluated and validated with good prediction performance (3-year AUC = 0.85, 5-years AUC = 0.82, C-index = 0.78). The GSEA and immune correlation analyses indicated that these lncRNAs may participate in multiple pathways involved in CC pathogenesis and progression. Conclusion: We established a novel necroptosis-related lncRNA CC prognosis prediction model, which can provide a reference for clinicians to formulate personalized treatment and review plans for CC patients. In addition, we also found that these necroptosis-related lncRNAs may affect the pathogenesis and progression of colon cancer through multiple pathways, including altering the activity of various immune cells.
Collapse
Affiliation(s)
- Jian Luo
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Radiation, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiayu Peng
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wanying Xiao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shujing Huang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanqing Cao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ting Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Xicheng Wang,
| |
Collapse
|
27
|
Fan L, Lin Q, Huang X, Fu D, Huang H. Prognostic significance of pretreatment serum free fatty acid in patients with diffuse large B-cell lymphoma in the rituximab era: a retrospective analysis. BMC Cancer 2021; 21:1255. [PMID: 34802440 PMCID: PMC8607655 DOI: 10.1186/s12885-021-08963-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/04/2021] [Indexed: 01/07/2023] Open
Abstract
Background Fatty acid metabolism is reportedly associated with various cancers. However, the role of pretreatment serum free fatty acid (FFA) levels in diffuse large B-cell lymphoma (DLBCL) prognosis is still unclear, and our study aimed to better elucidate its influence on clinical outcomes. Methods The medical records of 221 newly diagnosed DLBCL patients admitted to Fujian Medical University Union Hospital from January 2011 to December 2016 were analysed retrospectively. Receiver operating characteristic curve analysis was used to determine a cut-off value for pretreatment serum FFA levels for prognostic prediction in DLBCL patients. The relationship between pretreatment serum FFA levels and clinical and laboratory parameters was analysed. Univariate and multivariate analyses were used to assess prognostic factors for overall survival (OS) and progression-free survival (PFS). Results Newly diagnosed DLBCL patients with high pretreatment serum FFA levels (≥0.495 mmol/l) had more B symptoms, higher serum lactate dehydrogenase levels (> upper limit of normal), >1 extranodal site, and higher International Prognostic Index score (3–5) compared to those with low pretreatment serum FFA levels (<0.495 mmol/l). Higher serum FFA levels were independent prognostic factors for poor OS, but not PFS. Conclusions High pretreatment serum FFA levels are associated with lower survival in untreated DLBCL patients.
Collapse
Affiliation(s)
- Liping Fan
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Qiuyan Lin
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Xiaoling Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China
| | - Danhui Fu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Department of Hematology, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| | - Haobo Huang
- Department of Blood Transfusion, Fujian Medical University Union Hospital, Gulou District, Fuzhou City, 350001, Fujian Province, China.
| |
Collapse
|
28
|
Liu S, Sun Y, Hou Y, Yang L, Wan X, Qin Y, Liu Y, Wang R, Zhu P, Teng Y, Liu M. A novel lncRNA ROPM-mediated lipid metabolism governs breast cancer stem cell properties. J Hematol Oncol 2021; 14:178. [PMID: 34715882 PMCID: PMC8555326 DOI: 10.1186/s13045-021-01194-z] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/17/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer stem cells (CSCs) are considered as the major cause to tumor initiation, recurrence, metastasis, and drug resistance, driving poor clinical outcomes in patients. Long noncoding RNAs (lncRNAs) have emerged as crucial regulators in cancer development and progression. However, limited lncRNAs involved in CSCs have been reported. Methods The novel lncROPM (a regulator of phospholipid metabolism) in breast CSCs (BCSCs) was identified by microarray and validated by qRT-PCR in BCSCs from breast cancer cells and tissues. The clinical significance of lncROPM was evaluated in two breast cancer cohorts and TANRIC database (TCGA-BRCA, RNAseq data). Gain- and loss-of-function assays were performed to examine the role of lncROPM on BCSCs both in vitro and in vivo. The regulatory mechanism of lncROPM was investigated by bioinformatics, RNA FISH, RNA pull-down, luciferase reporter assay, and actinomycin D treatment. PLA2G16-mediated phospholipid metabolism was determined by UHPLC-QTOFMS system. Cells’ chemosensitivity was assessed by CCK8 assay. Results LncROPM is highly expressed in BCSCs. The enhanced lncROPM exists in clinic breast tumors and other solid tumors and positively correlates with malignant grade/stage and poor prognosis in breast cancer patients. Gain- and loss-of-function studies show that lncROPM is required for the maintenance of BCSCs properties both in vitro and in vivo. Mechanistically, lncROPM regulates PLA2G16 expression by directly binding to 3'-UTR of PLA2G16 to increase the mRNA stability. The increased PLA2G16 significantly promotes phospholipid metabolism and the production of free fatty acid, especially arachidonic acid in BCSCs, thereby activating PI3K/AKT, Wnt/β-catenin, and Hippo/YAP signaling, thus eventually involving in the maintenance of BCSCs stemness. Importantly, lncROPM and PLA2G16 notably contribute to BCSCs chemo-resistance. Administration of BCSCs using clinic therapeutic drugs such as doxorubicin, cisplatin, or tamoxifen combined with Giripladib (an inhibitor of cytoplasmic phospholipase A2) can efficiently eliminate BCSCs and tumorigenesis. Conclusions Our study highlights that lncROPM and its target PLA2G16 play crucial roles in sustaining BCSC properties and may serve as a biomarker for BCSCs or other cancer stem cells. Targeting lncROPM-PLA2G16 signaling axis may be a novel therapeutic strategy for patients with breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01194-z.
Collapse
Affiliation(s)
- Shuiqing Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yan Sun
- Department of Cell Biology and Medical Genetics, Basic Medical School, Chongqing Medical University, Chongqing, 400016, China
| | - Yixuan Hou
- Experimental Teaching and Lab Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Liping Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Xueying Wan
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yilu Qin
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yongcan Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Rui Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Pengpeng Zhu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, No. 1, Yi-Xue-Yuan Road, Yu-zhong District, Chongqing, 400016, China.
| |
Collapse
|
29
|
Bisht VS, Giri K, Kumar D, Ambatipudi K. Oxygen and metabolic reprogramming in the tumor microenvironment influences metastasis homing. Cancer Biol Ther 2021; 22:493-512. [PMID: 34696706 DOI: 10.1080/15384047.2021.1992233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Tumor metastasis is the leading cause of cancer mortality, often characterized by abnormal cell growth and invasion to distant organs. The cancer invasion due to epithelial to mesenchymal transition is affected by metabolic and oxygen availability in the tumor-associated micro-environment. A precise alteration in oxygen and metabolic signaling between healthy and metastatic cells is a substantial probe for understanding tumor progression and metastasis. Molecular heterogeneity in the tumor microenvironment help to sustain the metastatic cell growth during their survival shift from low to high metabolic-oxygen-rich sites and reinforces the metastatic events. This review highlighted the crucial role of oxygen and metabolites in metastatic progression and exemplified the role of metabolic rewiring and oxygen availability in cancer cell adaptation. Furthermore, we have also addressed potential applications of altered oxygen and metabolic networking with tumor type that could be a signature pattern to assess tumor growth and chemotherapeutics efficacy in managing cancer metastasis.
Collapse
Affiliation(s)
- Vinod S Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kuldeep Giri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Deepak Kumar
- Department of Cancer Biology, Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research, New Delhi, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
30
|
Prieto J, García-Cañaveras JC, León M, Sendra R, Ponsoda X, Izpisúa Belmonte JC, Lahoz A, Torres J. c-MYC Triggers Lipid Remodelling During Early Somatic Cell Reprogramming to Pluripotency. Stem Cell Rev Rep 2021; 17:2245-2261. [PMID: 34476741 PMCID: PMC8599373 DOI: 10.1007/s12015-021-10239-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2021] [Indexed: 11/30/2022]
Abstract
Metabolic rewiring and mitochondrial dynamics remodelling are hallmarks of cell reprogramming, but the roles of the reprogramming factors in these changes are not fully understood. Here we show that c-MYC induces biosynthesis of fatty acids and increases the rate of pentose phosphate pathway. Time-course profiling of fatty acids and complex lipids during cell reprogramming using lipidomics revealed a profound remodelling of the lipid content, as well as the saturation and length of their acyl chains, in a c-MYC-dependent manner. Pluripotent cells displayed abundant cardiolipins and scarce phosphatidylcholines, with a prevalence of monounsaturated acyl chains. Cells undergoing cell reprogramming showed an increase in mitochondrial membrane potential that paralleled that of mitochondrial-specific cardiolipins. We conclude that c-MYC controls the rewiring of somatic cell metabolism early in cell reprogramming by orchestrating cell proliferation, synthesis of macromolecular components and lipid remodelling, all necessary processes for a successful phenotypic transition to pluripotency.
Collapse
Affiliation(s)
- Javier Prieto
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain.,Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | | | - Marian León
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Ramón Sendra
- Departamento de Bioquímica y Biología Molecular, Universitat de València, 46100, Burjassot, Valencia, Spain
| | - Xavier Ponsoda
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain
| | | | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| | - Josema Torres
- Departamento Biología Celular, Biología Funcional y Antropología Física, Universitat de València, 46100, Burjassot, Valencia, Spain. .,Instituto de Investigación Sanitaria (INCLIVA), 46010, Valencia, Spain.
| |
Collapse
|
31
|
Oliveira BSAD, de Assis ACC, Souza NM, Ferreira LFR, Soriano RN, Bilal M, Iqbal HMN. Nanotherapeutic approach to tackle chemotherapeutic resistance of cancer stem cells. Life Sci 2021; 279:119667. [PMID: 34087280 DOI: 10.1016/j.lfs.2021.119667] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Estimates indicate that cancer will become the leading cause of mortality worldwide in the future. Tumorigenesis is a complex process that involves self-sufficiency in signs of growth, insensitivity to anti-growth signals, prevention of apoptosis, unlimited replication, sustained angiogenesis, tissue invasion, and metastasis. Cancer stem cells (CSCs) have an important role in tumor development and resistance. Here we will approach phenotypic plasticity capacity, highly efficient DNA repair systems, anti-apoptotic machinery, sustained stemness features, interaction with the tumor microenvironment, and Notch, Wnt, and Hedgehog signaling pathways. The researches about CSCs as a target in cancer treatment has been growing. Many different options have pointed beneficial results, such as pathways and CSC-surface markers targeting. Besides its limitations, nanotherapeutics have emerged as a potential strategy in this context since they aim to improve pharmacokinetics, biodistribution, and reduce the side effects observed in traditional treatments. Nanoparticles have been studied in this field, mostly for drug delivery and a multitherapy approach. Another widely researched approaches in this area are related to heat therapy, such as photothermal therapy, photodynamic therapy and magnetic hyperthermia, besides molecular targeting. This review will contemplate the most relevant studies that have shown the effects of nanotherapeutics. In conclusion, although the studies analyzed are mostly preclinical, we believe that there is strong evidence that nanoparticles can increase the chances of a better prognosis to cancer in the future. It is also essential to transpose these findings to the clinic to confirm and better understand the role of nanotherapeutics in this context.
Collapse
Affiliation(s)
- Bruna Stefane Alves de Oliveira
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Ana Carolina Correa de Assis
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Natália Melo Souza
- Undergradute student, Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, MG 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, MG 35010-177, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
32
|
Shen YA, Chen CC, Chen BJ, Wu YT, Juan JR, Chen LY, Teng YC, Wei YH. Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells. Cells 2021; 10:1772. [PMID: 34359941 PMCID: PMC8304173 DOI: 10.3390/cells10071772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
Affiliation(s)
- Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chang-Cyuan Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Bo-Jung Chen
- Department of Pathology, Shuang-Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Yu-Ting Wu
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| | - Jiun-Ru Juan
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Liang-Yun Chen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yueh-Chun Teng
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (Y.-A.S.); (C.-C.C.); (J.-R.J.); (L.-Y.C.); (Y.-C.T.)
| | - Yau-Huei Wei
- Center for Mitochondrial Medicine and Free Radical Research, Changhua Christian Hospital, Changhua City 50046, Taiwan;
| |
Collapse
|
33
|
Abstract
Cancer stem cells (CSCs) are heterogeneous cells with stem cell-like properties that are responsible for therapeutic resistance, recurrence, and metastasis, and are the major cause for cancer treatment failure. Since CSCs have distinct metabolic characteristics that plays an important role in cancer development and progression, targeting metabolic pathways of CSCs appears to be a promising therapeutic approach for cancer treatment. Here we classify and discuss the unique metabolisms that CSCs rely on for energy production and survival, including mitochondrial respiration, glycolysis, glutaminolysis, and fatty acid metabolism. Because of metabolic plasticity, CSCs can switch between these metabolisms to acquire energy for tumor progression in different microenvironments compare to the rest of tumor bulk. Thus, we highlight the specific conditions and factors that promote or suppress CSCs properties to portray distinct metabolic phenotypes that attribute to CSCs in common cancers. Identification and characterization of the features in these metabolisms can offer new anticancer opportunities and improve the prognosis of cancer. However, the therapeutic window of metabolic inhibitors used alone or in combination may be rather narrow due to cytotoxicity to normal cells. In this review, we present current findings of potential targets in these four metabolic pathways for the development of more effective and alternative strategies to eradicate CSCs and treat cancer more effectively in the future.
Collapse
|
34
|
Meng H, Shen M, Li J, Zhang R, Li X, Zhao L, Huang G, Liu J. Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol 2021; 906:174280. [PMID: 34174265 DOI: 10.1016/j.ejphar.2021.174280] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the major type of primary liver cancer and a leading cause of cancer-related deaths worldwide. Cinobufotalin (CBF) is extracted from the skin secretion of the giant toad and clinically used for the treatment of liver cancer, but its molecular mechanism of anti-cancer in HCC has not yet been elucidated. Here, we showed CBF effectively promoted cell apoptosis, induced cell cycle G2-M arrest, inhibited cell proliferation and lipogenesis. Consistently, the lipogenesis ability of xenograft examined by 11C-acetate micro-PET/CT imaging, and the tumor growth rate was notably declined in a centration-dependent manner. The fatty acid profiles showed saturated and mono-unsaturated fatty acid significantly decreased after CBF treatment. Mechanistically, CBF selectively inhibited the expression of SREBP1 and interacted with SREBP1 to prevent it from sterol regulatory elements (SREs), thus inhibiting the expression of lipogenic enzymes. Collectively, our study demonstrates that CBF is a potent native compound that remarkably inhibits HCC lipogenesis and tumorigenesis. CBF may possess this therapeutic potential though interfering with de novo lipid synthesis via SREBP1.
Collapse
Affiliation(s)
- Huannan Meng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Jiajin Li
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Ruixue Zhang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Xi Li
- Department of Medicinal Material, Changhai Hospital of Shanghai, 200433, China
| | - Li Zhao
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China
| | - Gang Huang
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China; Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianjun Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Key Laboratory for Molecular Imaging, Collaborative Scientific Research Center, Shanghai University of Medicine & Health Science, Shanghai, 200093, China; Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai, 200127, China.
| |
Collapse
|
35
|
Shen J, Li P, Liu S, Liu Q, Li Y, Zhang Z, Yang C, Hu M, Sun Y, He C, Xiao P. The chemopreventive effects of Huangqin-tea against AOM-induced preneoplastic colonic aberrant crypt foci in rats and omics analysis. Food Funct 2021; 11:9634-9650. [PMID: 33048099 DOI: 10.1039/d0fo01731k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite that colorectal cancer (CRC) is a severe global health problem, effective chemopreventive strategies against CRC are still lacking. Huang-qin tea (HQT), a healthy herbal tea, is prepared from the aerial parts of Scutellaria baicalensis Georgi and has been consumed in China for thousands of years. HQT contains abundant flavonoids, which display potent anticancer effects, but no research studies have investigated the cancer-preventive effects of HQT on CRC in vivo. Here, we found that HQT inhibits azoxymethane-induced aberrant crypt foci (ACF) formation in a preneoplastic colonic ACF rat model. The essential role of the gut microbiota in the chemopreventive effect of HQT on CRC in a pseudo-germ-free rat model was confirmed. Besides, HQT modulates inflammatory cytokine expression by significantly decreasing IL-1β, IL-6, IL-10, and TNF-α expression, and elevating IFN-γ production. 16S rDNA sequencing analysis indicated that HQT regulated the gut microbiota by increasing the abundance of beneficial bacteria (Lachnoclostridium, Alistipes, Roseburia, and Lactococcus) and reducing the levels of Bacteroides, Parasutterella, and unidentified_Clostridiales. Fecal metabolomics showed that HQT modulated the AOM-induced metabolomic disorder, and these altered metabolites were almost involved in the lipid metabolic pathways. The Spearman correlation analysis revealed a correlation between the gut microbiota and fecal metabolites. Collectively, these results suggested that HQT exerted beneficial effects on host health by inhibiting inflammation, and by regulating the gut microbiota profile and certain metabolic pathways. In conclusion, HQT inhibits AOM-induced ACF formation by modulating the gut microbiota composition and improving metabolomic disorders, indicating the potential of HQT as a functional beverage candidate for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jie Shen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou J, Zhao J, Su C. Role of Aberrant Lipid Metabolism of Cancer Stem Cells in Cancer Progression. Curr Cancer Drug Targets 2021; 21:631-639. [PMID: 33726650 DOI: 10.2174/1568009619666210316112333] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/28/2020] [Accepted: 01/04/2021] [Indexed: 11/22/2022]
Abstract
Cancer stem cells (CSCs) represent a small population of cancer cells that are able to self-renew and initiate tumors, which undergo epigenetic, epithelial-mesenchymal, immunological, and metabolic reprogramming to adapt to the tumor microenvironment as well as survive host defense or therapeutic insults. The metabolic reprogramming that accompanies cancer onset is known to be critical for the disease pathogenesis. A coordinated dysregulation of lipid metabolism is observed in nearly all cancer types. In addition to fulfilling basic requirements of structural lipids for membrane synthesis, lipids function importantly as signaling molecules and contribute to energy homeostasis. In this review, we summarize the current progress in the attractive research field of aberrant lipid metabolism regarding CSCs in cancer progression, which provides insights into therapeutic agents targeting CSCs based upon their modulation of lipid metabolism.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai. China
| | - Jing Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai. China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai. China
| |
Collapse
|
37
|
Khan R, Jiang X, Hameed U, Shi Q. Role of Lipid Metabolism and Signaling in Mammalian Oocyte Maturation, Quality, and Acquisition of Competence. Front Cell Dev Biol 2021; 9:639704. [PMID: 33748128 PMCID: PMC7973101 DOI: 10.3389/fcell.2021.639704] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
It has been found that the quality of oocytes from obese women has been compromised and subsequent embryos displayed arrested development. The compromised quality may be either due to the poor or rich metabolic conditions such as imbalance or excession of lipids during oocyte development. Generally, lipids are mainly stored in the form of lipid droplets and are an important source of energy metabolism. Similarly, lipids are also essential signaling molecules involved in various biological cascades of oocyte maturation, growth and oocyte competence acquisition. To understand the role of lipids in controlling the oocyte development, we have comprehensively and concisely reviewed the literature and described the role of lipid metabolism in oocyte quality and maturation. Moreover, we have also presented a simplified model of fatty acid metabolism along with its implication on determining the oocyte quality and cryopreservation for fertilization.
Collapse
Affiliation(s)
- Ranjha Khan
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Xiaohua Jiang
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| | - Uzma Hameed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Qinghua Shi
- First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center of Genetics and Development, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
Yu Y, Kim H, Choi S, Yu J, Lee JY, Lee H, Yoon S, Kim WY. Targeting a Lipid Desaturation Enzyme, SCD1, Selectively Eliminates Colon Cancer Stem Cells through the Suppression of Wnt and NOTCH Signaling. Cells 2021; 10:cells10010106. [PMID: 33430034 PMCID: PMC7826607 DOI: 10.3390/cells10010106] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.
Collapse
Affiliation(s)
- Yeongji Yu
- College of Pharmacy, Sookmyung Women’s University, Seoul 04312, Korea; (Y.Y.); (H.K.); (S.C.); (J.Y.); (J.Y.L.); (H.L.)
| | - Hyejin Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 04312, Korea; (Y.Y.); (H.K.); (S.C.); (J.Y.); (J.Y.L.); (H.L.)
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women’s University, Seoul 04312, Korea; (Y.Y.); (H.K.); (S.C.); (J.Y.); (J.Y.L.); (H.L.)
| | - JinSuh Yu
- College of Pharmacy, Sookmyung Women’s University, Seoul 04312, Korea; (Y.Y.); (H.K.); (S.C.); (J.Y.); (J.Y.L.); (H.L.)
| | - Joo Yeon Lee
- College of Pharmacy, Sookmyung Women’s University, Seoul 04312, Korea; (Y.Y.); (H.K.); (S.C.); (J.Y.); (J.Y.L.); (H.L.)
| | - Hani Lee
- College of Pharmacy, Sookmyung Women’s University, Seoul 04312, Korea; (Y.Y.); (H.K.); (S.C.); (J.Y.); (J.Y.L.); (H.L.)
| | - Sukjoon Yoon
- Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea;
| | - Woo-Young Kim
- Research Institute of Pharmaceutical Sciences, Sookmyung Women’s University, Seoul 04312, Korea
- Correspondence: ; Tel.: +82-2-2077-7587
| |
Collapse
|
39
|
Wang Y. Applications of Lipidomics in Tumor Diagnosis and Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:25-39. [PMID: 33740241 DOI: 10.1007/978-981-33-6785-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lipids have many critical biological functions in cancer. There are characteristic changes of lipid metabolism and metabolites in different physiological and pathological processes. Lipidomics is an emerging discipline of metabolomics for systematic analysis of lipids in organisms, tissues, or cells and the molecules that interact with them. With the development of new analytical techniques, especially the application and development of mass spectrometry techniques, the determination of lipids can be carried out quickly and accurately and has a high throughput. A large number of studies have shown that abnormal lipid metabolism is closely related to the occurrence and development of tumors. The application of lipidomics technology can reveal changes in lipids and relative abnormal metabolic pathways associated with tumors. Moreover, it shows a wide range of application prospects in the identification of tumor lipid biomarkers, early tumor diagnosis, and the discovery of antitumor drug targets. This chapter mainly introduces the application and development direction of lipidomics in the diagnosis and therapy of different tumors.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, Gansu Province, China.
| |
Collapse
|
40
|
Wang H, Cui G, Yu B, Sun M, Yang H. Cancer Stem Cell Niche in Colorectal Cancer and Targeted Therapies. Curr Pharm Des 2020; 26:1979-1993. [PMID: 32268862 DOI: 10.2174/1381612826666200408102305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs), also known as tumor-initiating cells, are a sub-population of tumor cells found in many human cancers that are endowed with self-renewal and pluripotency. CSCs may be more resistant to conventional anticancer therapies than average cancer cells, as they can easily escape the cytotoxic effects of standard chemotherapy, thereby resulting in tumor relapse. Despite significant progress in related research, effective elimination of CSCs remains an unmet clinical need. CSCs are localized in a specialized microenvironment termed the niche, which plays a pivotal role in cancer multidrug resistance. The niche components of CSCs, such as the extracellular matrix, also physically shelter CSCs from therapeutic agents. Colorectal cancer is the most common malignancy worldwide and presents a relatively transparent process of cancer initiation and development, making it an ideal model for CSC niche research. Here, we review recent advances in the field of CSCs using colorectal cancer as an example to illustrate the potential therapeutic value of targeting the CSC niche. These findings not only provide a novel theoretical basis for in-depth discussions on tumor occurrence, development, and prognosis evaluation, but also offer new strategies for the targeted treatment of cancer.
Collapse
Affiliation(s)
- Hao Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China.,Laboratory medical college, Jilin Medical University, Jilin, China
| | - Guihua Cui
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| | - Meiyan Sun
- Laboratory medical college, Jilin Medical University, Jilin, China
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Sciences, Liaoning Normal University, Dalian, China
| |
Collapse
|
41
|
Fernández LP, Gómez de Cedrón M, Ramírez de Molina A. Alterations of Lipid Metabolism in Cancer: Implications in Prognosis and Treatment. Front Oncol 2020; 10:577420. [PMID: 33194695 PMCID: PMC7655926 DOI: 10.3389/fonc.2020.577420] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
Cancer remains the second leading cause of mortality worldwide. In the course of this multistage and multifactorial disease, a set of alterations takes place, with genetic and environmental factors modulating tumorigenesis and disease progression. Metabolic alterations of tumors are well-recognized and are considered as one of the hallmarks of cancer. Cancer cells adapt their metabolic competences in order to efficiently supply their novel demands of energy to sustain cell proliferation and metastasis. At present, there is a growing interest in understanding the metabolic switch that occurs during tumorigenesis. Together with the Warburg effect and the increased glutaminolysis, lipid metabolism has emerged as essential for tumor development and progression. Indeed, several investigations have demonstrated the consequences of lipid metabolism alterations in cell migration, invasion, and angiogenesis, three basic steps occurring during metastasis. In addition, obesity and associated metabolic alterations have been shown to augment the risk of cancer and to worsen its prognosis. Consequently, an extensive collection of tumorigenic steps has been shown to be modulated by lipid metabolism, not only affecting the growth of primary tumors, but also mediating progression and metastasis. Besides, key enzymes involved in lipid-metabolic pathways have been associated with cancer survival and have been proposed as prognosis biomarkers of cancer. In this review, we will analyze the impact of obesity and related tumor microenviroment alterations as modifiable risk factors in cancer, focusing on the lipid alterations co-occurring during tumorigenesis. The value of precision technologies and its application to target lipid metabolism in cancer will also be discussed. The degree to which lipid alterations, together with current therapies and intake of specific dietary components, affect risk of cancer is now under investigation, and innovative therapeutic or preventive applications must be explored.
Collapse
Affiliation(s)
- Lara P Fernández
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Marta Gómez de Cedrón
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| | - Ana Ramírez de Molina
- Precision Nutrition and Cancer Program, Molecular Oncology Group, IMDEA Food Institute, Campus of International Excellence (CEI) University Autonomous of Madrid (UAM) + CSIC, Madrid, Spain
| |
Collapse
|
42
|
Metabolic Constrains Rule Metastasis Progression. Cells 2020; 9:cells9092081. [PMID: 32932943 PMCID: PMC7563739 DOI: 10.3390/cells9092081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Metastasis formation accounts for the majority of tumor-associated deaths and consists of different steps, each of them being characterized by a distinctive adaptive phenotype of the cancer cells. Metabolic reprogramming represents one of the main adaptive phenotypes exploited by cancer cells during all the main steps of tumor and metastatic progression. In particular, the metabolism of cancer cells evolves profoundly through all the main phases of metastasis formation, namely the metastatic dissemination, the metastatic colonization of distant organs, the metastatic dormancy, and ultimately the outgrowth into macroscopic lesions. However, the metabolic reprogramming of metastasizing cancer cells has only recently become the subject of intense study. From a clinical point of view, the latter steps of the metastatic process are very important, because patients often undergo surgical removal of the primary tumor when cancer cells have already left the primary tumor site, even though distant metastases are not clinically detectable yet. In this scenario, to precisely elucidate if and how metabolic reprogramming drives acquisition of cancer-specific adaptive phenotypes might pave the way to new therapeutic strategies by combining chemotherapy with metabolic drugs for better cancer eradication. In this review we discuss the latest evidence that claim the importance of metabolic adaptation for cancer progression.
Collapse
|
43
|
Li H, Feng Z, He ML. Lipid metabolism alteration contributes to and maintains the properties of cancer stem cells. Theranostics 2020; 10:7053-7069. [PMID: 32641978 PMCID: PMC7330842 DOI: 10.7150/thno.41388] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Lipids, the basic components of the cell membrane, execute fundamental roles in almost all the cell activities including cell-cell recognition, signalling transduction and energy supplies. Lipid metabolism is elementary for life sustentation that balances activity between synthesis and degradation. An accumulating amount of data has indicated abnormal lipid metabolism in cancer stem cells (CSCs), and that the alteration of lipid metabolism exerts a great impact on CSCs' properties such as the capability of self-renewal, differentiation, invasion, metastasis, and drug sensitivity and resistance. CSCs' formation and maintenance cannot do without the regulation of fatty acids and cholesterol. In normal cells and embryonic development, fatty acids and cholesterol metabolism are regulated by some important signalling pathways (such as Hedgehog, Notch, Wnt signalling pathways); these signalling pathways also play crucial roles in initiating and/or maintaining CSCs' properties, and such signalling is shown to be commonly modulated by the abnormal lipid metabolism in CSCs; on the other hand, the altered lipid metabolism in turn modifies the cell signalling and generates additional impacts on CSCs. Metabolic rewiring is considered as an ideal hallmark of CSCs, and metabolic alterations would be promising therapeutic targets of CSCs for aggressive tumors. In this review, we summarize the most updated findings of lipid metabolic abnormalities in CSCs and prospect the potential applications of targeting lipid metabolism for anticancer treatment.
Collapse
|
44
|
Kim H, Yu Y, Choi S, Lee H, Yu J, Lee JH, Kim WY. Evodiamine Eliminates Colon Cancer Stem Cells via Suppressing Notch and Wnt Signaling. Molecules 2019; 24:molecules24244520. [PMID: 31835579 PMCID: PMC6943729 DOI: 10.3390/molecules24244520] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/09/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
Evodiamine, an alkaloid contained in traditional Asian herbal medicines that have been used for hundreds years, is interesting due to its cytotoxic effects against many cancers. We examined the effect of evodiamine on the cancer stem cell (CSC) population and the bulk cultured cancer cells (BCC) of colon cancers to examine the double targeting effect. We found that three colon cancer cell lines’ BCC and CSC are effectively targeted by evodiamine. Evodiamine was able to suppress BCC proliferation and induce apoptosis of the cells captured in G2/M phase, as previously reported. However, evodiamine did not cause the accumulation of CSCs at a certain stage of the cell cycle, resulting in the elimination of stemness through an unknown mechanism. By analyzing the expression of 84 genes related to CSCs in two colon cancer cell lines’ CSC, as well as performing further informatics analyses, and quantitative RT-PCR analyses of 24 CSC genes, we found that evodiamine suppressed the expression of the genes that control key signaling pathways of CSC, namely, WNT and NOTCH signaling, to lead CSC elimination. These results suggest that evodiamine should be further developed for targeting both BCCs and CSCs in colon cancers.
Collapse
Affiliation(s)
- Hyejin Kim
- College of Pharmacy, Sookmyung Women’s University, Cheongparo-47 Gil, Yongsan Gu, Seoul 04312, Korea; (H.K.); (Y.Y.); (S.C.); (H.L.); (J.Y.)
| | - Yeongji Yu
- College of Pharmacy, Sookmyung Women’s University, Cheongparo-47 Gil, Yongsan Gu, Seoul 04312, Korea; (H.K.); (Y.Y.); (S.C.); (H.L.); (J.Y.)
| | - SeokGyeong Choi
- College of Pharmacy, Sookmyung Women’s University, Cheongparo-47 Gil, Yongsan Gu, Seoul 04312, Korea; (H.K.); (Y.Y.); (S.C.); (H.L.); (J.Y.)
| | - Hani Lee
- College of Pharmacy, Sookmyung Women’s University, Cheongparo-47 Gil, Yongsan Gu, Seoul 04312, Korea; (H.K.); (Y.Y.); (S.C.); (H.L.); (J.Y.)
| | - Jinsuh Yu
- College of Pharmacy, Sookmyung Women’s University, Cheongparo-47 Gil, Yongsan Gu, Seoul 04312, Korea; (H.K.); (Y.Y.); (S.C.); (H.L.); (J.Y.)
| | - Jeong-Ho Lee
- Inland Aquaculture Research Center, National Institute of Fisheries Science, Changwon 51688, Korea;
| | - Woo-Young Kim
- College of Pharmacy, Sookmyung Women’s University, Cheongparo-47 Gil, Yongsan Gu, Seoul 04312, Korea; (H.K.); (Y.Y.); (S.C.); (H.L.); (J.Y.)
- Research Institute of Pharmaceutical Sciences, Sookmyung Women’s University, Cheongparo-47 Gil, Yongsan Gu, Seoul 04312, Korea
- Correspondence: ; Tel.: +82-2-2077-7587
| |
Collapse
|
45
|
Ovarian Cancer-Why Lipids Matter. Cancers (Basel) 2019; 11:cancers11121870. [PMID: 31769430 PMCID: PMC6966536 DOI: 10.3390/cancers11121870] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/25/2022] Open
Abstract
This review highlights recent advances in the understanding of the relevance of altered lipid metabolic pathways contributing to the poor prognosis of high grade serous ovarian cancer, as they relate to cancer metastasis and cancer stemness. Increased lipid uptake regulated by the receptor CD36 and the transport protein FABP4 has been implicated in ovarian cancer metastasis. The symbiotic relationship between ovarian cancer cells and adipocytes was shown to be important for sustaining widespread peritoneal and omental metastasis. Increased lipogenesis dependent on the fatty acid desaturase SCD1 was detected in ovarian cancer stem cells. Furthermore, response to therapy, specifically to platinum, was linked to increased fatty acid biogenesis, while the survival of drug tolerant cells was shown to depend on lipid peroxidation. These recent findings suggest that lipids are necessary elements supporting oncogenic signaling and the energetic needs of rapidly proliferating cancer cells. New strategies targeting key enzymes involved in lipid uptake or utilization in cancer cells have been shown to exert anti-tumor effects and are being developed as cancer interventions in combination with chemotherapy or immunotherapy.
Collapse
|