1
|
Zhang Y, Qin X, Xu T, Chu F, He B. Research progress on the correlation between cataract occurrence and nutrition. Front Nutr 2024; 11:1405033. [PMID: 39015537 PMCID: PMC11249779 DOI: 10.3389/fnut.2024.1405033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
Cataract is a common eye disease characterized by lens opacity, leading to blurred vision and progressive blindness of the eye. Factors affecting the development of cataracts include nutrition, oxidative stress, micronutrients and inflammatory factors, and also include genetics, toxicity, infrared exposure, hyperuricemia, and mechanical injuries. Among the nutritional factors, a balanced diet, vegetarian diet, dairy products and vegetables are protective against cataracts; high-sodium diet, high intake of carbohydrates and polyunsaturated fatty acids may increase the risk of cataracts; and increased intake of proteins, especially animal proteins, may prevent nuclear cataracts. Intake of antioxidants such as β-carotene, lutein, or zeaxanthin is associated with a reduced risk of cataracts. Minerals such as zinc, selenium, calcium and sodium have also been associated with cataract development. Oxidative stress plays an important role in the development of cataracts and is associated with several antioxidative enzymes and biomarkers such as glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE). Insulin resistance is also an essential risk factor for cataracts, especially in diabetic patients. In conclusion, understanding these influencing factors helps us to better prevent cataracts. And in this article, we will focus on the important factor of diet and nutrition for a detailed discussion.
Collapse
Affiliation(s)
| | | | | | | | - Beihui He
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
2
|
Sim HJ, Kim MR, Song MS, Lee SY. Kv3.4 regulates cell migration and invasion through TGF-β-induced epithelial-mesenchymal transition in A549 cells. Sci Rep 2024; 14:2309. [PMID: 38280903 PMCID: PMC10821870 DOI: 10.1038/s41598-024-52739-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire mesenchymal characteristics. This process induces cell migration and invasion, which are closely related to cancer metastasis and malignancy. EMT consists of various intermediate states that express both epithelial and mesenchymal traits, called partial EMT. Recently, several studies have focused on the roles of voltage-gated potassium (Kv) channels associated with EMT in cancer cell migration and invasion. In this study, we demonstrate the relationship between Kv3.4 and EMT and confirm the effects of cell migration and invasion. With TGF-β treatment, EMT was induced and Kv3.4 was also increased in A549 cells, human lung carcinoma cells. The knockdown of Kv3.4 blocked the EMT progression reducing cell migration and invasion. However, the Kv3.4 overexpressed cells acquired mesenchymal characteristics and increased cell migration and invasion. The overexpression of Kv3.4 also has a synergistic effect with TGF-β in promoting cell migration. Therefore, we conclude that Kv3.4 regulates cancer migration and invasion through TGF-β-induced EMT and these results provide insights into the understanding of cancer metastasis.
Collapse
Affiliation(s)
- Hun Ju Sim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Mi Ri Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Min Seok Song
- Department of Physiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Korea
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Wu B, Sun Y, Hou J. CircMED12L Protects Against Hydrogen Peroxide-induced Apoptotic and Oxidative Injury in Human Lens Epithelial Cells by miR-34a-5p/ALCAM axis. Curr Eye Res 2022; 47:1631-1640. [PMID: 36218352 DOI: 10.1080/02713683.2022.2134427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE Cataract is the leading cause of visual impairment and reversible blindness. Despite advances in surgical removal of cataracts, cataract continues to be a leading public-health issue due to the complications after surgery. Circular RNAs (circRNAs) have been showed to be implicated in the pathophysiology of age-related cataract (ARC). Herein, this work elucidated the role and mechanism of circMED12L in the process of ARC. METHODS Human lens epithelial cells (HLECs) were exposed to hydrogen peroxide (H2O2) in experimental groups. Levels of genes and proteins were measured by qRT-PCR and western blotting. Cell growth was evaluated by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, respectively. The oxidative stress was assessed by detecting the activity of malondialdehyde, catalase, and superoxide dismutase. The interaction between miR-34a-5p and circMED12L or ALCAM (activated leukocyte cell adhesion molecule) was validated using dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS CircMED12L expression was lower in the lens epithelium of ARC patients and H2O2-induced HLECs compared with the normal individuals and untreated cells. Functionally, forced expression of circMED12L could alleviate H2O2-induced viability inhibition, as well as apoptotic and oxidative injury in HLECs. Mechanistically, circMED12L/miR-34a-5p/ALCAM constituted a feedback loop in HLECs. MiR-34a-5p was increased, while ALCAM was decreased in ARC patients and H2O2-induced HLECs. High expression of miR-34a-5p reversed the protective effects of circMED12L on HLECs under H2O2 treatment. Besides, inhibition of miR-34a-5p could repress H2O2-induced apoptotic and oxidative injury in HLECs, which were abolished by subsequent ALCAM knockdown. CONCLUSION Overexpression of circMED12L could protect against H2O2-induced apoptosis and oxidative stress in HLECs by miR-34a-5p/ALCAM axis.
Collapse
Affiliation(s)
- Baohua Wu
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China
| | - Yan Sun
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China.,Department of Ophthalmology, Gansu Rehabilitation Center Hospital, Lanzhou, China.,Clinical School of Traditional Chinese, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingmei Hou
- Department of Ophthalmology, Lanzhou Purui Ophthalmology Hospital, Lanzhou, China.,Department of Ophthalmology, Gansu Rehabilitation Center Hospital, Lanzhou, China
| |
Collapse
|
4
|
Yang X, Zhang F, Liu X, Meng J, Du S, Shao J, Liu J, Fang M. FOXO4 mediates resistance to oxidative stress in lens epithelial cells by modulating the TRIM25/Nrf2 signaling. Exp Cell Res 2022; 420:113340. [PMID: 36075446 DOI: 10.1016/j.yexcr.2022.113340] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/06/2022] [Accepted: 08/31/2022] [Indexed: 11/19/2022]
Abstract
Oxidative stress damage to the lens is a key factor in most cataracts. Forkhead box O 4 (FOXO4), a member of the forkhead box O family, plays a pivotal role in oxidative stress. FOXO4 is upregulated in lens of age-related cataract patients, but its role in cataract has not been elucidated. Herein, we investigated the role and mechanism of FOXO4 during oxidative stress damage in lens epithelial cells. H2O2 treatment enhanced FOXO4 expression in HLEpiC cells. Short hairpin RNAs mediated FOXO4 silence aggravated H2O2-induced cell apoptosis. In addition, upon H2O2 exposure, silencing of FOXO4 reduced SOD and CAT activities, as well as increased intracellular MDA and ROS levels. FOXO4 silencing also inhibited Nrf2 nuclear translocation, followed by reducing the expressions of Nrf2-governed antioxidant genes HO-1 and NOQ-1. Exogenous overexpression of FOXO4 was also involved in this study and exhibited opposite effects of FOXO4-silencing. Mechanistically, FOXO4 directly bound the promoter of TRIM25 and regulated its transcription, thereby activating the Nrf2 signaling. Taken together, in the condition of oxidative stress, the expression of FOXO4 showed a compensatory upregulation and it exhibited an anti-oxidative effect by modulating the transcription of TRIM25, thus activating the Nrf2 signaling. The FOXO4/TRIM25/Nrf2 axis may be associated with the pathological mechanisms of cataract.
Collapse
Affiliation(s)
- Xin Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Fengyan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Xuhui Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jia Meng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Shanshan Du
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jingzhi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Jingjing Liu
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Mengyuan Fang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
5
|
Dong D, Wu J, Sheng L, Gong X, Zhang Z, Yu C. FUNDC1 induces apoptosis and autophagy under oxidative stress via PI3K/Akt/mTOR pathway in cataract lens cells. Curr Eye Res 2022; 47:547-554. [PMID: 35179404 DOI: 10.1080/02713683.2021.2021586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE This purpose of the study is to explore the mRNA and protein expression of FUNDC1 in cataract cells and tissues, clarify the function and mechanism of FUNDC1 in cataract cells under oxidative stress. METHODS We used bioinformatic analysis to screen DEGs in cataract from GSE153933. The expression of FUNDC1 in cataract specimens and cells was measured by RT-qPCR and western blotting. MethPrimer was used to predict CpG island of FUNDC1 promoter. The methylation of FUNDC1 in cataract specimens and cells was determined by MSP assay. Flow cytometry assay was used to measure cell apoptosis in FUNDC1-knockdown and -overexpression SRA01/04 cells. The expression of LC3 was analyzed by immunofluorescence assay. The expression of apoptosis related proteins, autophagy and PI3K/Akt/mTOR related proteins was determined by western blotting. RESULTS The results of bioinformatic analysis revealed that FUNDC1 was upregulation in cataract. FUNDC1 was further high expression in SRA01/04 cells with H2O2 treatment whereas hypomethylation of FUNDC1 in cataract lens cells under oxidative stress. Knockdown of FUNDC1 decreased cell apoptosis and autophagy compared with negative control of SRA01/04 cells. While overexpression of FUNDC1 elevated cell apoptosis and autophagy compared to empty vector group in SRA01/04 cells. Mechanically, FUNDC1 reduced the phosphorylation of PI3K/Akt/mTOR pathway under oxidative stress in SRA01/04 cells. CONCLUSION Our study suggested that FUNDC1 deficiency restrains cell apoptosis and autophagy through inhibiting PI3K/Akt/mTOR signal pathway.
Collapse
Affiliation(s)
- Duo Dong
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Jing Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Lijie Sheng
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Xuewu Gong
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Zhichang Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang Province, 161000, China
| | - Caihan Yu
- Department of Ophthalmology, Xianning Central Hospital, The first Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei Province, 437100, China
| |
Collapse
|