1
|
Li H, Xia W, Guo H, Wang Y, Wang Q, Zhang G, Ma Q, Zhou J, Wang T. Auxin inhibited colonization of antibiotic resistant bacteria in soybean sprouts and spread of resistance genes to endophytic bacteria: Highlighting energy metabolism and immunity mechanism. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138280. [PMID: 40252322 DOI: 10.1016/j.jhazmat.2025.138280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/28/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are widely in vegetables, posing health risk. Plant auxins are commonly used to enhance vegetable yield, yet the regulatory mechanisms governing their impact on ARGs transmission to endophytic bacteria remain poorly understood. This study tracked ARB colonization and ARGs spread into endophytic bacteria in soybean sprouts exposed to gibberellin (GA) and 6-benzyladenine (BA). The application of GA and BA during the imbibition, sprouting, and germination periods of soybean sprouts all inhibited the transfer of ARB and ARGs. The enrichment of ARB and ARGs in different tissues of soybean sprouts was ranked as seed coat > hypocotyl > cotyledon. BA and GA enhanced the stability of plant cell wall-cell membrane system, promoted energy metabolism in plants, and activated the immunity mechanism. Especially, the plant hormone signal transduction pathway under GA exposure explained 44.8 % and 96.7 % of inhibition on ARB colonization and ARGs transfer, respectively; the plant-pathogen interaction pathway dominated the inhibition of antibiotic resistance under BA exposure, which explained 51 % and 65.9 % of inhibition on ARB colonization and ARGs transfer. These findings provide new insights into ARB colonization in soybean sprouts and the transmission of ARGs to endophytic bacteria under auxin stress.
Collapse
Affiliation(s)
- Hu Li
- School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Wenhui Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Yanjie Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qi Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
Hu X, Cai W, Zhang L, Zhu Z, Okita TW, Tian L. Molecular Dialog of Ralstonia solanacearum and Plant Hosts with Highlights on Type III Effectors. Int J Mol Sci 2025; 26:3686. [PMID: 40332227 PMCID: PMC12027289 DOI: 10.3390/ijms26083686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/07/2025] [Accepted: 04/11/2025] [Indexed: 05/08/2025] Open
Abstract
Ralstonia solanacearum is a highly destructive soil-borne bacterium that causes bacterial wilt disease in more than 310 plant species worldwide. The pathogenicity of the bacteria is closely associated with type III effectors (T3Es), a class of virulence factors that are delivered to host plant cells by the type III secretion system. In spite of the complex evolutionary history and genetic diversity of the R. solanacearum species complex (RSSC), more than 100 different T3Es have been identified from the genomes of various strains. Based on the available functional studies, certain T3Es interact with host plant proteins and suppress host cell immunity, whereas other T3Es are recognized by the host plant to trigger specific resistance mechanisms. This review summarizes the mechanisms by which T3Es interfere with plant immune responses and the activation of the plant defense system upon T3E recognition. This in-depth review of the molecular interactions between R. solanacearum and its host plants offers insights into the complexity of plant-pathogen interactions and provides a scientific rationale and theoretical support for the future breeding of resistant crops.
Collapse
Affiliation(s)
- Xinyu Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Cai
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (X.H.); (W.C.); (L.Z.); (Z.Z.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
3
|
Chen K, Zhuang Y, Chen H, Lei T, Li M, Wang S, Wang L, Fu H, Lu W, Bohra A, Lai Q, Xu X, Garg V, Barmukh R, Ji B, Zhang C, Pandey MK, Tang R, Varshney RK, Zhuang W. A Ralstonia effector RipAU impairs peanut AhSBT1.7 immunity for pathogenicity via AhPME-mediated cell wall degradation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17210. [PMID: 39866050 DOI: 10.1111/tpj.17210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/17/2024] [Accepted: 11/23/2024] [Indexed: 01/28/2025]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts. A serine residue of RipAU is the critical site for cell death. The RipAU targeted a subtilisin-like protease (AhSBT1.7) in peanut and both protein moved into nucleus. Heterotic expression of AhSBT1.7 in transgenic tobacco and Arabidopsis thaliana significantly improved the resistance to R. solanacearum. The enhanced resistance was linked with the upregulating ERF1 defense marker genes and decreasing pectin methylesterase (PME) activity like PME2&4 in cell wall pathways. The RipAU played toxic effect by repressing R-gene, defense hormone signaling, and AhSBTs metabolic pathways but increasing PMEs expressions. Furthermore, we discovered AhSBT1.7 interacted with AhPME4 and was colocalized at nucleus. The AhPME speeded plants susceptibility to pathogen via mediated cell wall degradation, which inhibited by AhSBT1.7 but upregulated by RipAU. Collectively, RipAU impaired AhSBT1.7 defense for pathogenicity by using PME-mediated cell wall degradation. This study reveals the mechanism of RipAU pathogenicity and AhSBT1.7 resistance, highlighting peanut immunity to bacterial wilt for future improvement.
Collapse
Affiliation(s)
- Kun Chen
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhui Zhuang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua Chen
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Taijie Lei
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengke Li
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Wang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lihui Wang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiwen Fu
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenzhi Lu
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Qiaoqiao Lai
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolin Xu
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Vanika Garg
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, 6150, Australia
| | - Rutwik Barmukh
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, 6150, Australia
| | - Biaojun Ji
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chong Zhang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, Telangana, India
| | - Ronghua Tang
- Guangxi Academy of Agriculture Science, Nanning, 530007, China
| | - Rajeev K Varshney
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Centre for Crop and Food Innovation, State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, 6150, Australia
| | - Weijian Zhuang
- Center for Legume Plant Genetics and Systems Biology, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
4
|
Lin G, Gao J, Zou J, Li D, Cui Y, Liu Y, Kong L, Liu S. Whole-Genome Sequence and Characterization of Ralstonia solanacearum MLY102 Isolated from Infected Tobacco Stalks. Genes (Basel) 2024; 15:1473. [PMID: 39596673 PMCID: PMC11593729 DOI: 10.3390/genes15111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Bacterial wilt disease is a soil-borne disease caused by Ralstonia solanacearum that causes huge losses to crop economies worldwide. METHODS In this work, strain MLY102 was isolated and further identified as R. solanacearum from a diseased tobacco stalk. The genomic properties of MLY102 were explored by performing biochemical characterization, genome sequencing, compositional analysis, functional annotation and comparative genomic analysis. RESULTS MLY102 had a pinkish-red color in the center of the colony surrounded by a milky-white liquid with fluidity on TTC medium. The biochemical results revealed that MLY102 can utilize carbon sources, including D-glucose (dGLU), cane sugar (SAC) and D-trehalose dihydrate (dTRE). Genome sequencing through the DNBSEQ and PacBio platforms revealed a genome size of 5.72 Mb with a G+C content of 67.59%. The genome consists of a circular chromosome and a circular giant plasmid with 5283 protein-coding genes. A comparison of the genomes revealed that MLY102 is closely related to GMI1000 and CMR15 but has 498 special genes and 13 homologous genes in the species-specific gene family, indicating a high degree of genomic uniqueness. CONCLUSIONS The unique characteristics and genomic data of MLY102 can provide important reference values for the prevention and control of bacterial wilt disease.
Collapse
Affiliation(s)
- Guan Lin
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Juntao Gao
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Junxian Zou
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Denghui Li
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Yu Cui
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Yong Liu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| | - Lingxue Kong
- Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia
| | - Shiwang Liu
- School of Biological & Chemical Engineering, Zhejiang University of Science & Technology, Hangzhou 310023, China; (G.L.); (J.G.); (J.Z.); (D.L.); (Y.C.); (S.L.)
| |
Collapse
|
5
|
Gogoi K, Gogoi H, Borgohain M, Saikia R, Chikkaputtaiah C, Hiremath S, Basu U. The molecular dynamics between reactive oxygen species (ROS), reactive nitrogen species (RNS) and phytohormones in plant's response to biotic stress. PLANT CELL REPORTS 2024; 43:263. [PMID: 39412663 DOI: 10.1007/s00299-024-03343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/24/2024] [Indexed: 11/15/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are critical for plant development as well as for its stress response. They can function as signaling molecules to orchestrate a well-defined response of plants to biotic stress. These responses are further fine-tuned by phytohormones, such as salicylic acid, jasmonic acid, and ethylene, to modulate immune response. In the past decades, the intricacies of redox and phytohormonal signaling have been uncovered during plant-pathogen interactions. This review explores the dynamic interplay of these components, elucidating their roles in perceiving biotic threats and shaping the plant's defense strategy. Molecular regulators and sites of oxidative burst have been explored during pathogen perception. Further, the interplay between various components of redox and phytohormonal signaling has been explored during bacterial, fungal, viral, and nematode infections as well as during insect pest infestation. Understanding these interactions highlights gaps in the current knowledge and provides insights into engineering crop varieties with enhanced resistance to pathogens and pests. This review also highlights potential applications of manipulating regulators of redox signaling to bolster plant immunity and ensure global food security. Future research should explore regulators of these signaling pathways as potential target to develop biotic stress-tolerant crops. Further insights are also needed into roles of endophytes and host microbiome modulating host ROS and RNS pool for exploiting them as biocontrol agents imparting resistance against pathogens in plants.
Collapse
Affiliation(s)
- Krishna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
| | - Hunmoyna Gogoi
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Manashi Borgohain
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- The Assam Kaziranga University, Jorhat, Assam, 785006, India
| | - Ratul Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shridhar Hiremath
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
- Centre for Infectious Diseases, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
| | - Udita Basu
- Biological Sciences and Technology Division, CSIR-North East Institute of Science & Technology, Jorhat, Assam, 785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
7
|
Qi P, Zhang D, Zhang Y, Zhu W, Du X, Ma X, Xiao C, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Ubiquitination and degradation of plant helper NLR by the Ralstonia solanacearum effector RipV2 overcome tomato bacterial wilt resistance. Cell Rep 2024; 43:114596. [PMID: 39110591 DOI: 10.1016/j.celrep.2024.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xinya Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiaoshuang Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Chunfang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
8
|
Sun ZM, Zhang Q, Feng YX, Zhang SX, Bai BX, Ouyang X, Xiao ZL, Meng H, Wang XT, He JM, An YY, Zhang MX. The Ralstonia solanacearum Type III Effector RipAW Targets the Immune Receptor Complex to Suppress PAMP-Triggered Immunity. Int J Mol Sci 2023; 25:183. [PMID: 38203354 PMCID: PMC10779406 DOI: 10.3390/ijms25010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Bacterial wilt, caused by Ralstonia solanacearum, one of the most destructive phytopathogens, leads to significant annual crop yield losses. Type III effectors (T3Es) mainly contribute to the virulence of R. solanacearum, usually by targeting immune-related proteins. Here, we clarified the effect of a novel E3 ubiquitin ligase (NEL) T3E, RipAW, from R. solanacearum on pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and further explored its action mechanism. In the susceptible host Arabidopsis thaliana, we monitored the expression of PTI marker genes, flg22-induced ROS burst, and callose deposition in RipAW- and RipAWC177A-transgenic plants. Our results demonstrated that RipAW suppressed host PTI in an NEL-dependent manner. By Split-Luciferase Complementation, Bimolecular Fluorescent Complimentary, and Co-Immunoprecipitation assays, we further showed that RipAW associated with three crucial components of the immune receptor complex, namely FLS2, XLG2, and BIK1. Furthermore, RipAW elevated the ubiquitination levels of FLS2, XLG2, and BIK1, accelerating their degradation via the 26S proteasome pathway. Additionally, co-expression of FLS2, XLG2, or BIK1 with RipAW partially but significantly restored the RipAW-suppressed ROS burst, confirming the involvement of the immune receptor complex in RipAW-regulated PTI. Overall, our results indicate that RipAW impairs host PTI by disrupting the immune receptor complex. Our findings provide new insights into the virulence mechanism of R. solanacearum.
Collapse
Affiliation(s)
- Zhi-Mao Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Qi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Yu-Xin Feng
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Shuang-Xi Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Bi-Xin Bai
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Xue Ouyang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Zhi-Liang Xiao
- Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.-L.X.); (H.M.)
| | - He Meng
- Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (Z.-L.X.); (H.M.)
| | - Xiao-Ting Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Jun-Min He
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Yu-Yan An
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| | - Mei-Xiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China; (Z.-M.S.); (Q.Z.); (Y.-X.F.); (S.-X.Z.); (B.-X.B.); (X.O.); (X.-T.W.); (J.-M.H.)
| |
Collapse
|
9
|
Langin G, González-Fuente M, Üstün S. The Plant Ubiquitin-Proteasome System as a Target for Microbial Manipulation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:351-375. [PMID: 37253695 DOI: 10.1146/annurev-phyto-021622-110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.
Collapse
Affiliation(s)
- Gautier Langin
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
10
|
Sharma S, Prasad A, Prasad M. Ubiquitination from the perspective of plant pathogens. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4367-4376. [PMID: 37226440 DOI: 10.1093/jxb/erad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
The constant battle of survival between pathogens and host plants has played a crucial role in shaping the course of their co-evolution. However, the major determinants of the outcome of this ongoing arms race are the effectors secreted by pathogens into host cells. These effectors perturb the defense responses of plants to promote successful infection. In recent years, extensive research in the area of effector biology has reported an increase in the repertoire of pathogenic effectors that mimic or target the conserved ubiquitin-proteasome pathway. The role of the ubiquitin-mediated degradation pathway is well known to be indispensable for various aspects of a plant's life, and thus targeting or mimicking it seems to be a smart strategy adopted by pathogens. Therefore, this review summarizes recent findings on how some pathogenic effectors mimic or act as one of the components of the ubiquitin-proteasome machinery while others directly target the plant's ubiquitin-proteasome system.
Collapse
Affiliation(s)
| | - Ashish Prasad
- Department of Botany, Kurukshetra University, Kurukshetra, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, New Delhi, India
- Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
11
|
Qiu H, Wang B, Huang M, Sun X, Yu L, Cheng D, He W, Zhou D, Wu X, Song B, Tang N, Chen H. A novel effector RipBT contributes to Ralstonia solanacearum virulence on potato. MOLECULAR PLANT PATHOLOGY 2023; 24:947-960. [PMID: 37154802 PMCID: PMC10346376 DOI: 10.1111/mpp.13342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023]
Abstract
Ralstonia solanacearum is one of the most destructive plant-pathogenic bacteria, infecting more than 200 plant species, including potato (Solanum tuberosum) and many other solanaceous crops. R. solanacearum has numerous pathogenicity factors, and type III effectors secreted through type III secretion system (T3SS) are key factors to counteract host immunity. Here, we show that RipBT is a novel T3SS-secreted effector by using a cyaA reporter system. Transient expression of RipBT in Nicotiania benthamiana induced strong cell death in a plasma membrane-localization dependent manner. Notably, mutation of RipBT in R. solanacearum showed attenuated virulence on potato, while RipBT transgenic potato plants exhibited enhanced susceptibility to R. solanacearum. Interestingly, transcriptomic analyses suggest that RipBT may interfere with plant reactive oxygen species (ROS) metabolism during the R. solanacearum infection of potato roots. In addition, the expression of RipBT remarkably suppressed the flg22-induced pathogen-associated molecular pattern-triggered immunity responses, such as the ROS burst. Taken together, RipBT acts as a T3SS effector, promoting R. solanacearum infection on potato and presumably disturbing ROS homeostasis.
Collapse
Affiliation(s)
- Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xiaohu Sun
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Liu Yu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Wenfeng He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Dan Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and ImprovementHenan UniversityKaifengChina
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural CropsHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural AffairsHuazhong Agricultural UniversityWuhanChina
- Potato Engineering and Technology Research Center of Hubei ProvinceHuazhong Agricultural UniversityWuhanChina
- College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
12
|
Ouyang X, Chen J, Sun Z, Wang R, Wu X, Li B, Song C, Liu P, Zhang M. Ubiquitin E3 ligase activity of Ralstonia solanacearum effector RipAW is not essential for induction of plant defense in Nicotiana benthamiana. Front Microbiol 2023; 14:1201444. [PMID: 37293211 PMCID: PMC10244751 DOI: 10.3389/fmicb.2023.1201444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
As one of the most destructive bacterial phytopathogens, Ralstonia solanacearum causes substantial annual yield losses of many important crops. Deciphering the functional mechanisms of type III effectors, the crucial factors mediating R. solanacearum-plant interactions, will provide a valuable basis for protecting crop plants from R. solanacearum. Recently, the NEL (novel E3 ligase) effector RipAW was found to induce cell death on Nicotiana benthamiana in a E3 ligase activity-dependent manner. Here, we further deciphered the role of the E3 ligase activity in RipAW-triggered plant immunity. We found that RipAWC177A, the E3 ligase mutant of RipAW, could not induce cell death but retained the ability of triggering plant immunity in N. benthamiana, indicating that the E3 ligase activity is not essential for RipAW-triggered immunity. By generating truncated mutants of RipAW, we further showed that the N-terminus, NEL domain and C-terminus are all required but not sufficient for RipAW-induced cell death. Furthermore, all truncated mutants of RipAW triggered ETI immune responses in N. benthamiana, confirming that the E3 ligase activity is not essential for RipAW-triggered plant immunity. Finally, we demonstrated that RipAW- and RipAWC177A-triggered immunity in N. benthamiana requires SGT1 (suppressor of G2 allele of skp1), but not EDS1 (enhanced disease susceptibility), NRG1 (N requirement gene 1), NRC (NLR required for cell death) proteins or SA (salicylic acid) pathway. Our findings provide a typical case in which the effector-induced cell death can be uncoupled with immune responses, shedding new light on effector-triggered plant immunity. Our data also provide clues for further in-depth study of mechanism underlying RipAW-induced plant immunity.
Collapse
Affiliation(s)
- Xue Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhimao Sun
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xuan Wu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Benjin Li
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Congfeng Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Meixiang Zhang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
13
|
Huang M, Tan X, Song B, Wang Y, Cheng D, Wang B, Chen H. Comparative genomic analysis of Ralstonia solanacearum reveals candidate avirulence effectors in HA4-1 triggering wild potato immunity. FRONTIERS IN PLANT SCIENCE 2023; 14:1075042. [PMID: 36909411 PMCID: PMC9997847 DOI: 10.3389/fpls.2023.1075042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Ralstonia solanacearum is the causal agent of potato bacterial wilt, a major potato bacterial disease. Among the pathogenicity determinants, the Type III Secretion System Effectors (T3Es) play a vital role in the interaction. Investigating the avirulent T3Es recognized by host resistance proteins is an effective method to uncover the resistance mechanism of potato against R. solanacearum. Two closely related R. solanacearum strains HA4-1 and HZAU091 were found to be avirulent and highly virulent to the wild potato Solanum albicans 28-1, respectively. The complete genome of HZAU091 was sequenced in this study. HZAU091 and HA4-1 shared over 99.9% nucleotide identity with each other. Comparing genomics of closely related strains provides deeper insights into the interaction between hosts and pathogens, especially the mechanism of virulence. The comparison of type III effector repertoires between HA4-1 and HZAU091 uncovered seven distinct effectors. Two predicted effectors RipA5 and the novel effector RipBS in HA4-1 could significantly reduce the virulence of HZAU091 when they were transformed into HZAU091. Furthermore, the pathogenicity assays of mutated strains HA4-1 ΔRipS6, HA4-1 ΔRipO1, HA4-1 ΔRipBS, and HA4-1 ΔHyp6 uncovered that the absence of these T3Es enhanced the HA4-1 virulence to wild potato S. albicans 28-1. This result indicated that these T3Es may be recognized by S. albicans 28-1 as avirulence proteins to trigger the resistance. In summary, this study provides a foundation to unravel the R. solanacearum-potato interaction and facilitates the development of resistance potato against bacterial wilt.
Collapse
Affiliation(s)
- Mengshu Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaodan Tan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
- Guangdong University Key Laboratory for Sustainable Control of Fruit and Vegetable Diseases and Pests & Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Botao Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yuqi Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dong Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Bingsen Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huilan Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, Hubei, China
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
14
|
An Y, Chen J, Xu Z, Ouyang X, Cao P, Wang R, Liu P, Zhang M. Three amino acid residues are required for the recognition of Ralstonia solanacearum RipTPS in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2022; 13:1040826. [PMID: 36311066 PMCID: PMC9606615 DOI: 10.3389/fpls.2022.1040826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 06/10/2023]
Abstract
Ralstonia solanacearum causes devastating diseases in a wide range of economically important crops. It secretes a large number of virulence factors, also known as effectors, to promote its infection, and some of them are recognized when the host plant contains corresponding resistance genes. In this study we showed that a type III effector RipTPS from the avirulent R. solanacearum strain GMI1000 (RipTPSG) specifically induced cell death in Nicotiana tabacum, but not in Nicotiana benthamiana, whereas the RipTPS homolog in the virulent strain CQPS-1 (RipTPSC) induced cell death in neither N. tabacum nor N. benthamiana. These results indicated that RipTPSG is recognized in N. tabacum. Expression of RipTPSG induced upregulation of hypersensitive response (HR) -related genes in N. tabacum. The virulence of CQPS-1 was reduced when RipTPSG was genetically introduced into CQPS-1, further confirming that RipTPSG functions as an avirulence determinant. Protein sequence alignment indicated that there are only three amino acid polymorphisms between RipTPSG and RipTPSC. Site-directed mutagenesis analyses confirmed that the three amino acid residues are jointly required for the recognition of RipTPSG in N. tabacum. Expression of either RipTPSG or RipTPSC suppressed flg22-triggered reactive oxygen species (ROS) burst in N. benthamiana, suggesting that RipTPS contributes to pathogen virulence. Mutating the conserved residues in RipTPS's trehalose-phosphate synthase (TPS) domain did not block its HR induction and defense suppression activity, indicating that the TPS activity is not required for RipTPS's avirulence and virulence function.
Collapse
Affiliation(s)
- Yuyan An
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhangyan Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Xue Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Peng Cao
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Meixiang Zhang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
15
|
Cao P, Chen J, Wang R, Zhao M, Zhang S, An Y, Liu P, Zhang M. A conserved type III effector RipB is recognized in tobacco and contributes to Ralstonia solanacearum virulence in susceptible host plants. Biochem Biophys Res Commun 2022; 631:18-24. [PMID: 36162325 DOI: 10.1016/j.bbrc.2022.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt, causes devastating diseases in a wide range of plants including potato, tomato, pepper and tobacco. The pathogen delivers approximately 70 type III effectors (T3Es) into plant cells during infection. In this study, we confirmed that a T3E RipB is recognized in tobacco. We further demonstrated that RipB is conserved among R. solanacearum isolates and five different ripB alleles are all recognized in tobacco. The ripB from GMI1000 was transformed into susceptible host Arabidopsis, and a defect in root development was observed in ripB-transgenic plants. Pathogen inoculation assays showed that ripB expression promoted plant susceptibility to R. solanacearum infection, indicating that RipB contributes to pathogen virulence in Arabidopsis. Expression of ripB in roq1 mutant partially suppressed reactive oxygen species production, confirming that RipB interferes with plant basal defense. Interestingly, ripB expression promoted cytokinin-related gene expression in Arabidopsis, suggesting a role of cytokinin signaling pathway in plant-R. solanacearum interactions. Finally, RipB harbors potential 14-3-3 binding motifs, but the associations between RipB and 14-3-3 proteins were undetectable in yeast two-hybrid assay. Together, our results demonstrate that multiple ripB alleles are recognized in Nicotiana, and RipB suppresses basal defense in susceptible host to promote R. solanacearum infection.
Collapse
Affiliation(s)
- Peng Cao
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jialan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongbo Wang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, 350013, China
| | - Mengwei Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangxi Zhang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuyan An
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peiqing Liu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, 350013, China.
| | - Meixiang Zhang
- National Engineering Laboratory for Endangered Medicinal Resource Development in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
16
|
Chen K, Zhuang Y, Wang L, Li H, Lei T, Li M, Gao M, Wei J, Dang H, Raza A, Yang Q, Sharif Y, Yang H, Zhang C, Zou H, Zhuang W. Comprehensive genome sequence analysis of the devastating tobacco bacterial phytopathogen Ralstonia solanacearum strain FJ1003. Front Genet 2022; 13:966092. [PMID: 36072670 PMCID: PMC9441608 DOI: 10.3389/fgene.2022.966092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its high genetic diversity and broad host range, Ralstonia solanacearum, the causative phytopathogen of the bacterial wilt (BW) disease, is considered a "species complex". The R. solanacearum strain FJ1003 belonged to phylotype I, and was isolated from the Fuzhou City in Fujian Province of China. The pathogen show host specificity and infects tobacco, especially in the tropical and subtropical regions. To elucidate the pathogenic mechanisms of FJ1003 infecting tobacco, a complete genome sequencing of FJ1003 using single-molecule real-time (SMRT) sequencing technology was performed. The full genome size of FJ1003 was 5.90 Mb (GC%, 67%), containing the chromosome (3.7 Mb), megaplasmid (2.0 Mb), and small plasmid (0.2 Mb). A total of 5133 coding genes (3446 and 1687 genes for chromosome and megaplasmid, respectively) were predicted. A comparative genomic analysis with other strains having the same and different hosts showed that the FJ1003 strain had 90 specific genes, possibly related to the host range of R. solanacearum. Horizontal gene transfer (HGT) was widespread in the genome. A type Ⅲ effector protein (Rs_T3E_Hyp14) was present on both the prophage and genetic island (GI), suggesting that this gene might have been acquired from other bacteria via HGT. The Rs_T3E_Hyp14 was proved to be a virulence factor in the pathogenic process of R. solanacearum through gene knockout strategy, which affects the pathogenicity and colonization ability of R. solanacearum in the host. Therefore, this study will improve our understanding of the virulence of R. solanacearum and provide a theoretical basis for tobacco disease resistance breeding.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhui Zhuang
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaqi Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Taijie Lei
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengke Li
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meijia Gao
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaxian Wei
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Dang
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ali Raza
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yasir Sharif
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huan Yang
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Huasong Zou
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weijian Zhuang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- Oil Crops Research Institute, College of Agriculture/Center of Legume Crop Genetics and Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Chen R, Yang M, Tu Z, Xie F, Chen J, Luo T, Hu X, Nie B, He C. Eukaryotic translation initiation factor 4E family member nCBP facilitates the accumulation of TGB-encoding viruses by recognizing the viral coat protein in potato and tobacco. FRONTIERS IN PLANT SCIENCE 2022; 13:946873. [PMID: 36003826 PMCID: PMC9393630 DOI: 10.3389/fpls.2022.946873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Due to their limited coding capacity, plant viruses have to depend on various host factors for successful infection of the host. Loss of function of these host factors will result in recessively inherited resistance, and therefore, these host factors are also described as susceptibility genes or recessive resistance genes. Most of the identified recessive resistance genes are members of the eukaryotic translation initiation factors 4E family (eIF4E) and its isoforms. Recently, an eIF4E-type gene, novel cap-binding protein (nCBP), was reported to be associated with the infection of several viruses encoding triple gene block proteins (TGBps) in Arabidopsis. Here, we, for the first time, report that the knockdown of nCBP in potato (StnCBP) compromises the accumulation of potato virus S (PVS) but not that of potato virus M (PVM) and potato virus X (PVX), which are three potato viruses encoding TGBps. Further assays demonstrated that StnCBP interacts with the coat proteins (CPs) of PVS and PVM but not with that of PVX, and substitution of PVS CP in the PVS infectious clone by PVM CP recovered the virus infection in StnCBP-silenced transgenic plants, suggesting that the recognition of PVS CP is crucial for StnCBP-mediated recessive resistance to PVS. Moreover, the knockdown of nCBP in Nicotiana benthamiana (NbnCBP) by virus-induced gene silencing suppressed PVX accumulation but not PVM, while NbnCBP interacted with the CPs of both PVX and PVM. Our results indicate that the nCBP orthologues in potato and tobacco have conserved function as in Arabidopsis in terms of recessive resistance against TGB-encoding viruses, and the interaction between nCBP and the CP of TGB-encoding virus is necessary but not sufficient to determine the function of nCBP as a susceptibility gene.
Collapse
Affiliation(s)
- Ruhao Chen
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Manhua Yang
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhen Tu
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Fangru Xie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Jiaru Chen
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Tao Luo
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xinxi Hu
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| | - Bihua Nie
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changzheng He
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, Hunan Agricultural University, Changsha, China
| |
Collapse
|
18
|
Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int J Mol Sci 2022; 23:7725. [PMID: 35887072 PMCID: PMC9320238 DOI: 10.3390/ijms23147725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets.
Collapse
Affiliation(s)
| | | | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (A.B.-B.); (J.B.-B.)
| |
Collapse
|
19
|
Sanguankiattichai N, Buscaill P, Preston GM. How bacteria overcome flagellin pattern recognition in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102224. [PMID: 35533494 DOI: 10.1016/j.pbi.2022.102224] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/03/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Efficient plant immune responses depend on the ability to recognise an invading microbe. The 22-amino acids in the N-terminal domain and the 28-amino acids in the central region of the bacterial flagellin, called flg22 and flgII-28, respectively, are important elicitors of plant immunity. Plant immunity is activated after flg22 or flgII-28 recognition by the plant transmembrane receptors FLS2 or FLS3, respectively. There is strong selective pressure on many plant pathogenic and endophytic bacteria to overcome flagellin-triggered immunity. Here we provide an overview of recent developments in our understanding of the evasion and suppression of flagellin pattern recognition by plant-associated bacteria.
Collapse
Affiliation(s)
| | - Pierre Buscaill
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| |
Collapse
|
20
|
Tan X, Dai X, Chen T, Wu Y, Yang D, Zheng Y, Chen H, Wan X, Yang Y. Complete Genome Sequence Analysis of Ralstonia solanacearum Strain PeaFJ1 Provides Insights Into Its Strong Virulence in Peanut Plants. Front Microbiol 2022; 13:830900. [PMID: 35273586 PMCID: PMC8904134 DOI: 10.3389/fmicb.2022.830900] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/22/2022] Open
Abstract
The bacterial wilt of peanut (Arachis hypogaea L.) caused by Ralstonia solanacearum is a devastating soil-borne disease that seriously restricted the world peanut production. However, the molecular mechanism of R. solanacearum–peanut interaction remains largely unknown. We found that R. solanacearum HA4-1 and PeaFJ1 isolated from peanut plants showed different pathogenicity by inoculating more than 110 cultivated peanuts. Phylogenetic tree analysis demonstrated that HA4-1 and PeaFJ1 both belonged to phylotype I and sequevar 14M, which indicates a high degree of genomic homology between them. Genomic sequencing and comparative genomic analysis of PeaFJ1 revealed 153 strain-specific genes compared with HA4-1. The PeaFJ1 strain-specific genes consisted of diverse virulence-related genes including LysR-type transcriptional regulators, two-component system-related genes, and genes contributing to motility and adhesion. In addition, the repertoire of the type III effectors of PeaFJ1 was bioinformatically compared with that of HA4-1 to find the candidate effectors responsible for their different virulences. There are 79 effectors in the PeaFJ1 genome, only 4 of which are different effectors compared with HA4-1, including RipS4, RipBB, RipBS, and RS_T3E_Hyp6. Based on the virulence profiles of the two strains against peanuts, we speculated that RipS4 and RipBB are candidate virulence effectors in PeaFJ1 while RipBS and RS_T3E_Hyp6 are avirulence effectors in HA4-1. In general, our research greatly reduced the scope of virulence-related genes and made it easier to find out the candidates that caused the difference in pathogenicity between the two strains. These results will help to reveal the molecular mechanism of peanut–R. solanacearum interaction and develop targeted control strategies in the future.
Collapse
Affiliation(s)
- Xiaodan Tan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiaoqiu Dai
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Ting Chen
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yushuang Wu
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yixiong Zheng
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Huilan Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiaorong Wan
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yong Yang
- Guangzhou Key Laboratory for Research and Development of Crop Germplasm Resources, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
21
|
Niu Y, Fu S, Chen G, Wang H, Wang Y, Hu J, Jin X, Zhang M, Lu M, He Y, Wang D, Chen Y, Zhang Y, Coll NS, Valls M, Zhao C, Chen Q, Lu H. Different epitopes of Ralstonia solanacearum effector RipAW are recognized by two Nicotiana species and trigger immune responses. MOLECULAR PLANT PATHOLOGY 2022; 23:188-203. [PMID: 34719088 PMCID: PMC8743020 DOI: 10.1111/mpp.13153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/17/2023]
Abstract
Diverse pathogen effectors convergently target conserved components in plant immunity guarded by intracellular nucleotide-binding domain leucine-rich repeat receptors (NLRs) and activate effector-triggered immunity (ETI), often causing cell death. Little is known of the differences underlying ETI in different plants triggered by the same effector. In this study, we demonstrated that effector RipAW triggers ETI on Nicotiana benthamiana and Nicotiana tabacum. Both the first 107 amino acids (N1-107 ) and RipAW E3-ligase activity are required but not sufficient for triggering ETI on N. benthamiana. However, on N. tabacum, the N1-107 fragment is essential and sufficient for inducing cell death. The first 60 amino acids of the protein are not essential for RipAW-triggered cell death on either N. benthamiana or N. tabacum. Furthermore, simultaneous mutation of both R75 and R78 disrupts RipAW-triggered ETI on N. tabacum, but not on N. benthamiana. In addition, N. tabacum recognizes more RipAW orthologs than N. benthamiana. These data showcase the commonalities and specificities of RipAW-activated ETI in two evolutionally related species, suggesting Nicotiana species have acquired different abilities to perceive RipAW and activate plant defences during plant-pathogen co-evolution.
Collapse
Affiliation(s)
- Yang Niu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Shouyang Fu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Gong Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Huijuan Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yisa Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - JinXue Hu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Xin Jin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mancang Zhang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Mingxia Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yizhe He
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Dongdong Wang
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Yue Chen
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Yong Zhang
- College of Food Science and EngineeringNorthwest A&F UniversityYanglingChina
- College of Resources and EnvironmentSouthwest UniversityChongqingChina
| | - Núria S. Coll
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
| | - Marc Valls
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River BasinSoutheast UniversityChongqingChina
- Centre for Research in Agricultural GenomicsCSIC‐IRTA‐UAB‐UBBellaterraCataloniaSpain
| | - Cuizhu Zhao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
| | - Qin Chen
- Shaanxi Key State Laboratory of Crop HeterosisNorthwest A&F UniversityYanglingChina
| | - Haibin Lu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingChina
- Department of GeneticsUniversity of BarcelonaBarcelonaSpain
| |
Collapse
|
22
|
Schreiber KJ, Chau-Ly IJ, Lewis JD. What the Wild Things Do: Mechanisms of Plant Host Manipulation by Bacterial Type III-Secreted Effector Proteins. Microorganisms 2021; 9:1029. [PMID: 34064647 PMCID: PMC8150971 DOI: 10.3390/microorganisms9051029] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/05/2023] Open
Abstract
Phytopathogenic bacteria possess an arsenal of effector proteins that enable them to subvert host recognition and manipulate the host to promote pathogen fitness. The type III secretion system (T3SS) delivers type III-secreted effector proteins (T3SEs) from bacterial pathogens such as Pseudomonas syringae, Ralstonia solanacearum, and various Xanthomonas species. These T3SEs interact with and modify a range of intracellular host targets to alter their activity and thereby attenuate host immune signaling. Pathogens have evolved T3SEs with diverse biochemical activities, which can be difficult to predict in the absence of structural data. Interestingly, several T3SEs are activated following injection into the host cell. Here, we review T3SEs with documented enzymatic activities, as well as T3SEs that facilitate virulence-promoting processes either indirectly or through non-enzymatic mechanisms. We discuss the mechanisms by which T3SEs are activated in the cell, as well as how T3SEs modify host targets to promote virulence or trigger immunity. These mechanisms may suggest common enzymatic activities and convergent targets that could be manipulated to protect crop plants from infection.
Collapse
Affiliation(s)
- Karl J. Schreiber
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Ilea J. Chau-Ly
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
| | - Jennifer D. Lewis
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94710, USA; (K.J.S.); (I.J.C.-L.)
- Plant Gene Expression Center, United States Department of Agriculture, University of California, Berkeley, CA 94710, USA
| |
Collapse
|