1
|
Aloisi AM, Casini I. Fibromyalgia: Chronic Pain Due to a Blood Dysfunction? Int J Mol Sci 2025; 26:4153. [PMID: 40362392 PMCID: PMC12071621 DOI: 10.3390/ijms26094153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Fibromyalgia (FM) is a common chronic disorder with chronic pain. FM generally affects all ages and occurs more commonly in women. The cause of FM remains undefined, but a number of factors suggest the cardiovascular system and the blood in particular as contributors to its occurrence and maintenance. Hemograms and other blood indexes often show high percentages of values at the 'normal', low, or high limits and several values outside of the 'normal' ranges. On the other hand, vessels regulate blood arrival to tissues depending on many internal and external factors. Both aspects can interfere with tissue oxygenation and then with the numerous consequences induced by hypoxia. In this narrative review, efforts were made to highlight factors that are potentially able to affect oxygen arrival in cells, as well as other factors related to blood elements that can play a role in the chronic pain experienced by FM patients. Data strongly indicate that most of the symptoms commonly present in FM patients can find their physio-pathological basis in the blood, suggesting blood-related interventions in these patients.
Collapse
Affiliation(s)
- Anna Maria Aloisi
- Stress and Pain Neurophysiology Laboratory, Department of Medicine, Surgery and Neuroscience University of Siena, 53100 Siena, Italy;
| | | |
Collapse
|
2
|
Hao R, Li H, Li X, Liu J, Ji X, Zhang H, Zhang Z, Yang P, Zhai Z. Transcriptomic profiling of lncRNAs and mRNAs in a venous thrombosis mouse model. iScience 2025; 28:111561. [PMID: 39949957 PMCID: PMC11821396 DOI: 10.1016/j.isci.2024.111561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 02/16/2025] Open
Abstract
This study explores the role of lncRNAs and mRNAs in venous thromboembolism (VTE) using an inferior vena cava (IVC) mouse model. RNA sequencing identified differentially expressed lncRNAs and mRNAs between model and control groups. Enrichment analyses revealed significant pathways, including HIF-1α signaling, glycolysis/gluconeogenesis, and platelet activation. A lncRNA-miRNA-mRNA network highlighted key regulatory interactions. Validation using qRT-PCR confirmed the RNA-seq findings. These results provide insights into the molecular mechanisms of VTE and suggest potential biomarkers and therapeutic targets for thrombosis.
Collapse
Affiliation(s)
- Risheng Hao
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Capital Medical University, Beijing, China
| | - Haobo Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xincheng Li
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jixiang Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaofan Ji
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hong Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhu Zhang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Peiran Yang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Zhenguo Zhai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Gao Z, Wu P, Zhu H, Chen J, Liu W, Huo J, He C, Duan Y, Chen J. Circulating circ_0069094 is Correlated with the Present and Endothelial Injury of Acute Coronary Syndrome. J Cardiovasc Transl Res 2024; 17:1377-1388. [PMID: 38980654 DOI: 10.1007/s12265-024-10532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/05/2024] [Indexed: 07/10/2024]
Abstract
To investigate the impacts of circ_0069094 on acute coronary syndrome. Real-time polymerase chain reaction was used to detect the expression levels of circ_0069094, and its diagnostic performance was evaluated using ROC curve. Spearman's method was performed for correlation analysis. The levels of SOD, MDA, vWF in ACS rat models were assessed by commercial kits. The activities of H/R cell models were detected by CCK-8, Transwell, flow cytometry. The GO and KEGG were performed to analyze the function of targeted genes of miR-484. The concentration of circ_0069094 was decreased in patients with ACS, ACS rat models and H/R HUVEC models. The dysfunction of SOD, MDA, vWF, LVIDs, LVDD, and LVEF in the ACS models was regulated by the increase of circ_0069094. The viability, migration, apoptosis of the H/R models were regulated by circ_0069094. MiR-484 was a ceRNA of circ_0069094 and mediated the function of circ_0069094.
Collapse
Affiliation(s)
- Zhen Gao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan, 442000, China
| | - Peng Wu
- Department of Cardiovascular Medicine, Ya'an People's Hospital, Ya'an, 625000, China
| | - Hezhong Zhu
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jieqiong Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Wei Liu
- Department of General Practitioner, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jiangtao Huo
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Chaoyong He
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan, 442000, China
| | - Yang Duan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, No.99 Huaihai West Road, Quanshan District, Xuzhou, 221000, China.
| | - Jiajuan Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan, 442000, China.
| |
Collapse
|
4
|
Yu X, Zhao QY, Yaman M, Emly SM, Lee JK, Su H, Ferguson AC, Nagaswami C, Chaturantabut S, Goessling W, Weisel JW, Auchus RJ, Shavit JA. Hormone-induced thrombosis is mediated through non-canonical fibrin(ogen) aggregation and a novel estrogen target in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623199. [PMID: 39605542 PMCID: PMC11601434 DOI: 10.1101/2024.11.13.623199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Venous thrombosis is a well-known complication of sex hormone therapy, with onset typically within weeks to months after initiation. Worldwide, more than 100 million pre-menopausal women use combined oral contraceptives, with tens to hundreds of thousands developing thrombosis annually, resulting in significant morbidity and mortality. Although it is known that estrogens can alter expression of coagulation factors, the pathways and mechanisms that connect the two systems, as well as the proteins involved in progression to thrombosis, are poorly understood. Identification of these mediators are central to any comprehensive understanding of hormone-induced pathophysiology, could help ascertain patients at higher risk for thrombosis, and may also pinpoint future therapeutic targets. The zebrafish is a powerful genetic model in which the hemostatic system is almost entirely conserved with humans. Its external development, ability to generate thousands of offspring at low cost, and optical transparency all make it a powerful tool to study the genetics of coagulation disorders. We previously produced a transgenic line (fgb-egfp) that generates GFP-tagged fibrinogen that labels induced and spontaneous fibrin-rich thrombi. Here we show rapid onset of thrombosis after exposure to various estrogens, but not progestins or testosterone. Thrombi are localized to the venous system, develop broadly along the posterior cardinal vein, and show evidence for clot contraction. Thrombosis is only partially impeded by anticoagulants, occurs in the absence of factor X and prothrombin, but is completely blocked in the absence of fibrinogen. Furthermore, although an estrogen receptor antagonist is partially inhibitory, targeted knockout of all known estrogen receptors does not eliminate thrombosis. These data suggest that zebrafish can be used to model human estrogen-induced thrombosis, although the lack of dependence on the canonical coagulation cascade is surprising. The inability to completely inhibit thrombosis through genetic/pharmacologic anticoagulation or estrogen receptor disruption suggests that the mechanisms may be multifactorial. We hypothesize that thrombi are composed of fibrin(ogen) aggregates rather than purely fibrin. Results of further studies could lead to novel therapeutic targets and ascertain patients at higher risk for thrombosis.
Collapse
Affiliation(s)
- Xinge Yu
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Queena Y. Zhao
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Murat Yaman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | - Sylvia M. Emly
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
| | | | - Hongyu Su
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | | | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | - Wolfram Goessling
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Division of Health Sciences and Technology, Harvard-MIT, Cambridge, MA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Richard J. Auchus
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Jordan A. Shavit
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Department of Human Genetics, University of Michigan, Ann Arbor, MI
| |
Collapse
|
5
|
Li Z, Wang C, Zhang X, Xu X, Wang M, Dong L. Crosstalk between septic shock and venous thromboembolism: a bioinformatics and immunoassay analysis. Front Cell Infect Microbiol 2023; 13:1235269. [PMID: 38029239 PMCID: PMC10666789 DOI: 10.3389/fcimb.2023.1235269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Herein, we applied bioinformatics methods to analyze the crosstalk between septic shock (SS) and venous thromboembolism (VTE), focusing on the correlation with immune infiltrating cells. Methods Expression data were obtained from the Gene Expression Omnibus (GEO) database, including blood samples from SS patients (datasets GSE64457, GSE95233, and GSE57065) and VTE patients (GSE19151). We used the R package "limma" for differential expression analysis (p value<0.05,∣logFC∣≥1). Venn plots were generated to identify intersected differential genes between SS and VTE and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment analysis. The protein-protein interaction (PPI) network of intersected genes was constructed by Cytoscape software. The xCell analysis identified immune cells with significant changes in VTE and SS and correlated them with significant molecular pathways of crosstalk. Finally, we validated the mRNA expression of crosstalk genes by qPCR, while Matrix Metalloprotein-9 (MMP-9) protein levels were assessed through Western blotting (WB) and Immunohistochemistry (IHC) in human umbilical vein endothelial cells (HUVECs) and mice. Results In the present study, we conducted a comparison between 88 patients with septic shock and 55 control subjects. Additionally, we compared 70 patients with venous thromboembolism to 63 control subjects. Twelve intersected genes and their corresponding three important molecular pathways were obtained: Metabolic, Estrogen, and FOXO signaling pathways. The resulting PPI network has 194 nodes and 388 edges. The immune microenvironment analysis of the two diseases showed that the infiltration levels of M2 macrophages and Class-switched memory B cells were correlated with the enrichment scores of metabolic, estrogen, and FOXO signaling pathways. Finally, qPCR confirmed that the expression of MMP9, S100A12, ARG1, SLPI, and ANXA3 mRNA in the SS with VTE group was significantly elevated. WB and IHC experiments revealed that MMP9 protein was significantly elevated in the experimental group. Conclusion Metabolic, estrogen, and FOXO pathways play important roles in both SS and VTE and are related to the immune cell microenvironment of M2 macrophages and Class-switched memory B cells. MMP9 shows promise as a biomarker for diagnosing sepsis with venous thrombosis and a potential molecular target for treating this patient population.
Collapse
Affiliation(s)
- Zhishu Li
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Chaolan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Zhang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Xiaolin Xu
- School of Statistics, Renmin University of China, Bejing, China
| | - Meng Wang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, China
| | - Lixia Dong
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
6
|
Wang R, Na H, Cheng S, Zheng Y, Yao J, Bian Y, Gu Y. Effects of glucagon‑like peptide‑1 receptor agonists on fracture healing in a rat osteoporotic model. Exp Ther Med 2023; 26:412. [PMID: 37559934 PMCID: PMC10407998 DOI: 10.3892/etm.2023.12111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/01/2023] [Indexed: 08/11/2023] Open
Abstract
Osteoporosis is a common disease characterized by reduced bone mass, microstructural deterioration, fragility and consequent fragility fractures and is particularly prevalent among the elderly population. Although glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have positive effects on bones, their role in the prevention of osteoporotic fractures remains to be elucidated. The present study assigned female Sprague Dawley rats with osteoporotic fractures into variectomized osteoporosis (OVX), OVX + liraglutide (LIRA) (50 µg/kg/day subcutaneous LIRA) and control groups. At 3 and 6 weeks postoperatively, X-ray, tartrate-resistant acid phosphatase (TRAP) staining, histological and biomechanical assays and assessment of femoral bone mineral density (BMD) were performed. Compared with the OVX group, GLP-1 RA treatment improved the formation of calluses and osseous union. TRAP staining showed significantly fewer osteoclasts in the OVX + LIRA group compared with the OVX group. In the osteoporotically fractured rats, LIRA improved bone strength at the femoral diaphysis, stiffness, ultimate load and femoral trabecular BMD Compared with the OVX group. GLP-1 RA treatment inhibited osteoclast formation and improved trabecular bone architecture and mass in osteoporotic fracture model rats, leading to improved biomechanical strength. GLP-1 RAs may be used as novel anti-osteoporotic fracture agents.
Collapse
Affiliation(s)
- Rong Wang
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Han Na
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Shaowen Cheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yanglin Zheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Jiangling Yao
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yangyang Bian
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yuntao Gu
- Department of Spinal Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
7
|
Bouck EG, Arvanitis M, Osburn WO, Sang Y, Reventun P, Ahmadzia HK, Smith NL, Lowenstein CJ, Wolberg AS. High risk oral contraceptive hormones do not directly enhance endothelial cell procoagulant activity in vitro. PLoS One 2023; 18:e0284333. [PMID: 37075041 PMCID: PMC10115293 DOI: 10.1371/journal.pone.0284333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Oral contraceptive (OC) use increases venous thromboembolism risk 2-5-fold. Procoagulant changes can be detected in plasma from OC users even without thrombosis, but cellular mechanisms that provoke thrombosis have not been identified. Endothelial cell (EC) dysfunction is thought to initiate venous thromboembolism. It is unknown whether OC hormones provoke aberrant procoagulant activity in ECs. OBJECTIVE Characterize the effect of high-risk OC hormones (ethinyl estradiol [EE] and drospirenone) on EC procoagulant activity and the potential interplay with nuclear estrogen receptors ERα and ERβ and inflammatory processes. METHODS Human umbilical vein and dermal microvascular ECs (HUVEC and HDMVEC, respectively) were treated with EE and/or drospirenone. Genes encoding the estrogen receptors ERα and ERβ (ESR1 and ESR2, respectively) were overexpressed in HUVEC and HDMVEC via lentiviral vectors. EC gene expression was assessed by RT-qPCR. The ability of ECs to support thrombin generation and fibrin formation was measured by calibrated automated thrombography and spectrophotometry, respectively. RESULTS Neither EE nor drospirenone, alone or together, changed expression of genes encoding anti- or procoagulant proteins (TFPI, THBD, F3), integrins (ITGAV, ITGB3), or fibrinolytic mediators (SERPINE1, PLAT). EE and/or drospirenone did not increase EC-supported thrombin generation or fibrin formation, either. Our analyses indicated a subset of individuals express ESR1 and ESR2 transcripts in human aortic ECs. However, overexpression of ESR1 and/or ESR2 in HUVEC and HDMVEC did not facilitate the ability of OC-treated ECs to support procoagulant activity, even in the presence of a pro-inflammatory stimulus. CONCLUSIONS The OC hormones EE and drospirenone do not directly enhance thrombin generation potential of primary ECs in vitro.
Collapse
Affiliation(s)
- Emma G. Bouck
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Marios Arvanitis
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - William O. Osburn
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Yaqiu Sang
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Paula Reventun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Homa K. Ahmadzia
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, George Washington University, Washington, DC, United States of America
| | - Nicholas L. Smith
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle, WA, United States of America
- Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, United States of America
| | - Charles J. Lowenstein
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Alisa S. Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
8
|
Tao H, Tao Y, Yang C, Li W, Zhang W, Li X, Gu Y, Hong Y, Yang H, Liu Y, Yang X, Geng D. Gut Metabolite Urolithin A Inhibits Osteoclastogenesis and Senile Osteoporosis by Enhancing the Autophagy Capacity of Bone Marrow Macrophages. Front Pharmacol 2022; 13:875611. [PMID: 35645801 PMCID: PMC9135380 DOI: 10.3389/fphar.2022.875611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Senile osteoporosis (SOP) is a systemic bone disease that is significantly associated with age and eventually leads to deteriorated bone strength and increased fracture risk. Urolithin A (Uro-A) is a gut microbiome-derived compound that is mainly produced from pomegranates and some nuts. Uro-A has attracted great attention in recent years in view of its protective effects on aging-related diseases, including muscle dysfunction, kidney disease and knee injury. However, its protective influence and possible mechanisms in senile osteoporosis remain unclear. Our study describes the beneficial effect of Uro-A on bone marrow macrophages (BMMs). The in vitro results demonstrated that Uro-A inhibited receptor activator for nuclear factor-κB ligand (RANKL)-induced osteoclastogenesis in BMMs in a concentration-dependent manner. Uro-A significantly reduced the expression of osteoclast-related genes and bone resorption. Mechanistically, we found that the autophagy ability of BMMs was significantly enhanced in the early stage of Uro-A treatment, accompanied by the activation of LC3 and Beclin 1. At the same time, this enhanced autophagy activity was maintained until the later stage after stimulation with RANKL. Furthermore, we found that the MARK signaling pathway was blocked by Uro-A treatment. In a mouse model of aging, Uro-A effectively inhibited bone loss in the proximal femur, spine and tibia of aging mice. These results indicated that Uro-A is a robust and effective treatment for preventing senile osteoporosis bone loss.
Collapse
Affiliation(s)
- Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yunxia Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Zhang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xueyan Li
- Anesthesiology Department, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Ye Gu
- Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China
| | - Yujing Hong
- Department of Preventive Medicine, Nantong University, Nantong, China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yu Liu
- Department of Orthopedics, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Xing Yang
- Orthopedics and Sports Medicine Center, Suzhou Municipal Hospital (North District), Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Orthopedics, Changshu Hospital Affiliated to Soochow University, First People's Hospital of Changshu City, Changshu, China
| |
Collapse
|
9
|
Weighted Gene Co-Expression Network Analysis to Identify Potential Biological Processes and Key Genes in COVID-19-Related Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4526022. [PMID: 35557984 PMCID: PMC9088964 DOI: 10.1155/2022/4526022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this research was to explore the underlying biological processes causing coronavirus disease 2019- (COVID-19-) related stroke. The Gene Expression Omnibus (GEO) database was utilized to obtain four COVID-19 datasets and two stroke datasets. Thereafter, we identified key modules via weighted gene co-expression network analysis, following which COVID-19- and stroke-related crucial modules were crossed to identify the common genes of COVID-19-related stroke. The common genes were intersected with the stroke-related hub genes screened via Cytoscape software to discover the critical genes associated with COVID-19-related stroke. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis for common genes associated with COVID-19-related stroke, and the Reactome database was used to annotate and visualize the pathways involved in the key genes. Two COVID-19-related crucial modules and one stroke-related crucial module were identified. Subsequently, the top five genes were screened as hub genes after visualizing the genes of stroke-related critical module using Cytoscape. By intersecting the COVID-19- and stroke-related crucial modules, 28 common genes for COVID-19-related stroke were identified. ITGA2B and ITGB3 have been further identified as crucial genes of COVID-19-related stroke. Functional enrichment analysis indicated that both ITGA2B and ITGB3 were involved in integrin signaling and the response to elevated platelet cytosolic Ca2+, thus regulating platelet activation, extracellular matrix- (ECM-) receptor interaction, the PI3K-Akt signaling pathway, and hematopoietic cell lineage. Therefore, platelet activation, ECM-receptor interaction, PI3K-Akt signaling pathway, and hematopoietic cell lineage may represent the potential biological processes associated with COVID-19-related stroke, and ITGA2B and ITGB3 may be potential intervention targets for COVID-19-related stroke.
Collapse
|
10
|
Hashemzadeh M, Haseefa F, Peyton L, Park S, Movahed MR. The effects of estrogen and hormone replacement therapy on platelet activity: a review. AMERICAN JOURNAL OF BLOOD RESEARCH 2022; 12:33-42. [PMID: 35291255 PMCID: PMC8918702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Many studies have shown that an increase in cardiovascular disease in women is related to hormonal changes occurring particularly after menopause with increasing age. While the results of large clinical trials reporting no benefit of hormone replacement therapy (HRT) in cardiovascular disease have been known for some time, there is an increasing body of knowledge regarding the various mechanisms by which estrogen modulates platelet function that could in part explain the higher cardiovascular risk occurring in postmenopausal women and potential benefits of HRT on cardiovascular health. Our review summarizes our current knowledge regarding the effect of endogenous and exogenous estrogen on platelet activity, which can help researchers design future studies. We collected information from 21 peer-reviewed articles published from 1993 to 2021. Studies have indicated that postmenopausal women have higher platelet activity than premenopausal women, which can increase the risk of thrombo-embolic events and cardiovascular disease. Although some studies have reported pro-thrombotic effects of estrogen replacement therapy such as increased platelet activation and adhesion, other studies demonstrated decreased platelet aggregation by inhibiting GP IIb/IIIa receptor expression. This is mediated by estrogen receptors on the platelet membrane in a non-genomic manner and suggests an opportunity for the usage of estrogen replacement therapy with subtle changes in the formulation and route, particularly if started early after menopause. The effect of estrogen on platelet activity is promising as an important factor in reducing the risk of cardiovascular events, warranting further investigation.
Collapse
Affiliation(s)
- Mehrnoosh Hashemzadeh
- University of Arizona, College of MedicinePhoenix, AZ, USA
- Pima CollegeTucson, AZ, USA
| | | | - Lee Peyton
- Pima CollegeTucson, AZ, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and ScienceRochester, MN, USA
| | - Shery Park
- Pima CollegeTucson, AZ, USA
- University of ArizonaTucson, AZ, USA
| | - Mohammed Reza Movahed
- University of Arizona, College of MedicinePhoenix, AZ, USA
- University of ArizonaTucson, AZ, USA
| |
Collapse
|