1
|
Iaia N, Noviello C, Muscaritoli M, Costelli P. Inflammation in cancer cachexia: still the central tenet or just another player? Am J Physiol Cell Physiol 2025; 328:C1837-C1852. [PMID: 40250836 DOI: 10.1152/ajpcell.00808.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Cancer cachexia, a multifactorial syndrome characterized by body weight loss, muscle, and adipose tissue wasting, affects patients with cancer. Over time, the definition of cachexia has been modified, including inflammation as one of the main causal factors. Evidence has suggested that a range of proinflammatory mediators may be involved in the regulation of intracellular signaling, resulting in enhanced resting energy expenditure, metabolic changes, and muscle atrophy, all of which are typical features of cachexia. Physiologically speaking, however, inflammation is a response aimed at facing potentially damaging events. Along this line, its induction in the cancer hosts could be an attempt to restore the physiological homeostasis. Interesting observations have shown that cytokines such as interleukins 4 and 6 could improve muscle wasting, supporting the view that the same mediator may exert pro- or anti-inflammatory activity depending on the immune cells involved as well as on the tissue metabolic demand. In conclusion, whether inflammation is crucial to the occurrence of cachexia or just one contributor among others, is still unclear. Indeed, while inflammation is a trigger of cachexia, the alterations of energy and protein metabolism and of the hormonal homeostasis occurring in cachexia likely act as inflammatory stimuli on their own. Whether the causative role prevails over the compensatory one likely depends on the tumor type and stage, patient lifestyle, the presence of comorbidities, and the response to anticancer treatments paving the way to a holistic, personalized approach to cancer cachexia.
Collapse
Affiliation(s)
- Noemi Iaia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Chiara Noviello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
2
|
Ji Y, Jiang Q, Chen B, Chen X, Li A, Shen D, Shen Y, Liu H, Qian X, Yao X, Sun H. Endoplasmic reticulum stress and unfolded protein response: Roles in skeletal muscle atrophy. Biochem Pharmacol 2025; 234:116799. [PMID: 39952329 DOI: 10.1016/j.bcp.2025.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/18/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Skeletal muscle atrophy is commonly present in various pathological states, posing a huge burden on society and patients. Increased protein hydrolysis, decreased protein synthesis, inflammatory response, oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress (ERS) and unfolded protein response (UPR) are all important molecular mechanisms involved in the occurrence and development of skeletal muscle atrophy. The potential mechanisms of ERS and UPR in skeletal muscle atrophy are extremely complex and have not yet been fully elucidated. This article elucidates the molecular mechanisms of ERS and UPR, and discusses their effects on different types of muscle atrophy (muscle atrophy caused by disuse, cachexia, chronic kidney disease (CKD), diabetes mellitus (DM), amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal and bulbar muscular atrophy (SBMA), aging, sarcopenia, obesity, and starvation), and explores the preventive and therapeutic strategies targeting ERS and UPR in skeletal muscle atrophy, including inhibitor therapy and drug therapy. This review aims to emphasize the importance of endoplasmic reticulum (ER) in maintaining skeletal muscle homeostasis, which helps us further understand the molecular mechanisms of skeletal muscle atrophy and provides new ideas and insights for the development of effective therapeutic drugs and preventive measures for skeletal muscle atrophy.
Collapse
Affiliation(s)
- Yanan Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Quan Jiang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Bingqian Chen
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, Jiangsu Province 215500, PR China
| | - Xin Chen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Dingding Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province 226600, PR China
| | - Xiaowei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province 226001, PR China; Research and Development Center for E-Learning, Ministry of Education, Beijing 100816, PR China.
| |
Collapse
|
3
|
Jia H, Wu R, Yang H, Luo KQ. FRET-Based Sensor Zebrafish Reveal Muscle Cells Do Not Undergo Apoptosis in Starvation or Natural Aging-Induced Muscle Atrophy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416811. [PMID: 39903762 PMCID: PMC11947996 DOI: 10.1002/advs.202416811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Indexed: 02/06/2025]
Abstract
Muscle atrophy occurs during natural aging and under disease conditions. Muscle cell apoptosis is considered one of the main causes of muscle atrophy, while several recent studies argued that muscle cells do not die during muscle atrophy. Here, sensor zebrafish are generated to visualize muscle cell apoptosis and the engulfment of dead muscle cells by macrophages. Using these sensor zebrafish, starvation, and natural aging-induced muscle atrophy models are established. The data showed that the diameters of muscle cells decreased in both models; however, muscle cell apoptosis is not found in the process of muscle atrophy. In starvation-induced muscle atrophy, it also showed that the number of nuclei in muscle cells remained constant, and there is no increase in the number of macrophages in muscle tissues, both of which further confirmed that muscle cells do not die. In both models, transcriptional analysis showed that the apoptosis pathway is down-regulated, and autophagy and protein degradation pathways are up-regulated. All these data indicated that although there is a great reduction of muscle mass during starvation or aging-induced muscle atrophy, muscle cells do not die by apoptosis. These findings provide new insights into muscle atrophy and can benefit the treatments for muscle atrophy-related diseases.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
| | - Renfei Wu
- Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
| | - Hongmei Yang
- Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
| | - Kathy Qian Luo
- Faculty of Health SciencesUniversity of MacauTaipaMacao SARChina
- Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacao SARChina
| |
Collapse
|
4
|
Chawrylak K, Homa-Mlak I, Mazurek M, Płecha E, Brzozowska A, Małecka-Massalska T, Mlak R. MiR-22-3p as a promising predictor of nutritional deficiencies in patients with head and neck cancer subjected to intensity-modulated radiation therapy. Sci Rep 2024; 14:28120. [PMID: 39548174 PMCID: PMC11568149 DOI: 10.1038/s41598-024-79641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024] Open
Abstract
Head and neck cancer (HNC) is the seventh most common cancer globally, with 20-60% of patients experiencing nutritional deficiencies. Recent studies indicate that microRNAs (miRNAs) may serve as molecular markers for malnutrition. This study evaluated miR-22-3p as a potential predictor of nutritional deficiencies and a prognostic factor in HNC patients undergoing intensity-modulated radiation therapy (IMRT). From 2014 to 2017, fifty-six advanced HNC patients at the Medical University of Lublin received IMRT, with miR-22-3p levels measured from peripheral blood before treatment. Statistical analysis using MedCalc 15.8 revealed that underweight patients had significantly lower miR-22-3p expression compared to non-underweight patients (0.89 vs. 2.47; p = 0.0233). Moderately or severely malnourished patients also showed reduced miR-22-3p levels compared to well-nourished individuals (1.42 vs. 11.04; p = 0.026). Additionally, patients with critical weight loss (CWL) had significantly lower miR-22-3p levels than those without CWL (0.96 vs. 4.91; p = 0.0015). Weak correlations were found between miR-22-3p levels, cancer stage, body mass index (BMI), and C-reactive protein (CRP), with lower miR-22-3p levels linked to advanced tumor stages and higher CRP levels. This study suggests miR-22-3p as a biomarker for nutritional deficiency risk in HNC patients, though further research is needed to validate its predictive capacity.
Collapse
Affiliation(s)
- Katarzyna Chawrylak
- Student Scientific Group, Department of Human Physiology, Medical University of Lublin, Lublin, 20-080, Poland.
- Department of Surgical Oncology, Medical University of Lublin, Radziwiłłowska 13 St, Lublin, 20-080, Poland.
| | - Iwona Homa-Mlak
- Department of Human Physiology of Chair of Preclinical Sciences, Medical University of Lublin, Lublin, 20-080, Poland
| | - Marcin Mazurek
- Department of Human Physiology of Chair of Preclinical Sciences, Medical University of Lublin, Lublin, 20-080, Poland
| | - Ewelina Płecha
- Student Scientific Group, Department of Human Physiology, Medical University of Lublin, Lublin, 20-080, Poland
| | - Anna Brzozowska
- II Department of Radiotherapy, Center of Oncology of the Lublin Region St. John of Dukla, Lublin, 20-090, Poland
| | - Teresa Małecka-Massalska
- Department of Human Physiology of Chair of Preclinical Sciences, Medical University of Lublin, Lublin, 20-080, Poland
| | - Radosław Mlak
- Department of Laboratory Diagnostics, Medical University of Lublin, Doktora Witolda Chodźki 1 Str, Lublin, 20-093, Poland
| |
Collapse
|
5
|
Tam S, Wear D, Morrone CD, Yu WH. The complexity of extracellular vesicles: Bridging the gap between cellular communication and neuropathology. J Neurochem 2024; 168:2391-2422. [PMID: 38650384 DOI: 10.1111/jnc.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024]
Abstract
Brain-derived extracellular vesicles (EVs) serve a prominent role in maintaining homeostasis and contributing to pathology in health and disease. This review establishes a crucial link between physiological processes leading to EV biogenesis and their impacts on disease. EVs are involved in the clearance and transport of proteins and nucleic acids, responding to changes in cellular processes associated with neurodegeneration, including autophagic disruption, organellar dysfunction, aging, and other cell stresses. In neurodegenerative disorders (e.g., Alzheimer's disease, Parkinson's disease, etc.), EVs contribute to the spread of pathological proteins like amyloid β, tau, ɑ-synuclein, prions, and TDP-43, exacerbating neurodegeneration and accelerating disease progression. Despite evidence for both neuropathological and neuroprotective effects of EVs, the mechanistic switch between their physiological and pathological functions remains elusive, warranting further research into their involvement in neurodegenerative disease. Moreover, owing to their innate ability to traverse the blood-brain barrier and their ubiquitous nature, EVs emerge as promising candidates for novel diagnostic and therapeutic strategies. The review uniquely positions itself at the intersection of EV cell biology, neurophysiology, and neuropathology, offering insights into the diverse biological roles of EVs in health and disease.
Collapse
Affiliation(s)
- Stephanie Tam
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Darcy Wear
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher D Morrone
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Wai Haung Yu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Du J, Wu Q, Bae EJ. Epigenetics of Skeletal Muscle Atrophy. Int J Mol Sci 2024; 25:8362. [PMID: 39125931 PMCID: PMC11312722 DOI: 10.3390/ijms25158362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Skeletal muscle atrophy, characterized by diminished muscle strength and mass, arises from various causes, including malnutrition, aging, nerve damage, and disease-related secondary atrophy. Aging markedly escalates the prevalence of sarcopenia. Concurrently, the incidence of muscle atrophy significantly rises among patients with chronic ailments such as heart failure, diabetes, and chronic obstructive pulmonary disease (COPD). Epigenetics plays a pivotal role in skeletal muscle atrophy. Aging elevates methylation levels in the promoter regions of specific genes within muscle tissues. This aberrant methylation is similarly observed in conditions like diabetes, neurological disorders, and cardiovascular diseases. This study aims to explore the relationship between epigenetics and skeletal muscle atrophy, thereby enhancing the understanding of its pathogenesis and uncovering novel therapeutic strategies.
Collapse
Affiliation(s)
- Jiacheng Du
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Qian Wu
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju 54896, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Ramos CC, Pires J, Gonzalez E, Garcia-Vallicrosa C, Reis CA, Falcon-Perez JM, Freitas D. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:371-396. [PMID: 39697630 PMCID: PMC11648493 DOI: 10.20517/evcna.2024.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Cátia C. Ramos
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
| | - José Pires
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | | | | | - Celso A. Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | - Juan M. Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Derio 48160, Spain
- IKERBASQUE Research Foundation, Bilbao 48009, Spain
| | - Daniela Freitas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
| |
Collapse
|
8
|
Wang Y, Ding S. Extracellular vesicles in cancer cachexia: deciphering pathogenic roles and exploring therapeutic horizons. J Transl Med 2024; 22:506. [PMID: 38802952 PMCID: PMC11129506 DOI: 10.1186/s12967-024-05266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Cancer cachexia (CC) is a debilitating syndrome that affects 50-80% of cancer patients, varying in incidence by cancer type and significantly diminishing their quality of life. This multifactorial syndrome is characterized by muscle and fat loss, systemic inflammation, and metabolic imbalance. Extracellular vesicles (EVs), including exosomes and microvesicles, play a crucial role in the progression of CC. These vesicles, produced by cancer cells and others within the tumor environment, facilitate intercellular communication by transferring proteins, lipids, and nucleic acids. A comprehensive review of the literature from databases such as PubMed, Scopus, and Web of Science reveals insights into the formation, release, and uptake of EVs in CC, underscoring their potential as diagnostic and prognostic biomarkers. The review also explores therapeutic strategies targeting EVs, which include modifying their release and content, utilizing them for drug delivery, genetically altering their contents, and inhibiting key cachexia pathways. Understanding the role of EVs in CC opens new avenues for diagnostic and therapeutic approaches, potentially mitigating the syndrome's impact on patient survival and quality of life.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China
- School of Medicine, Nantong University, Nantong, 226001, P.R. China
| | - Shengguang Ding
- Department of Thoracic Surgery, Affiliated Hospital 2 of Nantong University, Nantong First People's Hospital, Nantong, 226001, P.R. China.
| |
Collapse
|
9
|
Ru Q, Chen L, Xu G, Wu Y. Exosomes in the pathogenesis and treatment of cancer-related cachexia. J Transl Med 2024; 22:408. [PMID: 38689293 PMCID: PMC11062016 DOI: 10.1186/s12967-024-05201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Cancer-related cachexia is a metabolic syndrome characterized by weight loss, adipose tissue decomposition, and progressive skeletal muscle atrophy. It is a major complication of many advanced cancers and seriously affects the quality of life and survival of cancer patients. However, the specific molecules that mediate cancer-related cachexia remain elusive, and the fundamental cellular and molecular mechanisms associated with muscle atrophy and lipidolysis in cancer patients still need to be investigated. Exosomes, a newly discovered class of small extracellular vesicles that facilitate intercellular communication, have a significant role in the onset and development of various cancers. Studies have shown that exosomes play a role in the onset and progression of cancer-related cachexia by transporting active molecules such as nucleic acids and proteins. This review aimed to provide an overview of exosome developments in cancer-induced skeletal muscle atrophy and adipose tissue degradation. More importantly, exosomes were shown to have potential as diagnostic markers or therapeutic strategies for cachexia and were prospected, providing novel strategies for the diagnosis and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
10
|
Ma X, Yang R, Li H, Zhang X, Zhang X, Li X. Role of exosomes in the communication and treatment between OSCC and normal cells. Heliyon 2024; 10:e28148. [PMID: 38560136 PMCID: PMC10981056 DOI: 10.1016/j.heliyon.2024.e28148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/06/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a prevalent cancer that needs new therapeutic targets due to the poor postoperative prognosis in patients. Exosomes are currently one of important research areas owing to their unique properties. Exosomes are capable of acting as drug transporters, as well as facilitating interactions between OSCC and normal cells. Exosomes can be detected in body fluids such as blood, urine, cerebrospinal fluid, and bile. When exosomes are released from donor cells, they can carry various bioactive molecules to recipient cells, where these molecules participate in biological processes. This review highlights the mechanisms of exosome transfer between normal and OSCC cells. Exosomes isolated from donor OSCC cells can carry circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and microRNAs (miRNAs) and play a role in signaling processes in the recipient OSCC cells, human umbilical vein endothelial cells, and macrophages. Exosomes secreted by carcinoma-associated fibroblasts, macrophages, and stem cells can also enter the recipient OSCC cells and modulate signaling events in these cells. Exosomes isolated from OSCC plasma, serum, and saliva are also associated with OSCC prognosis. Furthermore, while exosomes were shown to be associated with chemotherapy resistance in OSCC, they can also be used for drug delivery during OSCC treatment. In this paper, we reviewed the molecular mechanisms and functions of exosomes from different cell sources in OSCC cells, providing a basis for diagnosis and prognosis prediction in OSCC patients, and offering guidance for the design of molecular targets carried by exosomes in OSCC.
Collapse
Affiliation(s)
- Xingyue Ma
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Ruisi Yang
- Hebei Medical University, Hebei Province, Shijiazhuang, 050017, China
| | - Haiyang Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Xiaoyan Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Xiao Zhang
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| | - Xiangjun Li
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Hebei Medical University, Key Laboratory of Stomatology and Clinical Research Centre for Oral Diseases, Hebei Province, Shijiazhuang, 050017, China
| |
Collapse
|
11
|
Penna F, Garcia-Castillo L, Costelli P. Extracellular Vesicles and Exosomes in the Control of the Musculoskeletal Health. Curr Osteoporos Rep 2024; 22:257-265. [PMID: 38424339 PMCID: PMC11061004 DOI: 10.1007/s11914-024-00866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE OF REVIEW The present review will highlight recent reports supporting the relevance of extracellular vesicles to the musculoskeletal system in health and disease. RECENT FINDINGS Preserving the health of the musculoskeletal system is important to maintain a good quality of life, and the bone-muscle crosstalk is crucial in this regard. This latter is largely mediated by extracellular vesicles released by the different cell populations residing in muscle and bone, which deliver cargoes, microRNAs, and proteins being the most relevant ones, to target cells. Extracellular vesicles could be exploited as therapeutic tools, in view of their resistance to destruction in the biological fluid and of the possibility to be functionalized according to the need. Extracellular vesicles are recognized as crucial players in the bone-muscle cross-talk. Additional studies however are required to refine their use as biomarkers of early alterations of the musculoskeletal system, and as potential therapeutic tools.
Collapse
Affiliation(s)
- Fabio Penna
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Lorena Garcia-Castillo
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy
| | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10125, Turin, Italy.
| |
Collapse
|
12
|
Wang LH, Sun YH, Liu H, Yang X, Wen Z, Tian XF. β-Sitosterol attenuates anlotinib resistance in non-small cell lung cancer cells by inhibiting miR-181a-3p/SHQ1 signaling. Chem Biol Drug Des 2024; 103:e14493. [PMID: 38439529 DOI: 10.1111/cbdd.14493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Anlotinib is used for the treatment of advanced non-small cell lung cancer; however, the emergence of drug resistance limits its clinical application. β-sitosterol may also be used to treat lung cancer, but there have been no studies evaluating β-sitosterol against anlotinib-resistant lung cancer. The purpose of this study was to determine the mechanism by which β-sitosterol enhances the sensitivity of lung cancer cells to anlotinib. A549 cells were treated with different concentrations of anlotinib to generate anlotinib-resistant cells (A549/anlotinib cells). miR-181a-3p mimics were transfected into A549/anlotinib cells. A549 and A549/anlotinib cells were treated with β-sitosterol at various concentrations. The Cell Counting Kit-8 (CCK-8) assay was used to measure cell proliferation. Apoptosis was assessed by flow cytometry. Real-time quantitative PCR was used to measure the expression of miR-181a-3p. The interaction of miR-181a-3p with the H/ACA ribonucleoprotein assembly factor (SHQ1) was predicted using the miRDB and TargetScan Human databases and verified with a luciferase reporter assay. The expression of SHQ1, activating transcription factor 6 (ATF6), and glucose-regulated protein 78 (GRP78) were measured by western blot analysis. β-Sitosterol effectively suppressed A549/anlotinib cell proliferation and promoted apoptosis. SHQ1 is a downstream target of miR-181a-3p. The expression of miR-181a-3p was inhibited; however, SHQ1 expression was increased by β-sitosterol treatment of A549/anlotinib cells. The inhibition of SHQ1, ATF6, and GRP78 protein expression by β-sitosterol in A549/anlotinib cells was rescued by increased miR-181a-3p. β-Sitosterol markedly promotes anlotinib-resistant A549 cell apoptosis and inhibits cell proliferation by activating SHQ1/UPR signaling through miR-181a-3p inhibition.
Collapse
Affiliation(s)
- Li-Huai Wang
- Graduate School of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, P.R. China
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Yin-Hui Sun
- School of Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Hua Liu
- Department of Oncology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Xiao Yang
- Department of Oncology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Zhi Wen
- Department of Oncology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| | - Xue-Fei Tian
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, P.R. China
| |
Collapse
|
13
|
Fouladi H, Ebrahimi A, Derakhshan SM, Khaniani MS. Over-expression of mir-181a-3p in serum of breast cancer patients as diagnostic biomarker. Mol Biol Rep 2024; 51:372. [PMID: 38411870 DOI: 10.1007/s11033-024-09272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/19/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND Recently, the significance of epigenetics, particularly in breast cancer (BC), has become increasingly recognized. MicroRNAs (miRNAs), as an epigenetic factor, are offering valuable insights into various aspects of BC, such as its origins and clinical features. Therefore, studying the disruption of specific miRNAs through microarray and RNA-seq techniques is considered useful. METHODS AND MATERIALS We analyzed two microarray datasets (GSE106817 and GSE113486) in order to discover dysregulated miRNAs in the serum of BC patients. Subsequently, RNA-seq analysis was employed on the TCGA data. Two miRNAs, mir-450a-5p and mir-181a-3p, as novel miRNAs in BC studies, were selected for assessment in the serum of 100 BC patients versus 100 healthy female participants. The quantities of the miRNAs described above were determined through the utilization of RT-qPCR. Furthermore, ROC curve assessments were conducted for each individual miRNA. Next, an assessment was conducted to determine the prognostic significance of these miRNAs. CONCLUSIONS In summary, the utilization of microarray and RNA-seq analysis techniques has demonstrated that mir-450a-5p and mir-181a-3p exhibit elevated expression levels in the serum of BC patients. However, it is noteworthy that only mir-181a-3p displayed clinical dysregulation, as confirmed by RT-PCR findings. These miRNAs have been found to play a crucial role in modulating essential cellular processes and biological functions that contribute to cancer development. Furthermore, noteworthy outcomes have been observed for mir-181a-3p in relation to diagnostic and prognostic clinical characteristics.
Collapse
Affiliation(s)
- Hadi Fouladi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Amir Ebrahimi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Genetics, Tabriz, Iran.
| |
Collapse
|
14
|
Zhang X, Zhao Y, Yan W. The role of extracellular vesicles in skeletal muscle wasting. J Cachexia Sarcopenia Muscle 2023; 14:2462-2472. [PMID: 37867162 PMCID: PMC10751420 DOI: 10.1002/jcsm.13364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/01/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Skeletal muscle wasting is a complicated metabolic syndrome accompanied by multiple diseases ranging from cancer to metabolic disorders and infectious conditions. The loss of muscle mass significantly impairs muscle function, resulting in poor quality of life and high mortality of associated diseases. The fundamental cellular and molecular mechanisms inducing muscle wasting have been well established, and those related pathways can be activated by a variety of extracellular signals, including inflammatory cytokines and catabolic stimuli. As an emerging messenger of cell-to-cell communications, extracellular vesicles (EVs) also get involved in the progression of muscle wasting by transferring bioactive cargoes including various proteins and non-coding RNAs to skeletal muscle. Like a double-edged sword, EVs play either a pro-wasting or anti-wasting role in the progression of muscle wasting, highly dependent on their parental cells as well as the specific type of cargo they encapsulate. This review aims to illustrate the current knowledge about the biological function of EVs cargoes in skeletal muscle wasting. Additionally, the potential therapeutic implications of EVs in the diagnosis and treatment of skeletal muscle wasting are also discussed. Simultaneously, several outstanding questions are included to shed light on future research.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| | - Yanxia Zhao
- Cancer Center, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical SciencesWuhan UniversityWuhanChina
| |
Collapse
|
15
|
Abstract
Skeletal muscle plays a paramount role in physical activity, metabolism, and energy balance, while its homeostasis is being challenged by multiple unfavorable factors such as injury, aging, or obesity. Exosomes, a subset of extracellular vesicles, are now recognized as essential mediators of intercellular communication, holding great clinical potential in the treatment of skeletal muscle diseases. Herein, we outline the recent research progress in exosomal isolation, characterization, and mechanism of action, and emphatically discuss current advances in exosomes derived from multiple organs and tissues, and engineered exosomes regarding the regulation of physiological and pathological development of skeletal muscle. These remarkable advances expand our understanding of myogenesis and muscle diseases. Meanwhile, the engineered exosome, as an endogenous nanocarrier combined with advanced design methodologies of biomolecules, will help to open up innovative therapeutic perspectives for the treatment of muscle diseases.
Collapse
|
16
|
Su X, Shen Y, Kim IM, Weintraub NL, Hamrick M, Tang Y. Extracellular Vesicles for Muscle Atrophy Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1418:119-126. [PMID: 37603276 DOI: 10.1007/978-981-99-1443-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Skeletal muscle atrophy is a progressive chronic disease associated with various conditions, such as aging, cancer, and muscular dystrophy. Interleukin-6 (IL-6) is highly correlated with or plays a crucial role in inducing skeletal muscle atrophy. Extracellular vehicles (EVs), including exosomes, mediate cell-cell communication, and alterations in the genetic material contained in EVs during muscle atrophy may impair muscle cell signaling. Transplantation of muscle progenitor cell-derived EVs (MPC-EVs) is a promising approach for treating muscle diseases such as Duchenne muscular dystrophy (DMD). Moreover, stem cell-derived EVs with modification of microRNAs (e.g., miR-26 and miR-29) have been reported to attenuate muscle atrophy. Unbiased RNA-Seq analysis suggests that MPC-EVs may exert an inhibitory effect on IL-6 pathway. Here, we review the latest advances concerning the mechanisms of stem cell/progenitor cell-derived EVs in alleviating muscle atrophy, including anti-inflammatory and anti-fibrotic effects. We also discuss the clinical application of EVs in the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Xuan Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Shen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Il-Man Kim
- Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Mark Hamrick
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
17
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
18
|
Lucotti S, Kenific CM, Zhang H, Lyden D. Extracellular vesicles and particles impact the systemic landscape of cancer. EMBO J 2022; 41:e109288. [PMID: 36052513 PMCID: PMC9475536 DOI: 10.15252/embj.2021109288] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 11/09/2022] Open
Abstract
Intercellular cross talk between cancer cells and stromal and immune cells is essential for tumor progression and metastasis. Extracellular vesicles and particles (EVPs) are a heterogeneous class of secreted messengers that carry bioactive molecules and that have been shown to be crucial for this cell-cell communication. Here, we highlight the multifaceted roles of EVPs in cancer. Functionally, transfer of EVP cargo between cells influences tumor cell growth and invasion, alters immune cell composition and function, and contributes to stromal cell activation. These EVP-mediated changes impact local tumor progression, foster cultivation of pre-metastatic niches at distant organ-specific sites, and mediate systemic effects of cancer. Furthermore, we discuss how exploiting the highly selective enrichment of molecules within EVPs has profound implications for advancing diagnostic and prognostic biomarker development and for improving therapy delivery in cancer patients. Altogether, these investigations into the role of EVPs in cancer have led to discoveries that hold great promise for improving cancer patient care and outcome.
Collapse
Affiliation(s)
- Serena Lucotti
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Candia M Kenific
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - Haiying Zhang
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| | - David Lyden
- Children’s Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children’s Health, Meyer Cancer CenterWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
19
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
20
|
Ye J, Liu X. Interactions between endoplasmic reticulum stress and extracellular vesicles in multiple diseases. Front Immunol 2022; 13:955419. [PMID: 36032078 PMCID: PMC9402983 DOI: 10.3389/fimmu.2022.955419] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Immune responses can severely perturb endoplasmic reticulum (ER) function. As a protein-folding factory and dynamic calcium storage compartment, the ER plays a pivotal role in resisting pathogens and in the development of autoimmune diseases and various other diseases, including cancer, cardiovascular, neurological, orthopedic, and liver-related diseases, metabolic disorders, etc. In recent years, an increasing number of studies have shown that extracellular vesicles (EVs) play important roles in these conditions, suggesting that cells carry out some physiological functions through EVs. The formation of EVs is dependent on the ER. ER stress, as a state of protein imbalance, is both a cause and consequence of disease. ER stress promotes the transmission of pathological messages to EVs, which are delivered to target cells and lead to disease development. Moreover, EVs can transmit pathological messages to healthy cells, causing ER stress. This paper reviews the biological functions of EVs in disease, as well as the mechanisms underlying interactions between ER stress and EVs in multiple diseases. In addition, the prospects of these interactions for disease treatment are described.
Collapse
Affiliation(s)
- Jingyao Ye
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xuehong Liu
- The Third School of Clinical Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
21
|
Ashrafizadeh M, Kumar AP, Aref AR, Zarrabi A, Mostafavi E. Exosomes as Promising Nanostructures in Diabetes Mellitus: From Insulin Sensitivity to Ameliorating Diabetic Complications. Int J Nanomedicine 2022; 17:1229-1253. [PMID: 35340823 PMCID: PMC8943613 DOI: 10.2147/ijn.s350250] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/07/2022] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is among the chronic metabolic disorders that its incidence rate has shown an increase in developed and wealthy countries due to lifestyle and obesity. The treatment of DM has always been of interest, and significant effort has been made in this field. Exosomes belong to extracellular vesicles with nanosized features (30-150 nm) that are involved in cell-to-cell communication and preserving homeostasis. The function of exosomes is different based on their cargo, and they may contain lipids, proteins, and nucleic acids. The present review focuses on the application of exosomes in the treatment of DM; both glucose and lipid levels are significantly affected by exosomes, and these nanostructures enhance lipid metabolism and decrease its deposition. Furthermore, exosomes promote glucose metabolism and affect the level of glycolytic enzymes and glucose transporters in DM. Type I DM results from the destruction of β cells in the pancreas, and exosomes can be employed to ameliorate apoptosis and endoplasmic reticulum (ER) stress in these cells. The exosomes have dual functions in mediating insulin resistance/sensitivity, and M1 macrophage-derived exosomes inhibit insulin secretion. The exosomes may contain miRNAs, and by transferring among cells, they can regulate various molecular pathways such as AMPK, PI3K/Akt, and β-catenin to affect DM progression. Noteworthy, exosomes are present in different body fluids such as blood circulation, and they can be employed as biomarkers for the diagnosis of diabetic patients. Future studies should focus on engineering exosomes derived from sources such as mesenchymal stem cells to treat DM as a novel strategy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, 34956, Istanbul, Turkey
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
22
|
Biogenesis and Function of Extracellular Vesicles in Pathophysiological Processes Skeletal Muscle Atrophy. Biochem Pharmacol 2022; 198:114954. [DOI: 10.1016/j.bcp.2022.114954] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022]
|
23
|
Wang Y, Fang J, Zeng HF, Zhong JF, Li HX, Chen KL. Identification and bioinformatics analysis of differentially expressed milk exosomal microRNAs in milk exosomes of heat-stressed Holstein cows. Funct Integr Genomics 2021; 22:77-87. [PMID: 34839400 DOI: 10.1007/s10142-021-00814-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022]
Abstract
In summer, heat stress is one of the primary reasons for the compromised health and low milk productivity of dairy cows. Hyperthermia affects milk synthesis and secretion in the mammary glands of dairy cows. As molecules for intercellular communication, milk-derived exosomes carry genetic material, proteins, and lipids, playing a crucial role in mammary tissue growth and milk synthesis in dairy cows. The aim of this study was to explore the milk exosomal miRNA profile of heat-stressed and normal Holstein cows. We isolated and identified milk exosomes to screening for differentially expressed miRNAs using small RNA sequencing. Then, TargetScan and miRanda algorithms were used to predict the putative targets of the differentially expressed miRNAs, whereas GO and KEGG pathway enrichment analyses were performed for the differentially expressed miRNA-target genes. Our results showed that 215 miRNAs were significantly differentially expressed in heat-stressed milk exosomes, of which one was upregulated and 214 were significantly downregulated. GO and KEGG enrichment analyses indicated that differentially expressed miRNAs might play a role in apoptosis, autophagy, and the p38 MAPK pathway. qRT-PCR assay verified that the expression of miRNAs was consistent with the sequencing results, warranting further verification of their specific targets of action. In conclusion, changes in the miRNA expression profile of milk exosomes indicated the role of exosomal miRNAs in regulating heat stress resistance and apoptosis in dairy cows. Our results suggested that milk-derived exosomal miRNAs could increase mammary gland resistance to heat stress, thereby enhancing milk synthesis in dairy cows.
Collapse
Affiliation(s)
- Yue Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Fang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han-Fang Zeng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ji-Feng Zhong
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.,Youyuan Research Institute of Dairy Industry Co., Ltd, Nanjing, 211100, China
| | - Hui-Xia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kun-Lin Chen
- Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| |
Collapse
|
24
|
Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. Exosomal MicroRNA-181a Derived From Mesenchymal Stem Cells Improves Gut Microbiota Composition, Barrier Function, and Inflammatory Status in an Experimental Colitis Model. Front Med (Lausanne) 2021; 8:660614. [PMID: 34249964 PMCID: PMC8264068 DOI: 10.3389/fmed.2021.660614] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Background: Mesenchymal stem cell (MSC)-derived exosomes (Exos) are recently proved to be a promising candidate for ulcerative colitis (UC), but the mechanism remains unclear. We investigated the effects of MSC-derived exosomal microRNA-181a (miR-181a) on gut microbiota, immune responses, and intestinal barrier function in UC. Methods: Human bone marrow MSC-derived Exos were extracted and identified via transmission electron microscopy (TEM), Nanoparticle Tracking Analysis (NTA), and Western blotting. Dextran sodium sulfate (DSS)-induced colitis model and lipopolysaccharide (LPS)-induced human colonic epithelial cell (HCOEPIC) model were established to determine the effect of MSC-Exos on gut microbiota, immune responses, and intestinal barrier function in vivo and in vitro. The relationship between miR-181a and UC was analyzed using the Gene Expression Omnibus (GEO) database. MSC-miR-181-inhibitor was used to reveal the role of exosomal miR-181a in DSS-induced colitis. Results: TEM and NTA results showed that Exos of a diameter of about 100 nm with the round and oval vesicle-like structure were successfully extracted. The expressions of the CD63, CD81, and TSG101 proteins were positive in these Exos. After MSC-Exo treatment, the colon length in colitis mice increased; colon inflammatory injury decreased; TNF-α, IL-6, IL-1β, IL-17, and IL-18 levels decreased; and Claudin-1, ZO-1, and IκB levels increased. In addition, the structure of the gut microbiota in DSS-induced colitis mice was changed by MSC-Exos. MSC-Exos showed antiapoptotic effects on LPS-induced HCOEPIC. The protective effects decreased significantly by treatment with MSC-Exos interfered with miR-181a inhibitor in vivo and in vitro. Conclusion: MSC-derived exosomal miR-181a could alleviate experimental colitis by promoting intestinal barrier function. It exerted anti-inflammatory function and affected the gut microbiota. This indicated that MSC exosomal miR-181a may exhibit potential as a disease-modifying drug for UC.
Collapse
Affiliation(s)
- Li Gu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Ren
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xianrui Fang
- Department of Surgery, Shandong Laiyang Health School, Laiyang, China
| | - Lianwen Yuan
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ganglei Liu
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Shalong Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
25
|
Zhou X, Hu S, Zhang Y, Du G, Li Y. The mechanism by which noncoding RNAs regulate muscle wasting in cancer cachexia. PRECISION CLINICAL MEDICINE 2021; 4:136-147. [PMID: 35694153 DOI: 10.1093/pcmedi/pbab008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 02/05/2023] Open
Abstract
Abstract
Cancer cachexia (CC) is a complex metabolic syndrome that accelerates muscle wasting and affects up to 80% of patients with cancer; however, timely diagnostic methods and effective cures are lacking. Although a considerable number of studies have focused on the mechanism of CC-induced muscle atrophy, few novel therapies have been applied in the last decade. In recent years, noncoding RNAs (ncRNAs) have attracted great attention as many differentially expressed ncRNAs in cancer cachectic muscles have been reported to participate in the inhibition of myogenesis and activation of proteolysis. In addition, extracellular vesicles (EVs), which function as ncRNA carriers in intercellular communication, are closely involved in changing ncRNA expression profiles in muscle and promoting the development of muscle wasting; thus, EV-related ncRNAs may represent potential therapeutic targets. This review comprehensively describes the process of ncRNA transmission through EVs and summarizes the pathways and targets of ncRNAs that lead to CC-induced muscle atrophy.
Collapse
Affiliation(s)
- Xueer Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shoushan Hu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yunan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Guannan Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|