1
|
Li Z, Gao Y, Chen X, Xu L, Li Z, Chai R. Study on Recovery Strategy of Hearing Loss & SGN Regeneration Under Physical Regulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410919. [PMID: 39716878 PMCID: PMC11791950 DOI: 10.1002/advs.202410919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Indexed: 12/25/2024]
Abstract
The World Health Organization (WHO) reports that by 2050, nearly 2.5 billion people are expected to have some degree of hearing loss (HL) and at least 700 million will need hearing rehabilitation. Therefore, there is an urgent need to develop treatment strategies for HL. At present, the main treatment strategies for HL are hearing aids and cochlear implants (CIs), which cannot achieve a radical cure for HL. Relevant studies have shown that the most fundamental treatment strategy for sensorineural hearing loss (SNHL) is to regenerate hair cells and spiral ganglion neurons (SGNs) through stem cells to repair the structure and function of cochlea. In addition, physical stimulation strategies, such as electricity, light, and magnetism have also been used to promote SGN regeneration. This review systematically introduces the classification, principle and latest progress of the existing hearing treatment strategies and summarizes the advantages and disadvantages of each strategy. The research progress of physical regulation mechanism is discussed in detail. Finally, the problems in HL repair strategies are summarized and the future development direction is prospected, which could provide new ideas and technologies for the optimization of hearing treatment strategies and the research of SGN repair and regeneration through physical regulation.
Collapse
Affiliation(s)
- Zhe Li
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Yijia Gao
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Xingyu Chen
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
| | - Zhou Li
- Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Renjie Chai
- Department of NeurologyAerospace Center HospitalSchool of LifeBeijing Institute of TechnologyBeijing100081China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| |
Collapse
|
2
|
Carlyon RP, Deeks JM, Delgutte B, Chung Y, Vollmer M, Ohl FW, Kral A, Tillein J, Litovsky RY, Schnupp J, Rosskothen-Kuhl N, Goldsworthy RL. Limitations on Temporal Processing by Cochlear Implant Users: A Compilation of Viewpoints. Trends Hear 2025; 29:23312165251317006. [PMID: 40095543 PMCID: PMC12076235 DOI: 10.1177/23312165251317006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 12/19/2024] [Accepted: 01/03/2025] [Indexed: 03/19/2025] Open
Abstract
Cochlear implant (CI) users are usually poor at using timing information to detect changes in either pitch or sound location. This deficit occurs even for listeners with good speech perception and even when the speech processor is bypassed to present simple, idealized stimuli to one or more electrodes. The present article presents seven expert opinion pieces on the likely neural bases for these limitations, the extent to which they are modifiable by sensory experience and training, and the most promising ways to overcome them in future. The article combines insights from physiology and psychophysics in cochlear-implanted humans and animals, highlights areas of agreement and controversy, and proposes new experiments that could resolve areas of disagreement.
Collapse
Affiliation(s)
- Robert P. Carlyon
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John M. Deeks
- Cambridge Hearing Group, MRC Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Bertrand Delgutte
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Yoojin Chung
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, USA
| | - Maike Vollmer
- Department of Experimental Audiology, University Clinic of Otolaryngology, Head and Neck Surgery, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Andrej Kral
- Institute of Audio-Neuro-Technology & Department of Experimental Otology, Clinics of Otolaryngology, Head and Neck Surgery, Hannover Medical School, Hannover, Germany
| | - Jochen Tillein
- Clinics of Otolaryngology, Head and Neck Surgery, J.W.Goethe University, Frankfurt, Germany
- MedEl Company, Hannover, Germany
| | - Ruth Y. Litovsky
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jan Schnupp
- Gerald Choa Neuroscience Institute and Department of Otolaryngology, Chinese University of Hong Kong, Hong Kong (NB Hong Kong is a Special Administrative Region) of China
| | - Nicole Rosskothen-Kuhl
- Neurobiological Research Laboratory, Section for Experimental and Clinical Otology, Department of Oto-Rhino-Laryngology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg & Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Raymond L. Goldsworthy
- Auditory Research Center, Caruso Department of Otolaryngology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Vecchi JT, Claussen AD, Hansen MR. Decreasing the physical gap in the neural-electrode interface and related concepts to improve cochlear implant performance. Front Neurosci 2024; 18:1425226. [PMID: 39114486 PMCID: PMC11303154 DOI: 10.3389/fnins.2024.1425226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Cochlear implants (CI) represent incredible devices that restore hearing perception for those with moderate to profound sensorineural hearing loss. However, the ability of a CI to restore complex auditory function is limited by the number of perceptually independent spectral channels provided. A major contributor to this limitation is the physical gap between the CI electrodes and the target spiral ganglion neurons (SGNs). In order for CI electrodes to stimulate SGNs more precisely, and thus better approximate natural hearing, new methodologies need to be developed to decrease this gap, (i.e., transitioning CIs from a far-field to near-field device). In this review, strategies aimed at improving the neural-electrode interface are discussed in terms of the magnitude of impact they could have and the work needed to implement them. Ongoing research suggests current clinical efforts to limit the CI-related immune response holds great potential for improving device performance. This could eradicate the dense, fibrous capsule surrounding the electrode and enhance preservation of natural cochlear architecture, including SGNs. In the long term, however, optimized future devices will likely need to induce and guide the outgrowth of the peripheral process of SGNs to be in closer proximity to the CI electrode in order to better approximate natural hearing. This research is in its infancy; it remains to be seen which strategies (surface patterning, small molecule release, hydrogel coating, etc.) will be enable this approach. Additionally, these efforts aimed at optimizing CI function will likely translate to other neural prostheses, which face similar issues.
Collapse
Affiliation(s)
- Joseph T. Vecchi
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Alexander D. Claussen
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| | - Marlan R. Hansen
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, Iowa City, IA, United States
- Department of Otolaryngology Head-Neck Surgery, Carver College of Medicine, Iowa City, IA, United States
| |
Collapse
|
4
|
Khurana L, Harczos T, Moser T, Jablonski L. En route to sound coding strategies for optical cochlear implants. iScience 2023; 26:107725. [PMID: 37720089 PMCID: PMC10502376 DOI: 10.1016/j.isci.2023.107725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Hearing loss is the most common human sensory deficit. Severe-to-complete sensorineural hearing loss is often treated by electrical cochlear implants (eCIs) bypassing dysfunctional or lost hair cells by direct stimulation of the auditory nerve. The wide current spread from each intracochlear electrode array contact activates large sets of tonotopically organized neurons limiting spectral selectivity of sound coding. Despite many efforts, an increase in the number of independent eCI stimulation channels seems impossible to achieve. Light, which can be better confined in space than electric current may help optical cochlear implants (oCIs) to overcome eCI shortcomings. In this review, we present the current state of the optogenetic sound encoding. We highlight optical sound coding strategy development capitalizing on the optical stimulation that requires fine-grained, fast, and power-efficient real-time sound processing controlling dozens of microscale optical emitters as an emerging research area.
Collapse
Affiliation(s)
- Lakshay Khurana
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- Junior Research Group “Computational Neuroscience and Neuroengineering”, Göttingen, Germany
- The Doctoral Program “Sensory and Motor Neuroscience”, Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tamas Harczos
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Auditory Neuroscience and Synaptic Nanophysiology Group, Max-Planck-Institute for Multidisciplinary Sciences, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Lukasz Jablonski
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Junior Research Group “Computational Neuroscience and Neuroengineering”, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Michael M, Wolf BJ, Klinge-Strahl A, Jeschke M, Moser T, Dieter A. Devising a framework of optogenetic coding in the auditory pathway: Insights from auditory midbrain recordings. Brain Stimul 2023; 16:1486-1500. [PMID: 37778456 DOI: 10.1016/j.brs.2023.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cochlear implants (CIs) restore activity in the deafened auditory system via electrical stimulation of the auditory nerve. As the spread of electric current in biological tissues is rather broad, the spectral information provided by electrical CIs is limited. Optogenetic stimulation of the auditory nerve has been suggested for artificial sound coding with improved spectral selectivity, as light can be conveniently confined in space. Yet, the foundations for optogenetic sound coding strategies remain to be established. Here, we parametrized stimulus-response-relationships of the auditory pathway in gerbils for optogenetic stimulation. Upon activation of the auditory pathway by waveguide-based optogenetic stimulation of the spiral ganglion, we recorded neuronal activity of the auditory midbrain, in which neural representations of spectral, temporal, and intensity information can be found. Screening a wide range of optical stimuli and taking the properties of optical CI emitters into account, we aimed to optimize stimulus paradigms for potent and energy-efficient activation of the auditory pathway. We report that efficient optogenetic coding builds on neural integration of millisecond stimuli built from microsecond light pulses, which optimally accommodate power-efficient laser diode operation. Moreover, we performed an activity-level-dependent comparison of optogenetic and acoustic stimulation in order to estimate the dynamic range and the maximal stimulation intensity amenable to single channel optogenetic sound encoding, and indicate that it complies well with speech comprehension in a typical conversation (65 dB). Our results provide a first framework for the development of coding strategies for future optogenetic hearing restoration.
Collapse
Affiliation(s)
- Maria Michael
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Bettina Julia Wolf
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany; Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37077, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany
| | - Astrid Klinge-Strahl
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany; Department of Otolaryngology, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Marcus Jeschke
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany; Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37077, Göttingen, Germany; Cognitive Hearing in Primates (CHiP) Group, German Primate Center, 37077, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany; Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, 37077, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075, Göttingen, Germany; Auditory Neuroscience and Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
| | - Alexander Dieter
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37075, Göttingen, Germany; Göttingen Graduate Center for Neurosciences, Biophysic, and Molecular Biosciences, 37077, Göttingen, Germany; Department of Neurophysiology, MCTN, Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| |
Collapse
|
6
|
Rogalla MM, Seibert A, Sleeboom JM, Hildebrandt KJ. Differential optogenetic activation of the auditory midbrain in freely moving behaving mice. Front Syst Neurosci 2023; 17:1222176. [PMID: 37719023 PMCID: PMC10501139 DOI: 10.3389/fnsys.2023.1222176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction In patients with severe auditory impairment, partial hearing restoration can be achieved by sensory prostheses for the electrical stimulation of the central nervous system. However, these state-of-the-art approaches suffer from limited spectral resolution: electrical field spread depends on the impedance of the surrounding medium, impeding spatially focused electrical stimulation in neural tissue. To overcome these limitations, optogenetic activation could be applied in such prostheses to achieve enhanced resolution through precise and differential stimulation of nearby neuronal ensembles. Previous experiments have provided a first proof for behavioral detectability of optogenetic activation in the rodent auditory system, but little is known about the generation of complex and behaviorally relevant sensory patterns involving differential activation. Methods In this study, we developed and behaviorally tested an optogenetic implant to excite two spatially separated points along the tonotopy of the murine inferior colliculus (ICc). Results Using a reward based operant Go/No-Go paradigm, we show that differential optogenetic activation of a sub-cortical sensory pathway is possible and efficient. We demonstrate how animals which were previously trained in a frequency discrimination paradigm (a) rapidly respond to either sound or optogenetic stimulation, (b) generally detect optogenetic stimulation of two different neuronal ensembles, and (c) discriminate between them. Discussion Our results demonstrate that optogenetic excitatory stimulation at different points of the ICc tonotopy elicits a stable response behavior over time periods of several months. With this study, we provide the first proof of principle for sub-cortical differential stimulation of sensory systems using complex artificial cues in freely moving animals.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Adina Seibert
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - Jana M. Sleeboom
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| | - K. Jannis Hildebrandt
- Department of Neuroscience, Division of Auditory Neuroscience, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
- Cluster of Excellence Hearing4all, Carl von Ossietzky University, Oldenburg, Lower Saxony, Germany
| |
Collapse
|
7
|
Throckmorton GA, Thayer W, Duco Jansen E, Mahadevan-Jansen A. Infrared neural stimulation markedly enhances nerve functionality assessment during nerve monitoring. Sci Rep 2023; 13:4362. [PMID: 36928795 PMCID: PMC10020565 DOI: 10.1038/s41598-023-31384-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
In surgical procedures where the risk of accidental nerve damage is prevalent, surgeons commonly use electrical stimulation (ES) during intraoperative nerve monitoring (IONM) to assess a nerve's functional integrity. ES, however, is subject to off-target stimulation and stimulation artifacts disguising the true functionality of the specific target and complicating interpretation. Lacking a stimulation artifact and having a higher degree of spatial specificity, infrared neural stimulation (INS) has the potential to improve upon clinical ES for IONM. Here, we present a direct comparison between clinical ES and INS for IONM performance in an in vivo rat model. The sensitivity of INS surpasses that of ES in detecting partial forms of damage while maintaining a comparable specificity and sensitivity to more complete forms. Without loss in performance, INS is readily compatible with existing clinical nerve monitoring systems. These findings underscore the clinical potential of INS to improve IONM and surgical outcomes.
Collapse
Affiliation(s)
- Graham A Throckmorton
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Station B, Box 351631, Nashville, TN, 37235-1631, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. South, Nashville, TN, 37232, USA
| | - Wesley Thayer
- Department of Plastic Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA
| | - E Duco Jansen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Station B, Box 351631, Nashville, TN, 37235-1631, USA
- Vanderbilt Biophotonics Center, 410 24th Ave. South, Nashville, TN, 37232, USA
- Department of Neurological Surgery, Vanderbilt University Medical Center, 1161 21St Avenue, Nashville, TN, 37232-2380, USA
| | - Anita Mahadevan-Jansen
- Department of Biomedical Engineering, Vanderbilt University, 5824 Stevenson Center, Station B, Box 351631, Nashville, TN, 37235-1631, USA.
- Vanderbilt Biophotonics Center, 410 24th Ave. South, Nashville, TN, 37232, USA.
- Department of Neurological Surgery, Vanderbilt University Medical Center, 1161 21St Avenue, Nashville, TN, 37232-2380, USA.
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA.
- Department of Surgery, Vanderbilt University Medical Center, 1211 Medical Center Drive, Nashville, TN, 37232, USA.
| |
Collapse
|
8
|
Zhou X, Feng M, Hu Y, Zhang C, Zhang Q, Luo X, Yuan W. The Effects of Cortical Reorganization and Applications of Functional Near-Infrared Spectroscopy in Deaf People and Cochlear Implant Users. Brain Sci 2022; 12:brainsci12091150. [PMID: 36138885 PMCID: PMC9496692 DOI: 10.3390/brainsci12091150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
A cochlear implant (CI) is currently the only FDA-approved biomedical device that can restore hearing for the majority of patients with severe-to-profound sensorineural hearing loss (SNHL). While prelingually and postlingually deaf individuals benefit substantially from CI, the outcomes after implantation vary greatly. Numerous studies have attempted to study the variables that affect CI outcomes, including the personal characteristics of CI candidates, environmental variables, and device-related variables. Up to 80% of the results remained unexplainable because all these variables could only roughly predict auditory performance with a CI. Brain structure/function differences after hearing deprivation, that is, cortical reorganization, has gradually attracted the attention of neuroscientists. The cross-modal reorganization in the auditory cortex following deafness is thought to be a key factor in the success of CI. In recent years, the adaptive and maladaptive effects of this reorganization on CI rehabilitation have been argued because the neural mechanisms of how this reorganization impacts CI learning and rehabilitation have not been revealed. Due to the lack of brain processes describing how this plasticity affects CI learning and rehabilitation, the adaptive and deleterious consequences of this reorganization on CI outcomes have recently been the subject of debate. This review describes the evidence for different roles of cross-modal reorganization in CI performance and attempts to explore the possible reasons. Additionally, understanding the core influencing mechanism requires taking into account the cortical changes from deafness to hearing restoration. However, methodological issues have restricted longitudinal research on cortical function in CI. Functional near-infrared spectroscopy (fNIRS) has been increasingly used for the study of brain function and language assessment in CI because of its unique advantages, which are considered to have great potential. Here, we review studies on auditory cortex reorganization in deaf patients and CI recipients, and then we try to illustrate the feasibility of fNIRS as a neuroimaging tool in predicting and assessing speech performance in CI recipients. Here, we review research on the cross-modal reorganization of the auditory cortex in deaf patients and CI recipients and seek to demonstrate the viability of using fNIRS as a neuroimaging technique to predict and evaluate speech function in CI recipients.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Menglong Feng
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yaqin Hu
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Chanyuan Zhang
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Qingling Zhang
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiaoqin Luo
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei Yuan
- Department of Otolaryngolgy, Chongqing General Hospital, Chongqing 401147, China
- Chongqing Medical University, Chongqing 400042, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Institute of Green and Intelligent Technology, University of Chinese Academy of Sciences, Chongqing 400714, China
- Correspondence: ; Tel.: +86-23-63535180
| |
Collapse
|
9
|
Khurana L, Keppeler D, Jablonski L, Moser T. Model-based prediction of optogenetic sound encoding in the human cochlea by future optical cochlear implants. Comput Struct Biotechnol J 2022; 20:3621-3629. [PMID: 35860414 PMCID: PMC9283772 DOI: 10.1016/j.csbj.2022.06.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 01/17/2023] Open
Abstract
When hearing fails, electrical cochlear implants (eCIs) partially restore hearing by direct stimulation of spiral ganglion neurons (SGNs). As light can be better confined in space than electrical current, optical CIs (oCIs) provide more spectral information promising a fundamental improvement of hearing restoration by cochlear implants. Here, we turned to computer modelling for predicting the outcome of optogenetic hearing restoration by future oCIs in humans. We combined three-dimensional reconstruction of the human cochlea with ray-tracing simulation of emission from LED or laser-coupled waveguide emitters of the oCI. Irradiance was read out at the somata of SGNs. The irradiance values reached with waveguides were about 14 times higher than with LEDs, at the same radiant flux of the emitter. Moreover, waveguides outperformed LEDs regarding spectral selectivity. oCIs with either emitter type showed greater spectral selectivity when compared to eCI. In addition, modeling the effects of the source-to-SGN distance, orientation of the sources and impact of scar tissue further informs the development of optogenetic hearing restoration.
Collapse
Affiliation(s)
- Lakshay Khurana
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences (GGNB), University of Göttingen, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Keppeler
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Lukasz Jablonski
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Auditory Neuroscience & Synaptic Nanophysiology Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Keshmiri Neghab H, Soheilifar MH, Grusch M, Ortega MM, Esmaeeli Djavid G, Saboury AA, Goliaei B. The state of the art of biomedical applications of optogenetics. Lasers Surg Med 2021; 54:202-216. [PMID: 34363230 DOI: 10.1002/lsm.23463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 07/08/2021] [Accepted: 07/23/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND OBJECTIVE Optogenetics has opened new insights into biomedical research with the ability to manipulate and control cellular activity using light in combination with genetically engineered photosensitive proteins. By stimulating with light, this method provides high spatiotemporal and high specificity resolution, which is in contrast to conventional pharmacological or electrical stimulation. Optogenetics was initially introduced to control neural activities but was gradually extended to other biomedical fields. STUDY DESIGN In this paper, firstly, we summarize the current optogenetic tools stimulated by different light sources, including lasers, light-emitting diodes, and laser diodes. Second, we outline the variety of biomedical applications of optogenetics not only for neuronal circuits but also for various kinds of cells and tissues from cardiomyocytes to ganglion cells. Furthermore, we highlight the potential of this technique for treating neurological disorders, cardiac arrhythmia, visual impairment, hearing loss, and urinary bladder diseases as well as clarify the mechanisms underlying cancer progression and control of stem cell differentiation. CONCLUSION We sought to summarize the various types of promising applications of optogenetics to treat a broad spectrum of disorders. It is conceivable to expect that optogenetics profits a growing number of patients suffering from a range of different diseases in the near future.
Collapse
Affiliation(s)
- Hoda Keshmiri Neghab
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Michael Grusch
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
| | - Gholamreza Esmaeeli Djavid
- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
11
|
Wrobel C, Zafeiriou MP, Moser T. Understanding and treating paediatric hearing impairment. EBioMedicine 2021; 63:103171. [PMID: 33422987 PMCID: PMC7808910 DOI: 10.1016/j.ebiom.2020.103171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Sensorineural hearing impairment is the most frequent form of hearing impairment affecting 1-2 in 1000 newborns and another 1 in 1000 adolescents. More than 50% of congenital hearing impairment is of genetic origin and some forms of monogenic deafness are likely targets for future gene therapy. Good progress has been made in clinical phenotyping, genetic diagnostics, and counselling. Disease modelling, e.g. in transgenic mice, has helped elucidate disease mechanisms underlying genetic hearing impairment and informed clinical phenotyping in recent years. Clinical management of paediatric hearing impairment involves hearing aids, cochlear or brainstem implants, signal-to-noise improvement in educational settings, speech therapy, and sign language. Cochlear implants, for example, have much improved the situation of profoundly hearing impaired and deaf children. Nonetheless there remains a major unmet clinical need for improving hearing restoration. Preclinical studies promise that we will witness clinical trials on gene therapy and a next generation of cochlear implants during the coming decade. Moreover, progress in generating sensory hair cells and neurons from stem cells spurs disease modelling, drug screening, and regenerative approaches. This review briefly summarizes the pathophysiology of paediatric hearing impairment and provides an update on the current preclinical development of innovative approaches toward improved hearing restoration.
Collapse
Affiliation(s)
- Christian Wrobel
- Department of Otolaryngology and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Germany
| | - Maria-Patapia Zafeiriou
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Germany; Institute of Pharmacology and Toxicology, University Medical Center, 37075 Göttingen, Germany
| | - Tobias Moser
- Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Germany; Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, 37099 Göttingen, Germany.
| |
Collapse
|
12
|
Song Q, Wang J. Effects of the lignan compound (+)-Guaiacin on hair cell survival by activating Wnt/β-Catenin signaling in mouse cochlea. Tissue Cell 2020; 66:101393. [PMID: 32933716 DOI: 10.1016/j.tice.2020.101393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 01/25/2023]
Abstract
Wnt/β-Catenin signaling is required for the development and differentiation of cochlear hair cells. Total of 80 natural compounds derived from the FDA-approved Drug Library of Selleck were screened by T-cell factor Reporter Plasmid (TOP)-Flash assay to identify the activation of Wnt/β-Catenin signaling. The mouse cochlear hair cells (HEI-OC1) were treated with cisplatin with or without Guaiacin, and the relative expression of β-Catenin and TRIM33 were detected by qRT-PCR and Western blots. The viability of HEI-OC1 was assayed by MTT method, and mouse cochlear cultures were utilized to detect the Ex vivo survival of cochlear hair cells. Guaiacin was testified to have the most vigorous ability to promote Wnt/β-Catenin signaling among 80 compounds detected, and it can also improve the β-Catenin signaling in mouse cochlear hair cells with up-regulated β-Catenin protein expression, unchanged β-Catenin mRNA expression, and down-regulated TRIM33 expression. Guaiacin increased the viability of HEI-OC1 cells cultured with or without cisplatin, and such a protective effect was also testified in mouse cochlear cultures. Our data indicate that Guaiacin could increase Wnt/β-Catenin signaling by regulating TRIM33/β-Catenin axis, which contributes to the improved survival of cochlear hair cells.
Collapse
Affiliation(s)
- Quanfa Song
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang, 261100, Shandong, China
| | - Junming Wang
- Department of Otolaryngology, Weifang City Hanting District People's Hospital, Weifang, 261100, Shandong, China.
| |
Collapse
|