1
|
Dong H, Liu X, Duan J, Zhang J, Liu H, Shen T. Excessive glucocorticoids combined with RANKL promote the differentiation of bone marrow macrophages (BMM) into osteoclasts and accelerate the progression of osteoporosis by activating the SYK/SHP2/NF-κB signaling pathway. Aging (Albany NY) 2024; 16:12263-12276. [PMID: 39197167 PMCID: PMC11424582 DOI: 10.18632/aging.206084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/13/2024] [Indexed: 08/30/2024]
Abstract
The primary objective of this study was to explore the extensive implications and complex molecular interactions arising from the confluence of excessive glucocorticoids and RANKL on the differentiation process of BMM into osteoclasts, profoundly impacting osteoporosis development. The methodology encompassed X-ray analysis and HE staining for evaluating bone loss in mice, while immunohistochemical staining was utilized to observe phosphorylated SHP2 (p-SHP2) expression. The assessment of several phosphorylated and total protein expression levels, including NF-κB, SHP2, SYK, JAK2, TAK1, NFATC1, c-fos, and Cathepsin K, was conducted via Western blotting. Additional experiments, involving CCK8 and monoclonal proliferation assays, were undertaken to determine BMM proliferation capacity. Immunofluorescence staining facilitated the quantification of TRAP fluorescence intensity. In vivo analysis revealed that glucocorticoid surplus triggers SHP2 signaling pathway activation, accelerating osteoporosis progression. Western blot results demonstrated that SHP2 inhibition could decrease the expression of specific proteins such as p-NF-κB and p-SHP2, with minimal effects on p-SYK levels. In vitro findings indicated that glucocorticoid and RANKL interaction activates the SHP2 pathway through NF-κB and SYK pathways, enhancing expressions of p-JAK2, p-TAK1, NFATC1, c-fos, and Cathepsin K, thereby promoting BMM to osteoclast transformation. Conclusion: Excessive glucocorticoids and RANKL interaction advance osteoclast differentiation from BMM by activating the SYK/SHP2/NF-κB signaling pathway, expediting osteoporosis progression.
Collapse
Affiliation(s)
- Hao Dong
- West Campus of Zibo Central Hospital, Zibo, Shandong, China
| | | | - Jiqiang Duan
- West Campus of Zibo Central Hospital, Zibo, Shandong, China
| | - Jing Zhang
- Zibo Central Hospital, Zibo, Shandong, China
| | - Hao Liu
- Zibo Central Hospital, Zibo, Shandong, China
| | - Tiehui Shen
- West Campus of Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
2
|
Feng M, Chen Y, Chen J, Guo W, Zhao P, Zhang C, Shan X, Chen H, Xu M, Lu R. Stachydrine hydrochloride protects the ischemic heart by ameliorating endoplasmic reticulum stress through a SERCA2a dependent way and maintaining intracellular Ca 2+ homeostasis. Eur J Pharmacol 2024; 973:176585. [PMID: 38636799 DOI: 10.1016/j.ejphar.2024.176585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
This study aimed to explore the effects and mechanism of action of stachydrine hydrochloride (Sta) against myocardial infarction (MI) through sarcoplasmic/endoplasmic reticulum stress-related injury. The targets of Sta against MI were screened using network pharmacology. C57BL/6 J mice after MI were treated with saline, Sta (6 or 12 mg kg-1) for 2 weeks, and adult mouse and neonatal rat cardiomyocytes (AMCMs and NRCMs) were incubated with Sta (10-4-10-6 M) under normoxia or hypoxia for 2 or 12 h, respectively. Echocardiography, Evans blue, and 2,3,5-triphenyltetrazolium chloride (TTC) staining were used for morphological and functional analyses. Endoplasmic reticulum stress (ERS), unfolded protein reaction (UPR), apoptosis signals, cardiomyocyte contraction, and Ca2+ flux were detected using transmission electron microscopy (TEM), western blotting, immunofluorescence, and sarcomere and Fluo-4 tracing. The ingredient-disease-pathway-target network revealed targets of Sta against MI were related to apoptosis, Ca2+ homeostasis and ERS. Both dosages of Sta improved heart function, decreased infarction size, and potentially increased the survival rate. Sta directly alleviated ERS and UPR and elicited less apoptosis in the border myocardium and hypoxic NRCMs. Furthermore, Sta upregulated sarcoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) in both ischaemic hearts and hypoxic NRCMs, accompanied by restored sarcomere shortening, resting intracellular Ca2+, and Ca2+ reuptake time constants (Tau) in Sta-treated hypoxic ARCMs. However, 2,5-di-t-butyl-1,4-benzohydroquinone (BHQ) (25 μM), a specific SERCA inhibitor, totally abolished the beneficial effect of Sta in hypoxic cardiomyocytes. Sta protects the heart from MI by upregulating SERCA2a to maintain intracellular Ca2+ homeostasis, thus alleviating ERS-induced apoptosis.
Collapse
Affiliation(s)
- Minghui Feng
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwen Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingzhi Chen
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
3
|
Gu R, Zhang W, Xu D. Stachydrine is effective and selective against blast phase chronic myeloid leukaemia through inhibition of multiple receptor tyrosine kinases. PHARMACEUTICAL BIOLOGY 2022; 60:700-707. [PMID: 35348419 PMCID: PMC8967197 DOI: 10.1080/13880209.2022.2044862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/07/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Resistance to BCR-ABL tyrosine kinase inhibitor (TKI) is the cause of treatment failure in blast phase chronic myeloid leukaemia (BP-CML). Agents that act synergistically with BCR-ABL TKI are required to improve response. OBJECTIVE This work investigated the effects of stachydrine in CML. MATERIALS AND METHODS CML cells were treated with control or stachydrine at 20, 40 and 80 µM. Proliferation and apoptosis were examined after 72 h treatment. Combination studies were performed in four groups: control, TKI, stachydrine and the combination of stachydrine and TKI. Immunoblotting analysis was performed in CML cells after 24 h treatment. RESULTS Stachydrine inhibited K562 (IC50 61 µM), KCL22 (IC50 141 µM), LAMA84 (IC50 86 µM), Ba/F3 T315I (IC50 26 µM), Ba/F3 WT (IC50 22 µM) and KU812 (IC50 35 µM) proliferation, and induced apoptosis in these CML cell lines. Stachydrine significantly induced apoptosis, inhibited colony formation and self-renewal in BP-CML CD34+ cells. The combination index of stachydrine and TKI combination was <1. Compared to TKI alone, the combination of stachydrine and TKI significantly induced more apoptosis and decreased colony formation in BP-CML CD34+ cells. Stachydrine decreased phosphorylation levels of multiple receptor tyrosine kinases in CML cells. DISCUSSION AND CONCLUSIONS Our study is the first to demonstrate (1) the anticancer activity of stachydrine on primary patient cancer cells; (2) the inhibitory effects of stachydrine on cancer stem cells; (3) the synergism between stachydrine and other anticancer drugs.
Collapse
Affiliation(s)
- Ruixin Gu
- Department of Traditional Chinese Medicine, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhang
- Public Health Division, Hospital of Huazhong Agricultural University, Wuhan, China
| | - Dandan Xu
- Department of Rehabilitation Medicine, Hubei Provincial Hospital of Traditional Chinese Medicine Affiliated to Hubei University of Traditional Chinese Medicine, Wuhan, China
| |
Collapse
|
4
|
Lin B, Xu P, Zheng J, Deng X, Ye Q, Huang Z, Wang N. Effects and mechanisms of natural alkaloids for prevention and treatment of osteoporosis. Front Pharmacol 2022; 13:1014173. [PMID: 36210805 PMCID: PMC9539536 DOI: 10.3389/fphar.2022.1014173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Natural alkaloids are polycyclic, nitrogen-containing, and basic compounds obtained from plants. In this review, the advances in bioactive alkaloids with respect to their chemical structures, herbal sources, and effects for the prevention and treatment of osteoporosis are discussed. Anti-osteoporosis alkaloids are classified into six categories based on the chemical structure, namely, isoquinoline alkaloids, quinolizidine alkaloids, piperidine alkaloids, indole alkaloids, pyrrolizidine alkaloids and steroidal alkaloids. They promote mesenchymal stem cells differentiation, improve osteoblast proliferation, stimulate osteoblast autophagy and suppress osteoclast formation. These natural alkaloids can regulate multiple signaling pathways, including interrupting the tumor necrosis factor receptor associated factor 6- receptor activator of nuclear factor kappa B interaction, inhibiting the nuclear factor kappa B pathway in osteoclasts, activating the p38 mitogen-activated protein kinases pathway in osteoblasts, and triggering the wingless and int-1 pathway in mesenchymal stem cells. This review provides evidence and support for novel drug and clinical treatment of osteoporosis using natural alkaloids.
Collapse
Affiliation(s)
- Bingfeng Lin
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Pingcui Xu
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
| | - Juan Zheng
- Hangzhou Institute for Food and Drug Control, Hangzhou, China
| | - Xuehui Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qitao Ye
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhongping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Nani Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, China
- *Correspondence: Nani Wang,
| |
Collapse
|
5
|
Sun X, Zhou M, Pu J, Wang T. Stachydrine exhibits a novel antiplatelet property and ameliorates platelet-mediated thrombo-inflammation. Biomed Pharmacother 2022; 152:113184. [PMID: 35679717 DOI: 10.1016/j.biopha.2022.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/10/2022] [Accepted: 05/22/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Platelets are versatile anucleate cells involved in thrombosis as well as inflammation. Stachydrine (STA), a major bioactive compound extracted from Motherwort, has multiple pharmacological properties. Nevertheless, the significance of STA in platelet regulation and whether STA could ameliorate platelet-mediated thrombo-inflammation still remain elusive. METHODS Human platelets were used to assess the regulatory effects of STA on platelet activation and interactions with neutrophils in vitro. FeCl3 injury-induced carotid/mesenteric thrombosis and collagen/epinephrine-induced pulmonary thromboembolism model were used to explore whether STA could regulate thrombosis in vivo. Furthermore, a cecal ligation and puncture-induced sepsis model was employed to investigate the role of STA in thrombo-inflammatory diseases. RESULTS STA markedly suppressed platelet activation represented by aggregation, secretion, αIIbβ3-mediated signaling events and calcium mobilization, etc. by inhibiting agonists-induced activation signaling and potentiating cGMP-dependent inhibitory signaling. Mice receiving STA-treated platelets were less susceptible to thrombosis in vivo. In addition, decreased platelet-neutrophil interactions including platelet-neutrophil aggregates and neutrophil extracellular traps, and alleviative sepsis-induced multiorgan damage were observed due to STA-mediated platelet inhibition. CONCLUSION This study suggested the potential therapeutic role of STA in thrombotic and thrombo-inflammatory disorders.
Collapse
Affiliation(s)
- Xianting Sun
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Meng Zhou
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
| | - Ting Wang
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
6
|
Li TL, Tao ZS, Wu XJ, Yang M, Xu HG. Selenium-modified calcium phosphate cement can accelerate bone regeneration of osteoporotic bone defect. J Bone Miner Metab 2021; 39:934-943. [PMID: 34189659 DOI: 10.1007/s00774-021-01240-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
OBJECTIVE The purpose is to observe whether local administration with selenium (Se) can enhance the efficacy of calcium phosphate cement (CPC) in the treatment of osteoporotic bone defects. METHODS Thirty ovariectomized (OVX) rats with two defects were generated and randomly allocated into the following graft study groups: (1) OVX group (n = 10), (2) CPC group (n = 10); and (3) Se-CPC group (n = 10). Then, these selenium-modified calcium phosphate cement (Se-CPC) scaffolds were implanted into the femoral epiphysis bone defect model of OVX rats for 12 weeks. Micro-CT, history, western blot and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis were used to observe the therapeutic effect and to explore the possible mechanism. RESULT Micro-CT and histological analysis evaluation showed that the Se-CPC group presented the strongest effect on bone regeneration and bone mineralization when compared with the CPC group and the OVX group. Protein expressions showed that the oxidative stress protein expressions, such as SOD2 and GPX1 of the Se-CPC group, are significantly higher than those of the OVX group and the CPC group, while Se-CPC remarkably reduced the expression of CAT. RT-qPCR analysis showed that the Se-CPC group displayed more OPG than the OVX and CPC groups (p < 0.05), while Se-CPC exhibited less RANKL than the OVX and CPC groups (p < 0.05). CONCLUSION Our current study demonstrated that Se-CPC is a scheme for rapid repair of femoral condylar defects, and these effects may be achieved by inhibiting local oxidative stress and through OPG/RANKL signaling pathway.
Collapse
Affiliation(s)
- Tian-Lin Li
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Zhou-Shan Tao
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China.
| | - Xing-Jing Wu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Min Yang
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| | - Hong-Guang Xu
- Department of Trauma Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe shan Xi Road, Wuhu, 241001, Anhui, People's Republic of China
| |
Collapse
|