1
|
Zhu W, Cheng X, Zhang H, Li J, Li L, Wei H, Zhang S. Cholic acid inhibits ovarian steroid hormone synthesis and follicular development through farnesoid X receptor signaling in mice. Int J Biol Macromol 2025; 301:140458. [PMID: 39884637 DOI: 10.1016/j.ijbiomac.2025.140458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This study investigated the effects of cholic acid (CA) on steroid hormone synthesis and follicular development in mouse ovaries and the regulatory mechanism of CA on the expression of steroidogenesis-related genes in granulosa cells. The mice were divided into control and CA groups, and serum and ovarian samples were collected after 1, 2, and 4 months of treatment, respectively. The results showed that CA treatment for 1, 2, and 4 months reduced ovarian weights, disrupted the estrous cycle, decreased the numbers of antral follicles and corpora lutea, and lowered the serum levels of progesterone and estradiol. Moreover, in the ovary, CA treatment upregulated the expression of farnesoid X receptor (FXR) and downregulated the expression of steroidogenesis-related genes, including StAR, CYP11A1, and HSD3B1. Mechanistically, FXR knockdown reversed the inhibitory effects of CA on steroidogenesis-related gene expression and cholesterol uptake in granulosa cells. In vitro follicle culture experiments further confirmed that CA suppressed follicle development, decreased the mRNA expression of steroidogenesis-related genes, and reduced progesterone and estradiol secretion. Collectively, our results demonstrated that CA inhibited follicular development and steroid hormone synthesis through FXR signaling.
Collapse
Affiliation(s)
- Wenjun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaochan Cheng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hengyu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiahao Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Hengxi Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Shouquan Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
He S, Li L, Yao Y, Su J, Lei S, Zhang Y, Zeng H. Bile acid and its bidirectional interactions with gut microbiota: a review. Crit Rev Microbiol 2024; 50:684-701. [PMID: 37766478 DOI: 10.1080/1040841x.2023.2262020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Bile acids (BAs) are an important metabolite produced by cholesterol catabolism. It serves important roles in glucose and lipid metabolism and host-microbe interaction. Recent research has shown that different gut-microbiota can secrete different metabolic-enzymes to mediate the deconjugation, dehydroxylation and epimerization of BAs. In addition, microbes mediate BAs transformation and exert physiological functions in metabolic diseases may have a potentially close relationship with diet. Therefore, elaborating the pathways by which gut microbes mediate the transformation of BAs through enzymatic reactions involved are principal to understand the mechanism of effects between dietary patterns, gut microbes and BAs, and to provide theoretical knowledge for the development of functional foods to regulate metabolic diseases. In the present review, we summarized works on the physiological function of BAs, as well as the classification and composition of BAs in different animal models and its organs. In addition, we mainly focus on the bidirectional interactions of gut microbes with BAs transformation, and discuss the effects of diet on microbial transformation of BAs. Finally, we raised the question of further in-depth investigation of the food-gut microbial-BAs relationship, which might contribute to the improvement of metabolic diseases through dietary interventions in the future.
Collapse
Affiliation(s)
- Shuqi He
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lanxin Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yingning Yao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinhan Su
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, China
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
3
|
Jyotsna, Sarkar B, Yadav M, Deka A, Markandey M, Sanyal P, Nagarajan P, Gaikward N, Ahuja V, Mohanty D, Basak S, Gokhale RS. A hepatocyte-specific transcriptional program driven by Rela and Stat3 exacerbates experimental colitis in mice by modulating bile synthesis. eLife 2024; 12:RP93273. [PMID: 39137024 PMCID: PMC11321761 DOI: 10.7554/elife.93273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024] Open
Abstract
Hepatic factors secreted by the liver promote homeostasis and are pivotal for maintaining the liver-gut axis. Bile acid metabolism is one such example wherein, bile acid synthesis occurs in the liver and its biotransformation happens in the intestine. Dysfunctional interactions between the liver and the intestine stimulate varied pathological outcomes through its bidirectional portal communication. Indeed, aberrant bile acid metabolism has been reported in inflammatory bowel disease (IBD). However, the molecular mechanisms underlying these crosstalks that perpetuate intestinal permeability and inflammation remain obscure. Here, we identify a novel hepatic gene program regulated by Rela and Stat3 that accentuates the inflammation in an acute experimental colitis model. Hepatocyte-specific ablation of Rela and Stat3 reduces the levels of primary bile acids in both the liver and the gut and shows a restricted colitogenic phenotype. On supplementation of chenodeoxycholic acid (CDCA), knock-out mice exhibit enhanced colitis-induced alterations. This study provides persuasive evidence for the development of multi-organ strategies for treating IBD and identifies a hepatocyte-specific Rela-Stat3 network as a promising therapeutic target.
Collapse
Affiliation(s)
- Jyotsna
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Binayak Sarkar
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Mohit Yadav
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Alvina Deka
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Manasvini Markandey
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | | | - Perumal Nagarajan
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | | | - Vineet Ahuja
- Department of GastroEnterology, All India Institute of Medical SciencesNew DelhiIndia
| | - Debasisa Mohanty
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Soumen Basak
- System Immunology Laboratory, National Institute of ImmunologyNew DelhiIndia
| | - Rajesh S Gokhale
- Immunometabolism Laboratory, National Institute of ImmunologyNew DelhiIndia
- Department of Biology, Indian Institute of Science Education and ResearchPashanIndia
| |
Collapse
|
4
|
Zheng D, Ge K, Qu C, Sun T, Wang J, Jia W, Zhao A. Comparative profiling of serum, urine, and feces bile acids in humans, rats, and mice. Commun Biol 2024; 7:641. [PMID: 38802554 PMCID: PMC11130135 DOI: 10.1038/s42003-024-06321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Bile acids (BAs) play important pathophysiological roles in both humans and mammalian animals. Laboratory rats and mice are widely used animal models for assessing pharmacological effects and their underlying molecular mechanisms. However, substantial physiological differences exist in BA composition between humans and murine rodents. Here, we comprehensively compare BA profiles, including primary and secondary BAs, along with their amino acid conjugates, and sulfated metabolites in serum, urine, and feces between humans and two murine rodents. We further analyze the capabilities in gut microbial transform BAs among three species and compare sex-dependent variations within each species. As a result, BAs undergo amidation predominately with glycine in humans and taurine in mice but are primarily unamidated in rats. BA sulfation is a unique characteristic in humans, whereas rats and mice primarily perform multiple hydroxylations during BA synthesis and metabolism. For gut microbial transformed BA capabilities, humans are comparable to those of rats, stronger than those of mice in deconjugation and 7α-dehydroxylation, while humans are weak than those of rats or mice in oxidation and epimerization. Such differences enhance our understanding of the divergent experimental outcomes observed in humans and murine rodents, necessitating caution when translating findings from these rodent species to humans.
Collapse
Affiliation(s)
- Dan Zheng
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Kun Ge
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chun Qu
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Tao Sun
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jieyi Wang
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Wei Jia
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Aihua Zhao
- Center for Translational Medicine, Shanghai Key Laboratory of Diabetes Mellitus and Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
5
|
Shibuya T, Sato A, Nishimoto-Kusunose S, Yoshizawa K, Higashi T. Further evidence for blood-to-brain influx of unconjugated bile acids by passive diffusion: Determination of their brain-to-serum concentration ratios in rats by LC/MS/MS. Steroids 2024; 204:109397. [PMID: 38508483 DOI: 10.1016/j.steroids.2024.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Bile acids (BAs) reside in the brain and are probably involved in some neurological disorders. The view that most of unconjugated BAs in the brain are derived across the blood-brain barrier from the periphery by passive diffusion depending on their hydrophobicity is currently dominant, but some studies have made conflicting claims. In this study, the correlation analysis between the rat brain and serum levels of unconjugated BAs with a wider range of hydrophobicity was conducted to obtain further evidence about the blood-to-brain influx of unconjugated BAs by passive diffusion. We first developed the precise, accurate and matrix effect-free LC/ESI-MS/MS methods for quantifying eight major unconjugated BAs in the rat brain and serum. Derivatization was employed for increasing the assay sensitivity and specificity. The analysis using these methods reproduced the strong positive correlations between the brain and serum levels, and significant higher concentrations in the serum than in the brain for all the unconjugated BAs. The BA with the higher logPow (hydrophobicity) had the higher brain-to-serum concentration ratio (mono- > di- > trihydroxy BAs). Furthermore, the hydrophobicity was considered as the stronger factor for the blood-to-brain influx of the BAs than the serum protein binding ratio. Thus, this study provided further evidence supporting that passive diffusion is the major mechanism for the blood-to-brain influx of the unconjugated BAs.
Collapse
Affiliation(s)
- Toma Shibuya
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Anri Sato
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shoich Nishimoto-Kusunose
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kazumi Yoshizawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Tatsuya Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.
| |
Collapse
|
6
|
He Y, Wang X, Liu Q, Liu H, Yang S. Exploring the mechanism of clomiphene citrate to improve ovulation disorder in PCOS rats based on follicular fluid metabolomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2281-2296. [PMID: 37815607 DOI: 10.1007/s00210-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
To examine the effects of clomiphene citrate (CC) on follicular fluid metabolites and related metabolic pathways in rats with polycystic ovary syndrome (PCOS) using non-targeted metabolomics and determine how CC treats ovulation disorder in PCOS. The Sprague Dawley rats were randomly divided into control, model, and CC groups. A PCOS model was established with letrozole. Body weight, ovarian weight, estrus cycles, serum hormone levels, and ovary histopathology of the rats were collected for further evaluation. Moreover, through ultra-performance liquid chromatography-mass spectrometry, the study of follicular fluid metabolites revealed the mechanism of action of CC. CC reduced ovarian weight and regulated estrous cycles and serum hormone levels in PCOS rats but did not affect their body weight. Moreover, the metabolomic results showed that CC adjusted 153 metabolites, among which 16 cross metabolites like testosterone, androstenedione, 17α-hydroxyprogesterone, and cholic acid were considered as potential biomarkers for CC to improve ovulation disorders in PCOS rats. Kyoto Encyclopedia of Genes and Genomes pathway enrichment also showed that the CC group mainly engaged in tryptophan metabolism and steroid hormone biosynthesis. CC can improve ovulation disorders in rats, and its mechanism is related to the regulation of the secretion of serum hormone and follicular fluid metabolites and the amelioration of multi-metabolic pathways.
Collapse
Affiliation(s)
- Yiqing He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xi Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Quan Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Huiping Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shuo Yang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
7
|
Yang J, Pontoglio M, Terzi F. Bile Acids and Farnesoid X Receptor in Renal Pathophysiology. Nephron Clin Pract 2024; 148:618-630. [PMID: 38412845 DOI: 10.1159/000538038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/22/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bile acids (BAs) act not only as lipids and lipid-soluble vitamin detergents but also function as signaling molecules, participating in diverse physiological processes. The identification of BA receptors in organs beyond the enterohepatic system, such as the farnesoid X receptor (FXR), has initiated inquiries into their organ-specific functions. Among these organs, the kidney prominently expresses FXR. SUMMARY This review provides a comprehensive overview of various BA species identified in kidneys and delves into the roles of renal apical and basolateral BA transporters. Furthermore, we explore changes in BAs and their potential implications for various renal diseases, particularly chronic kidney disease. Lastly, we center our discussion on FXR, a key BA receptor in the kidney and a potential therapeutic target for renal diseases, providing current insights into the protective mechanisms associated with FXR agonist treatments. KEY MESSAGES Despite the relatively low concentrations of BAs in the kidney, their presence is noteworthy, with rodents and humans exhibiting distinct renal BA compositions. Renal BA transporters efficiently facilitate either reabsorption into systemic circulation or excretion into the urine. However, adaptive changes in BA transporters are evident during cholestasis. Various renal diseases are accompanied by alterations in BA concentrations and FXR expression. Consequently, the activation of FXR in the kidney could be a promising target for mitigating kidney damage.
Collapse
Affiliation(s)
- Jiufang Yang
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France,
| | - Marco Pontoglio
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| | - Fabiola Terzi
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Université Paris Cité, Paris, France
| |
Collapse
|
8
|
Zhang Y, Yan T, Mo W, Song B, Zhang Y, Geng F, Hu Z, Yu D, Zhang S. Altered bile acid metabolism in skin tissues in response to ionizing radiation: deoxycholic acid (DCA) as a novel treatment for radiogenic skin injury. Int J Radiat Biol 2023; 100:87-98. [PMID: 37540505 DOI: 10.1080/09553002.2023.2245461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVE Radiogenic skin injury (RSI) is a common complication during cancer radiotherapy or accidental exposure to radiation. The aim of this study is to investigate the metabolism of bile acids (BAs) and their derivatives during RSI. METHODS Rat skin tissues were irradiated by an X-ray linear accelerator. The quantification of BAs and their derivatives were performed by liquid chromatography-mass spectrometry (LC-MS)-based quantitative analysis. Key enzymes in BA biosynthesis were analyzed from single-cell RNA sequencing (scRNA-Seq) data of RSI in the human patient and animal models. The in vivo radioprotective effect of deoxycholic acid (DCA) was detected in irradiated SD rats. RESULTS Twelve BA metabolites showed significant differences during the progression of RSI. Among them, the levels of cholic acid (CA), DCA, muricholic acid (MCA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), glycohyodeoxycholic acid (GHCA), 12-ketolithocholic acid (12-ketoLCA) and ursodeoxycholic acid (UDCA) were significantly elevated in irradiated skin, whereas lithocholic acid (LCA), tauro-β-muricholic acid (Tβ-MCA) and taurocholic acid (TCA) were significantly decreased. Additionally, the results of scRNA-Seq indicated that genes involved in 7a-hydroxylation process, the first step in BA synthesis, showed pronounced alterations in skin fibroblasts or keratinocytes. The alternative pathway of BA synthesis is more actively altered than the classical pathway after ionizing radiation. In the model of rat radiogenic skin damage, DCA promoted wound healing and attenuated epidermal hyperplasia. CONCLUSIONS Ionizing radiation modulates the metabolism of BAs. DCA is a prospective therapeutic agent for the treatment of RSI.
Collapse
Affiliation(s)
- Yining Zhang
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Tao Yan
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Wei Mo
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
| | - Bin Song
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuehua Zhang
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Fenghao Geng
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Zhimin Hu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Daojiang Yu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
| | - Shuyu Zhang
- Department of Radiation Medicine, Laboratory of Radiation Medicine, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine, Soochow University, Suzhou, China
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang, China
| |
Collapse
|
9
|
Wang S, Zhang B, Chang X, Zhao H, Zhang H, Zhao T, Qi H. Potential use of seaweed polysaccharides as prebiotics for management of metabolic syndrome: a review. Crit Rev Food Sci Nutr 2023; 64:7707-7727. [PMID: 36971135 DOI: 10.1080/10408398.2023.2191135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Seaweed polysaccharides (SPs) obtained from seaweeds are a class of functional prebiotics. SPs can regulate glucose and lipid anomalies, affect appetite, reduce inflammation and oxidative stress, and therefore have great potential for managing metabolic syndrome (MetS). SPs are poorly digested by the human gastrointestinal tract but are available to the gut microbiota to produce metabolites and exert a series of positive effects, which may be the mechanism by which SPs render their anti-MetS effects. This article reviews the potential of SPs as prebiotics in the management of MetS-related metabolic disturbances. The structure of SPs and studies related to the process of their degradation by gut bacteria and their therapeutic effects on MetS are highlighted. In summary, this review provides new perspectives on SPs as prebiotics to prevent and treat MetS.
Collapse
Affiliation(s)
- Shaopeng Wang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Bo Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Xintao Chang
- Department of Pharmacy, People's Hospital of Zhangqiu District, Jinan, Shandong, PR China
| | - Hailing Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Haojun Zhang
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Tingting Zhao
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, PR China
| | - Huimin Qi
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
10
|
Wei Y, Cheng J, Luo M, Yang S, Xing Q, Cheng J, Lv J, Yu C, Sun L, Shi D, Deng Y. Targeted metabolomics analysis of bile acids and cell biology studies reveal the critical role of glycodeoxycholic acid in buffalo follicular atresia. J Steroid Biochem Mol Biol 2022; 221:106115. [PMID: 35460848 DOI: 10.1016/j.jsbmb.2022.106115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/06/2022] [Accepted: 04/17/2022] [Indexed: 10/18/2022]
Abstract
The follicular fluid of mammals has a high abundance of bile acids and these have proven to be closely related to the follicular atresia. However, the origin and content of bile acids in follicular fluid and its mechanisms on follicular atresia remain largely unknown. In this work, we analyzed the origin of bile acids in buffalo follicles by using cell biology studies, and quantified the subspecies of bile acids in follicular fluid from healthy follicles (HF) and atretic follicles (AF) by targeted metabolomics. The function of differential bile acids on follicular granulosa cells was also studied. The results showed that the bile acids transporters were abundantly expressed in ovarian tissues, but the rate-limiting enzymes were not, which was consistent with the inability of cultured follicular cells to convert cholesterol into bile acids. Targeted metabolomics analysis revealed thirteen differential subspecies of bile acids between HF and AF. The free bile acids were significant down-regulated and their conjugated forms were significantly up-regulated in AF as compared to HF. Finally, cell biological validation found a specific differentially conjugated bile acid, glycodeoxycholic acid (GDCA), which could promote follicular granulosa cell apoptosis and reduce steroid hormone secretion. In summary, our studies suggest that bile acids in buffalo follicles are transported from the blood rather than being synthesized within the follicles. The conjugated bile acids such as GDCA, accumulate in buffalo follicles, and may accelerate atresia by promoting apoptosis of granulosa cells and inhibiting steroid hormone production. These results will provide new clues for studying the physiological role and mechanism of bile acids involved in buffalo follicular atresia.
Collapse
Affiliation(s)
- Yaochang Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Juanru Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Man Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Sufang Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Qinghua Xing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Jiarui Cheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Jiashun Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Chenqi Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Le Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| | - Yanfei Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Animal Reproduction Institute, Guangxi University, Nanning, PR China.
| |
Collapse
|
11
|
Profile of Bile Acid Metabolomics in the Follicular Fluid of PCOS Patients. Metabolites 2021; 11:metabo11120845. [PMID: 34940603 PMCID: PMC8703527 DOI: 10.3390/metabo11120845] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 01/12/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a complex heterogeneous endocrine disease affected by genetic and environmental factors. In this manuscript, we aimed to describe the composition of bile acid metabolomics in the follicular fluid (FF) of PCOS. The FF was collected from 31 control patients and 35 PCOS patients diagnosed according to the Rotterdam diagnostic criteria. The Bile Acid Assay Kit and ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) were used in this study to detect the total bile acid and 24 bile acid metabolites. Glycocholic acid (GC3A), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), and chenodeoxycholic acid-3-β-d-glucuronide (CDCA-3Gln) were elevated in the PCOS group. GCDCA was positively correlated with the serum follicle-stimulating hormone (FSH) (r = 0.3787, p = 0.0017) and luteinizing hormone (LH) (r = 0.2670, p = 0.0302). The level of CDCA-3Gln also rose with the increase in antral follicle counts (AFC) (r = 0.3247, p = 0.0078). Compared with the control group, the primary bile acids (p = 0.0207) and conjugated bile acids (p = 0.0283) were elevated in PCOS. For the first time, our study described the changes in bile acid metabolomics in the FF of PCOS patients, suggesting that bile acids may play an important role in the pathogenesis of PCOS.
Collapse
|