1
|
Perrier Q, Cottet-Rousselle C, Lamarche F, Tubbs E, Tellier C, Veyrat J, Vial G, Bleuet P, Durand A, Pitaval A, Cosnier ML, Moro C, Lablanche S. Long-term safety of photobiomodulation exposure to beta cell line and rat islets in vitro and in vivo. Sci Rep 2024; 14:26874. [PMID: 39505966 PMCID: PMC11542004 DOI: 10.1038/s41598-024-77660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
This study evaluates the safety and potential benefits of PBM on pancreatic beta cells and islets. PBM was applied to insulin-secreting cell lines (MIN6) and rat pancreatic islets using a 670 nm light source, continuous output, with a power density of 2.8 mW/cm², from 5 s to several 24 h. Measure of cell viability, insulin secretion, mitochondrial function, ATP content, and cellular respiration were assessed. Additionally, a diabetic rat model is used for islet transplantation (pre-conditioning with PBM or not) experiments. Short and long-term PBM exposure did not affect beta cell islets viability, insulin secretion nor ATP content. While short-term PBM (2 h) increases superoxide ion content, this was not observed for long exposure (24 h). Mitochondrial respirations were slightly decreased after PBM. In the islet transplantation model, both pre-illuminated and non-illuminated islets improved metabolic control in diabetic rats with a safety profile regarding the post-transplantation period. In summary, for the first time, long-term PBM exhibited safety in terms of cell viability, insulin secretion, energetic profiles in vitro, and post-transplantation period in vivo. Further investigation is warranted to explore PBM's protective effects under conditions of stress, aiding in the development of innovative approaches for cellular therapy.
Collapse
Affiliation(s)
- Quentin Perrier
- University Grenoble Alpes, INSERM U1055, Pharmacy department, Grenoble Alpes University Hospital, LBFA, Grenoble, France.
| | | | | | - Emily Tubbs
- University Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, BIOMICS, Grenoble, France
| | - Cindy Tellier
- University Grenoble Alpes, INSERM U1055, LBFA, Grenoble, France
| | - Jade Veyrat
- University Grenoble Alpes, INSERM U1055, LBFA, Grenoble, France
| | - Guillaume Vial
- University Grenoble Alpes, INSERM U1300, Grenoble Alpes University Hospital, HP2, Grenoble, France
| | - Pierre Bleuet
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Aude Durand
- University Grenoble Alpes, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, CEA, Leti, Grenoble, France
| | - Amandine Pitaval
- University Grenoble Alpes, CEA, INSERM, IRIG-BGE UA13, BIOMICS, Grenoble, France
| | - Marie-Line Cosnier
- University Grenoble Alpes, Division for Biology and Healthcare Technologies, Microfluidic Systems and Bioengineering Lab, CEA, Leti, Grenoble, France
| | - Cécile Moro
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble, France
| | - Sandrine Lablanche
- University Grenoble Alpes, INSERM U1055, Diabetology and endocrinology department, Grenoble Alpes University Hospital, LBFA, Grenoble, France
| |
Collapse
|
2
|
Rajkumari N, Shalayel I, Tubbs E, Perrier Q, Chabert C, Lablanche S, Benhamou PY, Arnol C, Gredy L, Divoux T, Stephan O, Zebda A, van der Sanden B. Matrix design for optimal pancreatic β cells transplantation. BIOMATERIALS ADVANCES 2024; 164:213980. [PMID: 39126900 DOI: 10.1016/j.bioadv.2024.213980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
New therapeutic approaches to treat type 1 diabetes mellitus relies on pancreatic islet transplantation. Here, developing immuno-isolation strategies is essential to eliminate the need for systemic immunosuppression after pancreatic islet grafts. A solution is the macro-encapsulation of grafts in semipermeable matrixes with a double function: separating islets from host immune cells and facilitating the diffusion of insulin, glucose, and other metabolites. This study aims to synthesize and characterize different types of gelatin-collagen matrixes to prepare a macro-encapsulation device for pancreatic islets that fulfill these functions. While natural polymers exhibit superior biocompatibility compared to synthetic ones, their mechanical properties are challenging to reproduce. To address this issue, we conducted a comparative analysis between photo-crosslinked gelatin matrixes and chemically crosslinked collagen matrixes. We show that the different crosslinkers and polymerization methods influence the survival and glucose-stimulated insulin production of pancreatic β cells (INS1) in vitro, as well as the in vitro and in vivo stability of the matrix and the immuno-isolation in vivo. Among the matrixes, the stiff multilayer GelMA matrixes (8.5 kPa), fabricated by digital light processing, were the best suited for pancreatic β cells macro-encapsulation regarding these parameters. Within the alveoli of this matrix, pancreatic β cells spontaneously formed aggregates.
Collapse
Affiliation(s)
- Nikita Rajkumari
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Nantes University, CRCI2NA, INSERM 1307, 44000 Nantes, France.
| | - Ibrahim Shalayel
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Emily Tubbs
- Grenoble Alpes University, CEA, INSERM, IRIG, 38000 Grenoble, Biomics, France.
| | - Quentin Perrier
- Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Department of Pharmacy, LBFA U1055, Grenoble, France.
| | - Clovis Chabert
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France.
| | - Sandrine Lablanche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Pierre-Yves Benhamou
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Capucine Arnol
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France
| | - Laetitia Gredy
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | - Olivier Stephan
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Abdelkader Zebda
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Boudewijn van der Sanden
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| |
Collapse
|
3
|
Ermakova P, Vasilchikova E, Baten'kin M, Bogomolova A, Konev A, Anisimova N, Egoshina A, Zakharina M, Tselousova J, Naraliev N, Kuchin D, Lugovaya L, Zagainov V, Chesnokov S, Kashina A, Zagaynova E. Probing of New Polymer-Based Microcapsules for Islet Cell Immunoisolation. Polymers (Basel) 2024; 16:2479. [PMID: 39274113 PMCID: PMC11397890 DOI: 10.3390/polym16172479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Islet allotransplantation offers a promising cell therapy for type 1 diabetes, but challenges such as limited donor availability and immunosuppression persist. Microencapsulation of islets in polymer-coated alginate microcapsules is a favored strategy for immune protection and maintaining islet viability. This study introduces Poly [2-(methacryloyloxy)ethyl]trimethylammonium chloride (PMETAC) as an innovative coating material for microcapsules. PMETAC enhances biocompatibility and durability, marking a significant advancement in islet encapsulation. Our approach combines alginate with PMETAC to create Langerhans islet microcapsules, simplifying material composition and preparation and ultimately lowering costs and increasing clinical applicability. Our comprehensive evaluation of the stability (including osmotic stability, thermal stability, and culture condition stability) and cytotoxicity of a novel microencapsulation system based on alginate-PMETAC-alginate offers insights into its potential application in islet immunoisolation strategies. Microcapsules with PMETAC content ranging from 0.01 to 1% are explored in the current work. The results indicate that the coatings made with 0.4% PMETAC show the most promising outcomes, remaining stable in the mentioned tests and exhibiting the required permeability. It was shown that the islets encapsulated in this manner retain viability and functional activity. Thus, alginate microcapsules coated with 0.4% PMETAC are suitable for further animal trials. While our findings are promising, further studies, including animal testing, will be necessary to evaluate the clinical applicability of our encapsulation method.
Collapse
Affiliation(s)
- Polina Ermakova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Ekaterina Vasilchikova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal State Educational Institution of Higher Educational Institution "National Research Nizhny, Novgorod State University Named after N.I. Lobachevsky", 603105 Nizhny Novgorod, Russia
| | - Maxim Baten'kin
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Alexandra Bogomolova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Alexey Konev
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Natalia Anisimova
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Alena Egoshina
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Mariya Zakharina
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Julia Tselousova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Nasipbek Naraliev
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Denis Kuchin
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Nizhny Novgorod Regional Clinical Hospital Named after N.A. Semashko, 603005 Nizhny Novgorod, Russia
| | - Liya Lugovaya
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
| | - Vladimir Zagainov
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- State Budgetary Healthcare Institution "Nizhny Novgorod Regional Clinical Oncology Dispensary", 603163 Nizhny Novgorod, Russia
| | - Sergey Chesnokov
- Federal State Budgetary Institution of Science Institute of Organometallic Chemistry, G.A. Razuvaev Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | - Aleksandra Kashina
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, 119334 Moscow, Russia
| | - Elena Zagaynova
- Federal State Budgetary Institution of Higher Education, Privolzhsky Research Medical University, Ministry of Health of Russia, 603082 Nizhny Novgorod, Russia
- Federal Scientific and Clinical Center for Physico-Chemical Medicine Named after Academician Yu. M. Lopukhin, 119334 Moscow, Russia
| |
Collapse
|
4
|
Grimus S, Sarangova V, Welzel PB, Ludwig B, Seissler J, Kemter E, Wolf E, Ali A. Immunoprotection Strategies in β-Cell Replacement Therapy: A Closer Look at Porcine Islet Xenotransplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401385. [PMID: 38884159 PMCID: PMC11336975 DOI: 10.1002/advs.202401385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/28/2024] [Indexed: 06/18/2024]
Abstract
Type 1 diabetes mellitus (T1DM) is characterized by absolute insulin deficiency primarily due to autoimmune destruction of pancreatic β-cells. The prevailing treatment for T1DM involves daily subcutaneous insulin injections, but a substantial proportion of patients face challenges such as severe hypoglycemic episodes and poorly controlled hyperglycemia. For T1DM patients, a more effective therapeutic option involves the replacement of β-cells through allogeneic transplantation of either the entire pancreas or isolated pancreatic islets. Unfortunately, the scarcity of transplantable human organs has led to a growing list of patients waiting for an islet transplant. One potential alternative is xenotransplantation of porcine pancreatic islets. However, due to inter-species molecular incompatibilities, porcine tissues trigger a robust immune response in humans, leading to xenograft rejection. Several promising strategies aim to overcome this challenge and enhance the long-term survival and functionality of xenogeneic islet grafts. These strategies include the use of islets derived from genetically modified pigs, immunoisolation of islets by encapsulation in biocompatible materials, and the creation of an immunomodulatory microenvironment by co-transplanting islets with accessory cells or utilizing immunomodulatory biomaterials. This review concentrates on delineating the primary obstacles in islet xenotransplantation and elucidates the fundamental principles and recent breakthroughs aimed at addressing these challenges.
Collapse
Affiliation(s)
- Sarah Grimus
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| | - Victoria Sarangova
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Petra B. Welzel
- Leibniz‐Institut für Polymerforschung Dresden e.V.Max Bergmann Center of Biomaterials DresdenD‐01069DresdenGermany
| | - Barbara Ludwig
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität DresdenD‐01307DresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the Technische Universität DresdenD‐01307DresdenGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
- DFG‐Center for Regenerative Therapies DresdenTechnische Universität DresdenD‐01307DresdenGermany
| | - Jochen Seissler
- Medizinische Klinik und Poliklinik IVDiabetes Zentrum – Campus InnenstadtKlinikum der Ludwig‐Maximilians‐Universität MünchenD‐80336MunichGermany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
- German Center for Diabetes Research (DZD e.V.)D‐85764NeuherbergGermany
| | - Asghar Ali
- Chair for Molecular Animal Breeding and BiotechnologyGene Center and Department of Veterinary SciencesLMU MunichD‐81377MunichGermany
- Center for Innovative Medical Models (CiMM)LMU MunichD‐85764OberschleißheimGermany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU)LMU MunichD‐81377MunichGermany
| |
Collapse
|
5
|
Zhang H, Zhou Z, Zhang F, Wan C. Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering. Gels 2024; 10:430. [PMID: 39057453 PMCID: PMC11276275 DOI: 10.3390/gels10070430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/09/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Articular cartilage is an avascular tissue with very limited capacity of self-regeneration. Trauma or injury-related defects, inflammation, or aging in articular cartilage can induce progressive degenerative joint diseases such as osteoarthritis. There are significant clinical demands for the development of effective therapeutic approaches to promote articular cartilage repair or regeneration. The current treatment modalities used for the repair of cartilage lesions mainly include cell-based therapy, small molecules, surgical approaches, and tissue engineering. However, these approaches remain unsatisfactory. With the advent of three-dimensional (3D) bioprinting technology, tissue engineering provides an opportunity to repair articular cartilage defects or degeneration through the construction of organized, living structures composed of biomaterials, chondrogenic cells, and bioactive factors. The bioprinted cartilage-like structures can mimic native articular cartilage, as opposed to traditional approaches, by allowing excellent control of chondrogenic cell distribution and the modulation of biomechanical and biochemical properties with high precision. This review focuses on various hydrogels, including natural and synthetic hydrogels, and their current developments as bioinks in 3D bioprinting for cartilage tissue engineering. In addition, the challenges and prospects of these hydrogels in cartilage tissue engineering applications are also discussed.
Collapse
Affiliation(s)
- Hongji Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Zheyuan Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Fengjie Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| | - Chao Wan
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; (H.Z.); (Z.Z.); (F.Z.)
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine (Shenzhen Base), Ministry of Education, School of Biomedical Sciences Core Laboratory, Institute of Stem Cell, Genomics and Translational Research, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
6
|
Li J, Sun L, Bian F, Pandol SJ, Li L. Emerging approaches for the development of artificial islets. SMART MEDICINE 2024; 3:e20230042. [PMID: 39188698 PMCID: PMC11235711 DOI: 10.1002/smmd.20230042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/05/2024] [Indexed: 08/28/2024]
Abstract
The islet of Langerhans, functioning as a "mini organ", plays a vital role in regulating endocrine activities due to its intricate structure. Dysfunction in these islets is closely associated with the development of diabetes mellitus (DM). To offer valuable insights for DM research and treatment, various approaches have been proposed to create artificial islets or islet organoids with high similarity to natural islets, under the collaborative effort of biologists, clinical physicians, and biomedical engineers. This review investigates the design and fabrication of artificial islets considering both biological and tissue engineering aspects. It begins by examining the natural structures and functions of native islets and proceeds to analyze the protocols for generating islets from stem cells. The review also outlines various techniques used in crafting artificial islets, with a specific focus on hydrogel-based ones. Additionally, it provides a concise overview of the materials and devices employed in the clinical applications of artificial islets. Throughout, the primary goal is to develop artificial islets, thereby bridging the realms of developmental biology, clinical medicine, and tissue engineering.
Collapse
Affiliation(s)
- Jingbo Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| | - Lingyu Sun
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Feika Bian
- Department of Clinical LaboratoryNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Stephen J. Pandol
- Division of GastroenterologyDepartment of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Ling Li
- Department of EndocrinologyZhongda HospitalSchool of MedicineSoutheast UniversityNanjingChina
| |
Collapse
|
7
|
Mei L, Yuwei Y, Weiping L, Zhiran X, Bingzheng F, Jibing C, Hongjun G. Strategy for Clinical Setting of Co-transplantation of Mesenchymal Stem Cells and Pancreatic Islets. Cell Transplant 2024; 33:9636897241259433. [PMID: 38877672 PMCID: PMC11179456 DOI: 10.1177/09636897241259433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/06/2024] [Indexed: 06/16/2024] Open
Abstract
Islet transplantation may be the most efficient therapeutic technique for patients with type 1 diabetes mellitus (T1DM). However, the clinical application of this method is faced with numerous limitations, including isolated islet apoptosis, recipient rejection, and graft vascular reconstruction. Mesenchymal stem cells (MSCs) possess anti-apoptotic, immunomodulatory, and angiogenic properties. Here, we review recent studies on co-culture and co-transplantation of islets with MSCs. We have summarized the methods of preparation of co-transplantation, especially the merits of co-culture, and the effects of co-transplantation. Accumulating experimental evidence shows that co-culture of islets with MSCs promotes islet survival, enhances islet secretory function, and prevascularizes islets through various pretransplant preparations. This review is expected to provide a reference for exploring the use of MSCs for clinical islet co-transplantation.
Collapse
Affiliation(s)
- Liang Mei
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Yang Yuwei
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Liang Weiping
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xu Zhiran
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Feng Bingzheng
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Chen Jibing
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| | - Gao Hongjun
- Ruikang Hospital affiliated to Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Clinical Research Center for Kidney Diseases of Integrated Traditional Chinese and Western Medicine, Nanning, China
| |
Collapse
|
8
|
Asthana A, Chaimov D, Tamburrini R, Gazia C, Gallego A, Lozano T, Heo JH, Byers LN, Tomei A, Fraker CA, Walker SJ, Lee SJ, Opara EC, Orlando G. Decellularized human pancreatic extracellular matrix-based physiomimetic microenvironment for human islet culture. Acta Biomater 2023; 171:261-272. [PMID: 37742726 PMCID: PMC10615794 DOI: 10.1016/j.actbio.2023.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
A strategy that seeks to combine the biophysical properties of inert encapsulation materials like alginate with the biochemical niche provided by pancreatic extracellular matrix (ECM)-derived biomaterials, could provide a physiomimetic pancreatic microenvironment for maintaining long-term islet viability and function in culture. Herein, we have demonstrated that incorporating human pancreatic decellularized ECM within alginate microcapsules results in a significant increase in Glucose Stimulation Index (GSI) and total insulin secreted by encapsulated human islets, compared to free islets and islets encapsulated in only alginate. ECM supplementation also resulted in long-term (58 days) maintenance of GSI levels, similar to that observed in free islets at the first time point (day 5). At early time points in culture, ECM promoted gene expression changes through ECM- and cell adhesion-mediated pathways, while it demonstrated a mitochondria-protective effect in the long-term. STATEMENT OF SIGNIFICANCE: The islet isolation process can damage the islet extracellular matrix, resulting in loss of viability and function. We have recently developed a detergent-free, DI-water based method for decellularization of human pancreas to produce a potent solubilized ECM. This ECM was added to alginate for microencapsulation of human islets, which resulted in significantly higher stimulation index and total insulin production, compared to only alginate capsules and free islets, over long-term culture. Using ECM to preserve islet health and function can improve transplantation outcomes, as well as provide novel materials and platforms for studying islet biology in microfluidic, organ-on-a-chip, bioreactor and 3D bioprinted systems.
Collapse
Affiliation(s)
- Amish Asthana
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA.
| | - Deborah Chaimov
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Riccardo Tamburrini
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Carlo Gazia
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA; Department of Surgery, Tor Vergata University of Rome, Italy
| | | | | | - Jun-Ho Heo
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Lori N Byers
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Alice Tomei
- Diabetes Research Institute, University of Miami, Miami, USA
| | | | - Stephen J Walker
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA
| | - Giuseppe Orlando
- Department of Surgery, Wake Forest Baptist Medical Center, Medical Center Boulevard, Winston Salem, USA; Wake Forest Institute for Regenerative Medicine, Winston Salem, USA; Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, USA.
| |
Collapse
|
9
|
Johnson CD, Aranda-Espinoza H, Fisher JP. A Case for Material Stiffness as a Design Parameter in Encapsulated Islet Transplantation. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:334-346. [PMID: 36475851 PMCID: PMC10442690 DOI: 10.1089/ten.teb.2022.0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Diabetes is a disease that plagues over 463 million people globally. Approximately 40 million of these patients have type 1 diabetes mellitus (T1DM), and the global incidence is increasing by up to 5% per year. T1DM is where the body's immune system attacks the pancreas, specifically the pancreatic beta cells, with antibodies to prevent insulin production. Although current treatments such as exogenous insulin injections have been successful, exorbitant insulin costs and meticulous administration present the need for alternative long-term solutions to glucose dysregulation caused by diabetes. Encapsulated islet transplantation (EIT) is a tissue-engineered solution to diabetes. Donor islets are encapsulated in a semipermeable hydrogel, allowing the diffusion of oxygen, glucose, and insulin but preventing leukocyte infiltration and antibody access to the transplanted cells. Although successful in small animal models, EIT is still far from commercial use owing to necessary long-term systemic immunosuppressants and consistent immune rejection. Most published research has focused on tailoring the characteristics of the capsule material to promote clinical viability. However, most studies have been limited in scope to biochemical changes. Current mechanobiology studies on the effect of substrate stiffness on the function of leukocytes, especially macrophages-primary foreign body response (FBR) orchestrators, show promise in tailoring a favorable response to tissue-engineered therapies such as EIT. In this review, we explore strategies to improve the clinical viability of EIT. A brief overview of the immune system, the FBR, and current biochemical approaches will be elucidated throughout this exploration. Furthermore, an argument for using substrate stiffness as a capsule design parameter to increase EIT efficacy and clinical viability will be posed.
Collapse
Affiliation(s)
- Courtney D. Johnson
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| | - Helim Aranda-Espinoza
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
- Fischell Department of Bioengineering, Center for Engineering Complex Tissues, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
10
|
Lu K, Brauns T, Sluder AE, Poznansky MC, Dogan F. Combinatorial islet protective therapeutic approaches in β-cell transplantation: Rationally designed solutions using a target product profile. FASEB Bioadv 2023; 5:287-304. [PMID: 37415930 PMCID: PMC10320848 DOI: 10.1096/fba.2023-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 07/08/2023] Open
Abstract
While progress has been made in the development of islet cell transplantation (ICT) as a viable alternative to the use of exogenous insulin therapy in the treatment of type 1 diabetes, it has not yet achieved its full potential in clinical studies. Ideally, ICT would enable lifelong maintenance of euglycemia without the need for exogenous insulin, blood glucose monitoring or systemic immune suppression. To achieve such an optimal result, therapeutic approaches should simultaneously promote long-term islet viability, functionality, and localized immune protection. In practice, however, these factors are typically tackled individually. Furthermore, while the requirements of optimal ICT are implicitly acknowledged across numerous publications, the literature contains few comprehensive articulations of the target product profile (TPP) for an optimal ICT product, including key characteristics of safety and efficacy. This review aims to provide a novel TPP for ICT and presents promising tried and untried combinatorial approaches that could be used to achieve the target product profile. We also highlight regulatory barriers to the development and adoption of ICT, particularly in the United States, where ICT is only approved for use in academic clinical trials and is not reimbursed by insurance carriers. Overall, this review argues that the clear definition of a TPP in addition to the use of combinatorial approaches could help to overcome the clinical barriers to the widespread adoption of ICT for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Katie Lu
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
| | - Timothy Brauns
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Ann E. Sluder
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| | - Fatma Dogan
- Vaccine and Immunotherapy CenterMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
11
|
Urbanczyk M, Jeyagaran A, Zbinden A, Lu CE, Marzi J, Kuhlburger L, Nahnsen S, Layland SL, Duffy G, Schenke-Layland K. Decorin improves human pancreatic β-cell function and regulates ECM expression in vitro. Matrix Biol 2023; 115:160-183. [PMID: 36592738 DOI: 10.1016/j.matbio.2022.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/01/2023]
Abstract
Transplantation of islets of Langerhans is a promising alternative treatment strategy in severe cases of type 1 diabetes mellitus; however, the success rate is limited by the survival rate of the cells post-transplantation. Restoration of the native pancreatic niche during transplantation potentially can help to improve cell viability and function. Here, we assessed for the first time the regulatory role of the small leucine-rich proteoglycan decorin (DCN) in insulin secretion in human β-cells, and its impact on pancreatic extracellular matrix (ECM) protein expression in vitro. In depth analyses utilizing next-generation sequencing as well as Raman microspectroscopy and Raman imaging identified pathways related to glucose metabolism to be upregulated in DCN-treated cells, including oxidative phosphorylation within the mitochondria as well as proteins and lipids of the endoplasmic reticulum. We further showed the effectiveness of DCN in a transplantation setting by treating collagen type 1-encapsulated β-cell-containing pseudo-islets with DCN. Taken together, in this study, we demonstrate the potential of DCN to improve the function of insulin-secreting β-cells while reducing the expression of ECM proteins affiliated with fibrotic capsule formation, making DCN a highly promising therapeutic agent for islet transplantation.
Collapse
Affiliation(s)
- Max Urbanczyk
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Aline Zbinden
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Immunology, Leiden University Medical Center Leiden, ZA 2333, the Netherlands
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany
| | - Julia Marzi
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany
| | - Laurence Kuhlburger
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany; Biomedical Data Science, Department of Computer Science, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; Department of Women's Health, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Garry Duffy
- Discipline of Anatomy and the Regenerative Medicine Institute, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland; Science Foundation Ireland (SFI) Centre for Research in Advanced Materials for Biomedical Engineering (AMBER), Trinity College Dublin & National University of Ireland Galway, Galway, Ireland
| | - Katja Schenke-Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen 72076, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
12
|
Gou W, Hua W, Swaby L, Cui W, Green E, Morgan KA, Strange C, Wang H. Stem Cell Therapy Improves Human Islet Graft Survival in Mice via Regulation of Macrophages. Diabetes 2022; 71:2642-2655. [PMID: 36084289 PMCID: PMC9750955 DOI: 10.2337/db22-0117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/01/2022] [Indexed: 01/23/2023]
Abstract
Islet/β-cell transplantation offers great hope for patients with type 1 diabetes. We assessed the mechanisms of how intrahepatic coinfusion of human α-1 antitrypsin (hAAT)-engineered mesenchymal stromal cells (hAAT-MSCs) improves survival of human islet grafts posttransplantation (PT). Longitudinal in vivo bioluminescence imaging studies identified significantly more islets in the livers bearing islets cotransplanted with hAAT-MSCs compared with islets transplanted alone. In vitro mechanistic studies revealed that hAAT-MSCs inhibit macrophage migration and suppress IFN-γ-induced M1-like macrophages while promoting IL-4-induced M2-like macrophages. In vivo this translated to significantly reduced CD11c+ and F4/80+ cells and increased CD206+ cells around islets cotransplanted with hAAT-MSCs as identified by multiplex immunofluorescence staining. Recipient-derived F4/80+and CD11b+ macrophages were mainly present in the periphery of an islet, while CD11c+ and CD206+ cells appeared inside an islet. hAAT-MSCs inhibited macrophage migration and skewed the M1-like phenotype toward an M2 phenotype both in vitro and in vivo, which may have favored islet survival. These data provide evidence that hAAT-MSCs cotransplanted with islets remain in the liver and shift macrophages to a protective state that favors islet survival. This novel strategy may be used to enhance β-cell survival during islet/β-cell transplantation for the treatment of type 1 diabetes or other diseases.
Collapse
Affiliation(s)
- Wenyu Gou
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
| | - Wei Hua
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Lindsay Swaby
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Erica Green
- Department of Surgery, Medical University of South Carolina, Charleston, SC
| | | | - Charlie Strange
- Department of Medicine, Medical University of South Carolina, Charleston, SC
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC
- Center for Cellular Therapy, Medical University of South Carolina, Charleston, SC
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC
| |
Collapse
|
13
|
Jeyagaran A, Lu CE, Zbinden A, Birkenfeld AL, Brucker SY, Layland SL. Type 1 diabetes and engineering enhanced islet transplantation. Adv Drug Deliv Rev 2022; 189:114481. [PMID: 36002043 PMCID: PMC9531713 DOI: 10.1016/j.addr.2022.114481] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 01/24/2023]
Abstract
The development of new therapeutic approaches to treat type 1 diabetes mellitus (T1D) relies on the precise understanding and deciphering of insulin-secreting β-cell biology, as well as the mechanisms responsible for their autoimmune destruction. β-cell or islet transplantation is viewed as a potential long-term therapy for the millions of patients with diabetes. To advance the field of insulin-secreting cell transplantation, two main research areas are currently investigated by the scientific community: (1) the identification of the developmental pathways that drive the differentiation of stem cells into insulin-producing cells, providing an inexhaustible source of cells; and (2) transplantation strategies and engineered transplants to provide protection and enhance the functionality of transplanted cells. In this review, we discuss the biology of pancreatic β-cells, pathology of T1D and current state of β-cell differentiation. We give a comprehensive view and discuss the different possibilities to engineer enhanced insulin-secreting cell/islet transplantation from a translational perspective.
Collapse
Affiliation(s)
- Abiramy Jeyagaran
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University Tübingen, 72770 Reutlingen, Germany
| | - Chuan-En Lu
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Aline Zbinden
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, German Center for Diabetes Research (DZD e.V.), Munich, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany
| | - Shannon L Layland
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tübingen, 72076 Tübingen, Germany; Department of Women's Health, Eberhard Karls University, 72076 Tübingen, Germany.
| |
Collapse
|
14
|
Microfluidic Technology for Evaluating and Preserving Islet Function for Islet Transplant in Type 1 Diabetes. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Badalan M, Ghigliotti G, Achard JL, Bottausci F, Balarac G. Physical Analysis of the Centrifugal Microencapsulation Process. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matei Badalan
- Université Grenoble Alpes, CEA, LETI, Technologies for Healthcare and biology division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
| | | | - Jean-Luc Achard
- Université Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
| | - Frédéric Bottausci
- Université Grenoble Alpes, CEA, LETI, Technologies for Healthcare and biology division, Microfluidic Systems and Bioengineering Lab, 38000 Grenoble, France
| | - Guillaume Balarac
- Université Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France
- Institut Universitaire de France (IUF), 75000 Paris, France
| |
Collapse
|
16
|
Du S, Li Y, Geng Z, Zhang Q, Buhler LH, Gonelle-Gispert C, Wang Y. Engineering Islets From Stem Cells: The Optimal Solution for the Treatment of Diabetes? Front Immunol 2022; 13:869514. [PMID: 35572568 PMCID: PMC9092457 DOI: 10.3389/fimmu.2022.869514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a metabolic disease characterized by insulin deficiency. Bioengineering of stem cells with the aim to restore insulin production and glucose regulation has the potential to cure diabetic patients. In this review, we focus on the recent developments for bioengineering of induced pluripotent stem cells (iPSCs), mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and pancreatic progenitor cells in view of generating insulin producing and glucose regulating cells for β-cell replacement therapies. Recent clinical trials using islet cells derived from stem cells have been initiated for the transplantation into diabetic patients, with crucial bottlenecks of tumorigenesis, post-transplant survival, genetic instability, and immunogenicity that should be further optimized. As a new approach given high expectations, bioengineered islets from stem cells occupies considerable potential for the future clinical application and addressing the treatment dilemma of diabetes.
Collapse
Affiliation(s)
- Suya Du
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjiao Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhen Geng
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Qi Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo H Buhler
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Chengdu, China.,Institute of Organ Transplantation, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, China
| |
Collapse
|
17
|
Koehler N, Buhler L, Egger B, Gonelle-Gispert C. Multipotent Mesenchymal Stromal Cells Interact and Support Islet of Langerhans Viability and Function. Front Endocrinol (Lausanne) 2022; 13:822191. [PMID: 35222280 PMCID: PMC8864309 DOI: 10.3389/fendo.2022.822191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes (T1D) is a widespread disease, affecting approximately 41.5 million people worldwide. It is generally treated with exogenous insulin, maintaining physiological blood glucose levels but also leading to long-term therapeutic complications. Pancreatic islet cell transplantation offers a potential alternative treatment to insulin injections. Shortage of human organ donors has raised the interest for porcine islet xenotransplantation. Neonatal porcine islets are highly available, can proliferate and mature in vitro as well as after transplantation in vivo. Despite promising preclinical results, delayed insulin secretion caused by immaturity and immunogenicity of the neonatal porcine islets remains a challenge for their clinical application. Multipotent mesenchymal stromal cells (MSCs) are known to have pro-angiogenic, anti-inflammatory and immunomodulatory effects. The current state of research emphasizes the great potential of co-culture and co-transplantation of islet cells with MSCs. Studies have shown enhanced islet proliferation and maturation, insulin secretion and graft survival, resulting in an improved graft outcome. This review summarizes the immunomodulatory and anti-inflammatory properties of MSC in the context of islet transplantation.
Collapse
Affiliation(s)
- Naomi Koehler
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Leo Buhler
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Bernhard Egger
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Department of Surgery, Cantonal Hospital Fribourg, Fribourg, Switzerland
| | - Carmen Gonelle-Gispert
- Surgical Research Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Carmen Gonelle-Gispert,
| |
Collapse
|
18
|
Ghasemi A, Akbari E, Imani R. An Overview of Engineered Hydrogel-Based Biomaterials for Improved β-Cell Survival and Insulin Secretion. Front Bioeng Biotechnol 2021; 9:662084. [PMID: 34513805 PMCID: PMC8427138 DOI: 10.3389/fbioe.2021.662084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
Islet transplantation provides a promising strategy in treating type 1 diabetes as an autoimmune disease, in which damaged β-cells are replaced with new islets in a minimally invasive procedure. Although islet transplantation avoids the complications associated with whole pancreas transplantations, its clinical applications maintain significant drawbacks, including long-term immunosuppression, a lack of compatible donors, and blood-mediated inflammatory responses. Biomaterial-assisted islet transplantation is an emerging technology that embeds desired cells into biomaterials, which are then directly transplanted into the patient, overcoming the aforementioned challenges. Among various biomaterials, hydrogels are the preferred biomaterial of choice in these transplants due to their ECM-like structure and tunable properties. This review aims to present a comprehensive overview of hydrogel-based biomaterials that are engineered for encapsulation of insulin-secreting cells, focusing on new hydrogel design and modification strategies to improve β-cell viability, decrease inflammatory responses, and enhance insulin secretion. We will discuss the current status of clinical studies using therapeutic bioengineering hydrogels in insulin release and prospective approaches.
Collapse
Affiliation(s)
| | | | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
19
|
Ramirez M, Courtoy G, Kharrat O, de Beukelaer M, Mourad N, Guiot Y, Bouzin C, Gianello P. Semi-automated digital quantification of cellular infiltrates for in vivo evaluation of transplanted islets of Langerhans encapsulated with bioactive materials. Xenotransplantation 2021; 28:e12704. [PMID: 34218466 DOI: 10.1111/xen.12704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/29/2021] [Accepted: 06/24/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND In the field of xenotransplantation, digital image analysis (DIA) is an asset to quantify heterogeneous cell infiltrates around transplanted encapsulated islets. MATERIALS AND METHODS RGD-alginate was used to produce empty capsules or to encapsulate neonatal porcine islets (NPI) with different combinations of human pancreatic extracellular matrix (hpECM), porcine mesenchymal stem cells (pMSC) and a chitosan anti-fouling coating. Capsules were transplanted subcutaneously in rats for one month and then processed for immunohistochemistry. Immunostainings for macrophages (CD68) and lymphocytes (CD3) were quantified by DIA in two concentric regions of interest (ROI) around the capsules. DIA replicability and reproducibility were assessed by two blind operators. Repeatability was evaluated by processing the same biopsies at different time points. DIA was also compared with quantification by point counting (PC). RESULTS Methodology validation: different sizes of ROIs were highly correlated. Intraclass correlation coefficients confirmed replicability and reproducibility. Repeatability showed a very strong correlation with CD3 stains and moderate/strong for CD68 stains. Group comparisons for CD68 IHC at each time point proved internal consistency. Point counting and DIA were strongly correlated with both CD3 and CD68. Capsule biocompatibility: Macrophage infiltration was higher around capsules containing biomaterials than around empty and RGD-alginate-NPI capsules. Lymphocytic infiltration was comparable among groups containing cells and higher than in empty capsules. CONCLUSION We validated a semi-automated quantification methodology to assess cellular infiltrates and successfully applied it to investigate graft biocompatibility, showing that neonatal porcine islets encapsulated in alginate alone triggered less infiltration than capsules containing islets and bioactive materials.
Collapse
Affiliation(s)
- Matias Ramirez
- Laboratory of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Guillaume Courtoy
- IREC Imaging Platform, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Oumaima Kharrat
- Laboratory of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Michele de Beukelaer
- IREC Imaging Platform, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Nizar Mourad
- Laboratory of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | - Yves Guiot
- Department of Pathology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Pierre Gianello
- Laboratory of Experimental Surgery and Transplantation, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
20
|
Tissue Engineering Strategies for Improving Beta Cell Transplantation Outcome. CURRENT TRANSPLANTATION REPORTS 2021. [DOI: 10.1007/s40472-021-00333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
Purpose of Review
Beta cell replacement therapy as a form of islet transplantation is a promising alternative therapy with the possibility to make selected patients with type 1 diabetes (T1D) insulin independent. However, this technique faces challenges such as extensive activation of the host immune system post-transplantation, lifelong need for immunosuppression, and the scarcity of islet donor pancreas. Advancement in tissue engineering strategies can improve these challenges and allow for a more widespread application of this therapy. This review will discuss the recent development and clinical translation of tissue engineering strategies in beta cell replacement therapy.
Recent Findings
Tissue engineering offers innovative solutions for producing unlimited glucose responsive cells and fabrication of appropriate devices/scaffolds for transplantation applications. Generation of pancreatic organoids with supporting cells in biocompatible biomaterials is a powerful technique to improve the function of insulin-producing cell clusters. Fabrication of physical barriers such as encapsulation strategies can protect the cells from the host immune system and allow for graft retrieval, although this strategy still faces major challenges to fully restore physiological glucose regulation.
Summary
The three main components of tissue engineering strategies including the generation of stem cell-derived insulin-producing cells and organoids and the possibilities for therapeutic delivery of cell-seeded devices to extra-hepatic sites need to come together in order to provide safe and functional insulin-producing devices for clinical beta cell replacement therapy.
Collapse
|