1
|
Li J, Cheng H, Zhao Y, Wang Y, Gong C, Gong R, Li Y. ZNF331 Represses the Proliferation of Head and Neck Squamous Cell Carcinoma via Co-Repressor TRIM28. Oral Dis 2025; 31:1178-1188. [PMID: 39587824 DOI: 10.1111/odi.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
OBJECTIVE This study aims to explore the regulatory effect of Zinc Finger Protein 331 (ZNF331), a KRAB domain-containing transcriptional repressor, in Head and Neck Squamous Cell Carcinoma (HNSCC). MATERIALS AND METHODS Data from The Cancer Genome Atlas (TCGA)-HNSC were analyzed. The roles of ZNF331 in HNSCC cell proliferation, cell cycle progression, and its interacting proteins were explored through in vitro manipulation of ZNF331 expression and in vivo xenograft experiments. The epigenetic mechanisms underlying ZNF331 dysregulation were investigated by assessing its promoter methylation and the effects of DNA methyltransferase (DNMT) knockdown. RESULTS Patients with higher ZNF331 expression had a significantly improved progression-free interval (PFI). ZNF331 overexpression inhibits HNSCC cell proliferation and induces G2/M arrest, while its knockdown enhances oncogenic features. ZNF331 can downregulate the expression of oncogenes such as DDX5, EIF5A, and SET. ZNF331's tumor-suppressive activity requires TRIM28, a universal co-repressor of KRAB-ZNF proteins. ZNF331 expression is suppressed by DNMT3B-mediated promoter hypermethylation. Selective knockdown of DNMT3B, but not DNMT3A, restored ZNF331 expression. CONCLUSIONS ZNF331 acts as a potential tumor suppressor in HNSCC, whose inactivation through DNMT3B-mediated hypermethylation may contribute to HNSCC tumorigenesis. Restoring ZNF331 expression through targeted epigenetic therapies may offer a novel strategy for the treatment of HNSCC.
Collapse
Affiliation(s)
- Ju Li
- Department of Stomatology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
- Vincent Mary School of Engineering, Science and Technology Assumption University of Thailand, Bangkok, Thailand
| | - Hao Cheng
- Department of Medical Aesthetics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yong Zhao
- Department of Medical Aesthetics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| | - Yunkang Wang
- School of Chengdu Medical College, Chengdu, Sichuan, China
| | - Chen Gong
- School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Renguo Gong
- Vincent Mary School of Engineering, Science and Technology Assumption University of Thailand, Bangkok, Thailand
| | - Yan Li
- Department of Medical Aesthetics, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Wang Y, Yang L, Li X, Yang Q, Ma R, Wu Z. Expression of DDX49 in breast cancer and its mechanism regulating the proliferation and metastasis of breast cancer cells. Growth Factors 2025; 43:45-55. [PMID: 40178930 DOI: 10.1080/08977194.2025.2484007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
DEAD-box RNA helicase (DDX) is linked to the invasion, drug resistance, proliferation, and epithelial-mesenchymal transition of tumour cells. This study examined the potential mechanisms of DDX49 in breast cancer. The expression of DDX49 in breast cancer tissues and cells was evaluated. The effects of DDX49 on proliferation, invasion, migration and apoptosis of breast cancer cells were evaluated. The expression of proteins associated with the JAK/STAT pathway was examined. A xenograft tumour model was established. DDX49 expression is elevated in breast cancer tissues and cell lines. shDDX49 suppressed the ability of breast cancer cells to proliferate, invade, and migrate, but promoted apoptosis. Conversely, overexpression of DDX49 exerted an opposite effect. The activation of the JAK-STAT signalling pathway is inhibited by the shDDX49. shDDX49 efficiently inhibits tumour growth in mice with breast cancer. shDDX49 may hinder the growth and spread of breast cancer cells by inhibiting the JAK-STAT pathway.
Collapse
Affiliation(s)
- Yuanbin Wang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lijun Yang
- Department of Chemotherapy Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangli Li
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ruimin Ma
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhihao Wu
- Department of Breast Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
3
|
Ma X, Lu T, Yang Y, Qin D, Tang Z, Cui Y, Wang R. DEAD-box helicase family proteins: emerging targets in digestive system cancers and advances in targeted drug development. J Transl Med 2024; 22:1120. [PMID: 39707322 DOI: 10.1186/s12967-024-05930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/30/2024] [Indexed: 12/23/2024] Open
Abstract
Cancer has become one of the major diseases threatening human health in the twenty-first century due to its incurability. In 2022, new cases of esophageal and gastrointestinal cancers accounted for 17.1% of all newly diagnosed cancer cases worldwide. Despite significant improvements in early cancer screening, clinical diagnostics, and treatments in recent years, the overall prognosis of digestive system cancer patients remains poor. The DEAD-box helicase family, a crucial member of the RNA helicase family, participates in almost every aspect of RNA metabolism, including transcription, splicing, translation, and degradation, and plays a key role in the occurrence and progression of various cancers. This article aims to summarize and discuss the role and potential clinical applications of DEAD-box helicase family proteins in digestive system cancers. The discussion includes the latest progress in the occurrence, development, and treatment of esophageal and gastrointestinal tumors; the main functions of DEAD-box helicase family proteins; their roles in digestive system cancers, including their relationships with clinical factors; effects on cancer proliferation, migration, and invasion; and involved signaling pathways; as well as the existing inhibitory strategies targeting DDX family proteins, are discussed. Additionally, outlooks on future research directions are provided.
Collapse
Affiliation(s)
- Xiaochao Ma
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Tianyu Lu
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Yue Yang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Da Qin
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Ze Tang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| | - Youbin Cui
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China.
| | - Rui Wang
- Department of Thoracic Surgery, Organ Transplantation Center, the First Hospital of Jilin University, 1 Ximin Street, ChangchunJilin, 130021, China
| |
Collapse
|
4
|
Shi Y, Wang J, Yuan Q, Chen Y, Zhao M, Li X, Wang Z, Zhou H, Zhu F, Wei B, Jiang Y, Zhao J, Qiao Y, Dong Z, Liu K. DDX5 promotes esophageal squamous cell carcinoma growth through sustaining VAV3 mRNA stability. Oncogene 2024; 43:3240-3254. [PMID: 39289531 DOI: 10.1038/s41388-024-03162-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Novel therapeutic targets and their inhibitors for esophageal squamous cell carcinoma (ESCC) prevention and therapy are urgently needed. This study aimed to investigate the function of DEAD-box helicase 5 (DDX5) in ESCC progression and to identify a promising inhibitor of DDX5. We verified that DDX5 was highly expressed in ESCC and played an oncogenic role, binding with vav guanine nucleotide exchange factor 3 (VAV3) mRNA and facilitating VAV3 mRNA N6-methyladenosine (m6A) modification by interacting with the m6A methyltransferase 3 (METTL3). M6A-modified VAV3 mRNA was identified by insulin-like growth factor 1 (IGF2BP1), increasing mRNA stability. Methylnissolin-3-β-D-O-glucoside (MD) inhibited ESCC progression through the DDX5-VAV3 axis. Our findings suggest that DDX5 promotes ESCC progression. MD inhibits ESCC progression by targeting DDX5.
Collapse
Affiliation(s)
- Yunshu Shi
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Junyong Wang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qiang Yuan
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Yingying Chen
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Miao Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zitong Wang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hao Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Fangli Zhu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Bing Wei
- Department of Molecule and Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
| | - Jimin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China
| | - Yan Qiao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
5
|
Zhang J, Chen Y, Chen B, Sun D, Sun Z, Liang J, Liang J, Xiong X, Yan H. The dual effect of endoplasmic reticulum stress in digestive system tumors and intervention of Chinese botanical drug extracts: a review. Front Pharmacol 2024; 15:1339146. [PMID: 38449811 PMCID: PMC10917068 DOI: 10.3389/fphar.2024.1339146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Endoplasmic reticulum (ER) homeostasis is essential for maintaining human health, and once imbalanced, it will trigger endoplasmic reticulum stress (ERS), which participates in the development of digestive system tumors and other diseases. ERS has dual effect on tumor cells, activating adaptive responses to promote survival or inducing apoptotic pathways to accelerate cell death of the tumor. Recent studies have demonstrated that Chinese botanical drug extracts can affect the tumor process of the digestive system by regulating ERS and exert anticancer effects. This article summarizes the dual effect of ERS in the process of digestive system tumors and the intervention of Chinese botanical drug extracts in recent years, as reference for the combined treatment of digestive system tumors with Chinese and modern medicine.
Collapse
Affiliation(s)
- Jinlong Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanyu Chen
- Beijing University of Chinese Medicine, Beijing, China
| | - Bo Chen
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Dajuan Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhen Sun
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Junwei Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jing Liang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xin Xiong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Hua Yan
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Secchi M, Lodola C, Garbelli A, Bione S, Maga G. DEAD-Box RNA Helicases DDX3X and DDX5 as Oncogenes or Oncosuppressors: A Network Perspective. Cancers (Basel) 2022; 14:cancers14153820. [PMID: 35954483 PMCID: PMC9367324 DOI: 10.3390/cancers14153820] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The transformation of a normal cell into a cancerous one is caused by the deregulation of different metabolic pathways, involving a complex network of protein–protein interactions. The cellular enzymes DDX3X and DDX5 play important roles in the maintenance of normal cell metabolism, but their deregulation can accelerate tumor transformation. Both DDX3X and DDX5 interact with hundreds of different cellular proteins, and depending on the specific pathways in which they are involved, both proteins can either act as suppressors of cancer or as oncogenes. In this review, we summarize the current knowledge about the roles of DDX3X and DDX5 in different tumors. In addition, we present a list of interacting proteins and discuss the possible contribution of some of these protein–protein interactions in determining the roles of DDX3X and DDX5 in the process of cancer proliferation, also suggesting novel hypotheses for future studies. Abstract RNA helicases of the DEAD-box family are involved in several metabolic pathways, from transcription and translation to cell proliferation, innate immunity and stress response. Given their multiple roles, it is not surprising that their deregulation or mutation is linked to different pathological conditions, including cancer. However, while in some cases the loss of function of a given DEAD-box helicase promotes tumor transformation, indicating an oncosuppressive role, in other contexts the overexpression of the same enzyme favors cancer progression, thus acting as a typical oncogene. The roles of two well-characterized members of this family, DDX3X and DDX5, as both oncogenes and oncosuppressors have been documented in several cancer types. Understanding the interplay of the different cellular contexts, as defined by the molecular interaction networks of DDX3X and DDX5 in different tumors, with the cancer-specific roles played by these proteins could help to explain their apparently conflicting roles as cancer drivers or suppressors.
Collapse
|
7
|
Xu K, Sun S, Yan M, Cui J, Yang Y, Li W, Huang X, Dou L, Chen B, Tang W, Lan M, Li J, Shen T. DDX5 and DDX17—multifaceted proteins in the regulation of tumorigenesis and tumor progression. Front Oncol 2022; 12:943032. [PMID: 35992805 PMCID: PMC9382309 DOI: 10.3389/fonc.2022.943032] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/07/2022] [Indexed: 12/15/2022] Open
Abstract
DEAD-box (DDX)5 and DDX17, which belong to the DEAD-box RNA helicase family, are nuclear and cytoplasmic shuttle proteins. These proteins are expressed in most tissues and cells and participate in the regulation of normal physiological functions; their abnormal expression is closely related to tumorigenesis and tumor progression. DDX5/DDX17 participate in almost all processes of RNA metabolism, such as the alternative splicing of mRNA, biogenesis of microRNAs (miRNAs) and ribosomes, degradation of mRNA, interaction with long noncoding RNAs (lncRNAs) and coregulation of transcriptional activity. Moreover, different posttranslational modifications, such as phosphorylation, acetylation, ubiquitination, and sumoylation, endow DDX5/DDX17 with different functions in tumorigenesis and tumor progression. Indeed, DDX5 and DDX17 also interact with multiple key tumor-promoting molecules and participate in tumorigenesis and tumor progression signaling pathways. When DDX5/DDX17 expression or their posttranslational modification is dysregulated, the normal cellular signaling network collapses, leading to many pathological states, including tumorigenesis and tumor development. This review mainly discusses the molecular structure features and biological functions of DDX5/DDX17 and their effects on tumorigenesis and tumor progression, as well as their potential clinical application for tumor treatment.
Collapse
Affiliation(s)
- Kun Xu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Shenghui Sun
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Peking University Fifth School of Clinical Medicine, Beijing, China
| | - Ju Cui
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Yao Yang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Wenlin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Beidong Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Ming Lan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- *Correspondence: Tao Shen,
| |
Collapse
|
8
|
Endoplasmic Reticulum Stress-Related Four-Biomarker Risk Classifier for Survival Evaluation in Esophageal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:5860671. [PMID: 35342421 PMCID: PMC8956413 DOI: 10.1155/2022/5860671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022]
Abstract
Purpose Esophageal cancer (EC) is a lethal digestive tumor worldwide with a dismal clinical outcome. Endoplasmic reticulum (ER) stress poses essential implications for a variety of tumor malignant behaviors. Here, we set up an ER stress-based risk classifier for assessing patient outcome and exploiting robust targets for medical decision-making of EC cases. Methods 340 EC cases with transcriptome and survival data from two independent public datasets (TCGA and GEO) were recruited for this project. Cox regression analyses were employed to create a risk classifier based on ER stress-related genes (ERGs) which were strongly linked to EC cases' outcomes. Then, we detected and confirmed the predictive ability of our proposed classifier via a host of statistical methods, including survival analysis and ROC method. In addition, immune-associated algorithm was implemented to analyze the immune activity of EC samples. Results Four EGRs (BCAP31, HSPD1, PDHA1, and UBE2D1) were selected to build an EGR-related classifier (ERC). This classifier could distinguish the patients into different risky subgroups. The remarkable differences in patient outcome between the two groups were observed, and similar results were also confirmed in GEO cohort. In terms of the immune analysis, the ERC could forecast the infiltration level of immunocytes, such as Tregs and NK cells. Conclusion We created a four-ERG risk classifier which displays the powerful capability of survival evaluation for EC cases.
Collapse
|
9
|
Tabassum S, Ghosh MK. DEAD-box RNA helicases with special reference to p68: Unwinding their biology, versatility, and therapeutic opportunity in cancer. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|