1
|
Liu S, He X, Liang S, Wu A, Liu L, Hu W. Carbon ion irradiation mobilizes antitumor immunity: from concept to the clinic. Radiat Oncol 2025; 20:85. [PMID: 40405246 PMCID: PMC12100795 DOI: 10.1186/s13014-025-02647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 04/23/2025] [Indexed: 05/24/2025] Open
Abstract
Carbon ion radiotherapy (CIRT), a type of particle therapy, is at the forefront of clinical oncology treatments due to its superior physical properties and biological performance. Although CIRT has demonstrated outstanding therapeutic outcomes in clinical settings, the biological mechanisms underpinning its effects, particularly its immunogenic potential and the superiority of its induced antitumor immune response compared to photon radiotherapy, remain areas of active investigation. This review summarizes the latest research progress on the mechanisms of antitumor immune responses triggered by CIRT and discusses preclinical and clinical studies related to combined CIRT and immunotherapy (CCIT). Against the backdrop of extensive research and significant clinical efficacy achieved by combining radiotherapy with immunotherapy, this review provides a theoretical foundation for a better understanding of the superior tumor cell-killing effects of CIRT and the underlying immunological mechanisms. Further insights into the factors affecting the efficacy, toxic effects, and developmental limitations of this combination therapy mode will be instrumental in guiding the conduction of CCIT studies.
Collapse
Affiliation(s)
- Shanghai Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiangyang He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Siqi Liang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China
| | - Anqing Wu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Lu Liu
- Suzhou Medical College of Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
2
|
Sudo M, Wang Y, Wang J, Yasuda K, Mitani K, Hayashi S, Ohmuraya M, Tsutsui H, Fujimoto J. Carbon-ion irradiation together with autophagy inhibition and immune checkpoint inhibitors protect against pancreatic cancer development in mouse model. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2025. [PMID: 40230051 DOI: 10.1002/jhbp.12148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
BACKGROUND Pancreatic cancer remains fatal because of resistance to chemo-, radio-, and immunotherapies. Carbon-ion radiotherapy (CIRT) has been beneficial for patients with pancreatic cancer. The purpose of this study was to identify the mechanism by which CIRT exerts its anticancer activity, particularly in combination with immunotherapy. METHODS We implanted murine pancreatic cancer cells treated with CIRT and autophagy inhibitor HCQ (CIRT+HCQ) into syngeneic mice, followed by the application of a regulatory T (Treg) cell blockade using immune-checkpoint inhibitors. We compared CIRT+HCQ-treated tumors with those implanted without any treatment. Further, we also implanted CIRT+HCQ-treated pancreatic tumors into CD8+ T cell-depleted mice. To characterize immunological alterations, we conducted immunohistology and flow cytometry of implanted tumors. RESULTS CIRT+HCQ-treated tumors exhibited reduced growth, higher numbers of CD8+ T cells, and lower numbers of Treg cells compared with control tumors. CD8+ T cell depletion restored growth in CIRT+HCQ-treated tumors. A Treg blockade resulted in greater tumor growth remission and elevated levels of intratumor CD8+ T cells in mice bearing CIRT+HCQ-treated tumors but not in mice bearing control tumors. CONCLUSIONS Treg cell-targeted therapy exerted an anticancer effect in mice bearing CIRT+HCQ-treated tumors but not in those bearing untreated pancreatic tumors by activating cancer-specific CD8+ T cells.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Genetics, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Yaoyao Wang
- Department of Genetics, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Jingren Wang
- Department of Genetics, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Koubun Yasuda
- Department of Immunology, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Keiko Mitani
- Department of Gastroenterological Surgery, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Shuhei Hayashi
- Department of Microbiology, School of Medicine, Hyogo Medical University, Hyogo, Japan
- International Tourism and Medical Studies, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Masaki Ohmuraya
- Department of Genetics, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, School of Medicine, Hyogo Medical University, Hyogo, Japan
- Osaka Heavy Ion Therapy Center, Osaka, Japan
| |
Collapse
|
3
|
Zhang A, Fan L, Liu Q, Zuo X, Zhu J. Immunological Effects of Proton Radiotherapy: New Opportunities and Challenges in Cancer Therapy. CANCER INNOVATION 2025; 4:e70003. [PMID: 40061827 PMCID: PMC11885950 DOI: 10.1002/cai2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/23/2024] [Accepted: 01/16/2025] [Indexed: 03/14/2025]
Abstract
Radiation therapy can be categorised by particle type into photon, proton and heavy ion therapies. Proton radiotherapy is highlighted due to its unique physical properties, such as the Bragg peak and minimal exit dose, which offer superior dose distribution. This makes proton radiotherapy especially advantageous for treating tumours near vital organs with complex structures, such as gliomas near the brain, nasopharyngeal carcinoma near the brainstem and mediastinal tumours near the heart. Proton irradiation can induce distant effects through immunogenicity within the target area. The reduced low-dose zone outside the target provides better lymphatic system protection and immune benefits. Additionally, combining proton radiotherapy with immunotherapy may offer further biological advantages. These features make proton radiotherapy a promising option in cancer treatment. This article may aid in the understanding of proton radiotherapy and its immune effects and lead to new effective options for tumour treatment.
Collapse
Affiliation(s)
- Anhang Zhang
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| | - Liyuan Fan
- Department of Radiation OncologyQilu Hospital of Shandong UniversityJinanShandongChina
| | - Qi Liu
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| | - Xiaoxin Zuo
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| | - Jian Zhu
- Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation Oncology Physics and TechnologyShandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Shandong Provincial Key Medical and Health Laboratory of Pediatric Cancer Precision Radiotherapy (Shandong Cancer Hospital)JinanShandongChina
| |
Collapse
|
4
|
Zhan S, Cao Z, Li J, Chen F, Lai X, Yang W, Teng Y, Li Z, Zhang W, Xie J. Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death. Bioconjug Chem 2025; 36:80-91. [PMID: 39680043 PMCID: PMC11740999 DOI: 10.1021/acs.bioconjchem.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
ATP (adenosine triphosphate) and HMGB1 (high mobility group box 1 protein) are key players in treatments that induce immunogenic cell death (ICD). However, conventional therapies, including radiotherapy, are often insufficient to induce ICD. In this study, we explore a strategy using nanoparticle-loaded macrophages as a source of ATP and HMGB1 to complement radiation-induced intrinsic and adaptive immune responses. To this end, we tested three inorganic particles, namely, iron oxide nanoparticles (ION), aluminum oxide nanoparticles (AON), and zinc oxide nanoparticles (ZON), in vitro with bone marrow-derived dendritic cells (BMDCs) and then in vivo in syngeneic tumor models. Our results showed that ION was the most effective of the three nanoparticles in promoting the secretion of ATP and HMGB1 from macrophages without negatively affecting macrophage survival. Secretions from ION-loaded macrophages can activate BMDCs. Intratumoral injection of ION-loaded macrophages significantly enhanced tumor infiltration and activation of dendritic cells and cytotoxic T cells. Moreover, exogenous ION macrophages can enhance the efficacy of radiotherapy. In addition, direct injection of ION can also enhance the efficacy of radiotherapy, which is attributed to ION uptake by and stimulation of endogenous macrophages. Instead of directly targeting cancer cells, our strategy targets macrophages and uses them as a secretory source of ATP and HMGB1 to enhance radiation-induced ICD. Our research introduces a new nanoparticle-based immunomodulatory approach that may have applications in radiotherapy and beyond.
Collapse
Affiliation(s)
- Shuyue Zhan
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Zhengwei Cao
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jianwen Li
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Fanghui Chen
- Department
of Hematology and Medical Oncology & Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xinning Lai
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Wei Yang
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Yong Teng
- Department
of Hematology and Medical Oncology & Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zibo Li
- Department
of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Weizhong Zhang
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jin Xie
- Department
of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Wang K, Yuan S. Current status and prospect of particle therapy for esophageal cancer. PRECISION RADIATION ONCOLOGY 2024; 8:92-98. [PMID: 40336644 PMCID: PMC11935211 DOI: 10.1002/pro6.1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 05/09/2025] Open
Abstract
Esophageal cancer is among the top causes of cancer-related mortality worldwide, and the main treatment modality for locally advanced esophageal cancer is concurrent chemoradiotherapy. The current photon-based radiotherapy modalities and procedures have increased the incidence of treatment-related cardiac and pulmonary complications. Additionally, anatomical changes in the esophagus resulting from diaphragmatic movement, weight loss, and tumor progression present challenges for radiotherapy. These challenges have spurred interest in particle therapies, such as proton beam therapy (PBT) and heavy-ion therapy, for esophageal cancer. This paper comprehensively reviews the dosimetric advantages, clinical efficacy, and limitations of PBT and heavy-ion therapy for esophageal cancer and discusses their prospects. This highlights the unique dosimetric benefits of these therapies, particularly their ability to deliver high-dose radiation precisely to the tumor while sparing the surrounding normal organs and tissues. Although PBT and heavy-ion therapy demonstrate superior clinical efficacy compared to photon therapy, they are not without limitations. Multiple studies are needed to further validate and supplement the existing clinical and preclinical data to better exploit the benefits of PBT and thereby provide improved survival advantages to these patients.
Collapse
Affiliation(s)
- Kang Wang
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Shuanghu Yuan
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
- Department of Radiation OncologyFirst Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
6
|
Colangelo NW, Gerber NK, Vatner RE, Cooper BT. Harnessing the cGAS-STING pathway to potentiate radiation therapy: current approaches and future directions. Front Pharmacol 2024; 15:1383000. [PMID: 38659582 PMCID: PMC11039815 DOI: 10.3389/fphar.2024.1383000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/15/2024] [Indexed: 04/26/2024] Open
Abstract
In this review, we cover the current understanding of how radiation therapy, which uses ionizing radiation to kill cancer cells, mediates an anti-tumor immune response through the cGAS-STING pathway, and how STING agonists might potentiate this. We examine how cGAS-STING signaling mediates the release of inflammatory cytokines in response to nuclear and mitochondrial DNA entering the cytoplasm. The significance of this in the context of cancer is explored, such as in response to cell-damaging therapies and genomic instability. The contribution of the immune and non-immune cells in the tumor microenvironment is considered. This review also discusses the burgeoning understanding of STING signaling that is independent of inflammatory cytokine release and the various mechanisms by which cancer cells can evade STING signaling. We review the available data on how ionizing radiation stimulates cGAS-STING signaling as well as how STING agonists may potentiate the anti-tumor immune response induced by ionizing radiation. There is also discussion of how novel radiation modalities may affect cGAS-STING signaling. We conclude with a discussion of ongoing and planned clinical trials combining radiation therapy with STING agonists, and provide insights to consider when planning future clinical trials combining these treatments.
Collapse
Affiliation(s)
- Nicholas W. Colangelo
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Naamit K. Gerber
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| | - Ralph E. Vatner
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Benjamin T. Cooper
- Department of Radiation Oncology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
7
|
Sudo M, Tsutsui H, Fujimoto J. Carbon Ion Irradiation Activates Anti-Cancer Immunity. Int J Mol Sci 2024; 25:2830. [PMID: 38474078 DOI: 10.3390/ijms25052830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Carbon ion beams have the unique property of higher linear energy transfer, which causes clustered damage of DNA, impacting the cell repair system. This sometimes triggers apoptosis and the release in the cytoplasm of damaged DNA, leading to type I interferon (IFN) secretion via the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes pathway. Dendritic cells phagocytize dead cancer cells and damaged DNA derived from injured cancer cells, which together activate dendritic cells to present cancer-derived antigens to antigen-specific T cells in the lymph nodes. Thus, carbon ion radiation therapy (CIRT) activates anti-cancer immunity. However, cancer is protected by the tumor microenvironment (TME), which consists of pro-cancerous immune cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages. The TME is too robust to be destroyed by the CIRT-mediated anti-cancer immunity. Various modalities targeting regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages have been developed. Preclinical studies have shown that CIRT-mediated anti-cancer immunity exerts its effects in the presence of these modalities. In this review article, we provide an overview of CIRT-mediated anti-cancer immunity, with a particular focus on recently identified means of targeting the TME.
Collapse
Affiliation(s)
- Makoto Sudo
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Hiroko Tsutsui
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Jiro Fujimoto
- Department of Gastroenterological Surgery, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Osaka Heavy Ion Therapy Center, Osaka 540-0008, Japan
| |
Collapse
|
8
|
Chimote AA, Lehn MA, Bhati J, Mascia AE, Sertorio M, Lamba MA, Ionascu D, Tang AL, Langevin SM, Khodoun MV, Wise-Draper TM, Conforti L. Proton Treatment Suppresses Exosome Production in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2024; 16:1008. [PMID: 38473367 PMCID: PMC10931005 DOI: 10.3390/cancers16051008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Proton therapy (PT) is emerging as an effective and less toxic alternative to conventional X-ray-based photon therapy (XRT) for patients with advanced head and neck squamous cell carcinomas (HNSCCs) owing to its clustered dose deposition dosimetric characteristics. For optimal efficacy, cancer therapies, including PT, must elicit a robust anti-tumor response by effector and cytotoxic immune cells in the tumor microenvironment (TME). While tumor-derived exosomes contribute to immune cell suppression in the TME, information on the effects of PT on exosomes and anti-tumor immune responses in HNSCC is not known. In this study, we generated primary HNSCC cells from tumors resected from HNSCC patients, irradiated them with 5 Gy PT or XRT, and isolated exosomes from cell culture supernatants. HNSCC cells exposed to PT produced 75% fewer exosomes than XRT- and non-irradiated HNSCC cells. This effect persisted in proton-irradiated cells for up to five days. Furthermore, we observed that exosomes from proton-irradiated cells were identical in morphology and immunosuppressive effects (suppression of IFN-γ release by peripheral blood mononuclear cells) to those of photon-irradiated cells. Our results suggest that PT limits the suppressive effect of exosomes on cancer immune surveillance by reducing the production of exosomes that can inhibit immune cell function.
Collapse
Affiliation(s)
- Ameet A. Chimote
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.A.C.); (J.B.)
| | - Maria A. Lehn
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (M.A.L.); (T.M.W.-D.)
| | - Jay Bhati
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.A.C.); (J.B.)
| | - Anthony E. Mascia
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Michael A. Lamba
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Dan Ionascu
- Department of Radiation Oncology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; (A.E.M.); (M.S.); (M.A.L.); (D.I.)
| | - Alice L. Tang
- Department of Otolarynogology, Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Scott M. Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Marat V. Khodoun
- Division of Rheumatology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA;
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Trisha M. Wise-Draper
- Division of Hematology-Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (M.A.L.); (T.M.W.-D.)
| | - Laura Conforti
- Division of Nephrology, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45267, USA; (A.A.C.); (J.B.)
| |
Collapse
|
9
|
Hu J, Huang Q, Hu W, Gao J, Yang J, Zhang H, Lu JJ, Kong L. A protocol for a randomized trial evaluating the role of carbon-ion radiation therapy plus camrelizumab for patients with locoregionally recurrent nasopharyngeal carcinoma. Cancer Med 2024; 13:e6742. [PMID: 38205914 PMCID: PMC10905325 DOI: 10.1002/cam4.6742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE Management of locoregionally recurrent nasopharyngeal carcinoma (LR NPC) is difficult. Although carbon-ion radiation therapy (CIRT) could substantially improve the overall survival (OS) of those patients, around 40% of the patients may still develop local failure. Further improvement of the disease control is necessary. Immunotherapy, such as immune checkpoint inhibitors (ICIs) becomes a promising antitumor treatment. The role of ICIs was proved in head and neck cancers including recurrent/metastatic NPC. Preclinical studies indicated potential synergistic effects between radiation therapy and ICIs. Therefore, we conduct a randomized phase 2 trial to evaluate the efficacy and safety of camrelizumab, an anti-PD-1 monoclonal antibody, along with CIRT in patients with LR NPC. METHODS Patients will be randomly assigned at 1:1 to receive either standard CIRT with 63 Gy (relatively biological effectiveness, [RBE]) in 21 fractions, or standard CIRT plus concurrent camrelizumab. Camrelizumab will be administered intravenously with a dose of 200 mg, every 2 week, for a maximum of 1 year. We estimate addition of camrelizumab will improve the 2-year progression-free survival (PFS) from 45% to 60%. A total of 146 patients (with a 5% lost to follow-up rate) is required to yield a type I error of 0.2, and a power of 0.8. RESULTS AND CONCLUSION The results of the trial may shed insights on the combined therapy with ICIs and CIRT.
Collapse
Affiliation(s)
- Jiyi Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Qingting Huang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Weixu Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Jing Gao
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Jing Yang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Haojiong Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Department of Radiation OncologyShanghai Proton and Heavy Ion CenterShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Jiade Jay Lu
- Department of Radiation Oncology, Proton and Heavy Ion CenterHeyou International HospitalFoshanChina
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Shanghai Key Laboratory of radiation oncologyShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| |
Collapse
|
10
|
Hu W, Zhang Z, Xue Y, Ning R, Guo X, Sun Y, Zhang Q. Carbon ion irradiation exerts antitumor activity by inducing cGAS-STING activation and immune response in prostate cancer-bearing mice. Cancer Med 2024; 13:e6950. [PMID: 38379323 PMCID: PMC10832322 DOI: 10.1002/cam4.6950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND AND PURPOSE As an advanced radiotherapy technique, carbon ion radiotherapy has demonstrated good efficacy and low toxicity for prostate cancer patients, but the radiobiological mechanism of killing tumor cells has not been fully elucidated. This study aims to explore the antitumor effects of carbon ion irradiation (CIR) through investigating the immune response induced by CIR in prostate cancer-bearing mice and the underlying molecular mechanism. MATERIALS AND METHODS We established subcutaneous transplantation tumor models of prostate cancer to evaluate the tumor inhibition effect of CIR. Investigation of immunophenotype alterations were assessed by flow cytometry. Immunofluorescence, western blot, and real-time quantitative PCR was employed to analyze the activation of cGAS-STING pathway. RESULTS CIR showed more powerful tumor growth control than photon irradiation in immunocompetent syngeneic C57BL/6 mice. CIR exerts antitumor effect by triggering immune response, characterized by increased CD4+ T cells and macrophages in tumor, enhanced CD8+ T cells and T effector memory cells in spleen, improved IFN-γ production of CD8+ tumor-infiltrating lymphocytes, and reduced exhausted T cells in tumor and spleen. Additionally, production of cytoplasmic double-stranded DNA, protein levels of p-TBK1 and p-IRF3 in the cGAS-STING pathway, and gene expression levels of downstream interferon-stimulated genes were significantly increased after CIR in a dose-dependent manner. Treatment of RM1 tumor-bearing mice with the STING inhibitor C-176 impaired the antitumor effect of CIR. CONCLUSION The excellent antitumor activity of CIR in immunocompetent prostate cancer-bearing C57BL/6 mice may be attributed to stronger induction of antitumor immune response and higher activation of cGAS-STING pathway.
Collapse
Affiliation(s)
- Wei Hu
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000)ShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Zhenshan Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000)ShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Yushan Xue
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000)ShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| | - Renli Ning
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000)ShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Department of Research and Development, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
| | - Xiaomao Guo
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000)ShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Department of Research and Development, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
| | - Yun Sun
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000)ShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
- Department of Research and Development, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
| | - Qing Zhang
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion CenterFudan University Cancer HospitalShanghaiChina
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000)ShanghaiChina
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation TherapyShanghaiChina
| |
Collapse
|
11
|
Uematsu M, Nakajima H, Hosono A, Kiyohara H, Hirota A, Takahashi N, Fukuda M, Kusuhara S, Nakao T, Funasaka C, Kondoh C, Harano K, Matsubara N, Naito Y, Akimoto T, Mukohara T. Safety of immune checkpoint inhibitors after proton beam therapy in head and neck mucosal melanoma: a case series. Melanoma Res 2023; 33:547-552. [PMID: 37696254 DOI: 10.1097/cmr.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Proton beam therapy (PBT) has shown promising efficacy in treating locally advanced head and neck mucosal melanoma despite its poor prognosis. Although PBT may improve the efficacy of subsequent immune checkpoint inhibitors (ICIs), the safety of ICIs in patients who have previously received PBT has not been established. Hence, this study evaluated the safety of ICIs in patients who had recurrent mucosal melanoma after PBT. Between April 2013 and June 2022, we retrospectively reviewed the medical records of patients diagnosed with cutaneous or mucosal melanoma at the National Cancer Center Hospital East. Seven patients were treated with ICIs after their head and neck mucosal melanoma (HNMM) recurred after PBT. Four of the seven patients experienced grade immune-related adverse events (irAEs). Due to irAE in the irradiation field, two patients had grade 3 hypopituitarism. Other grade 3 or higher irAEs included an increase in serum alanine aminotransferase in two patients and gastritis in one, and two patients discontinued ICI due to the irAEs. All irAEs were resolved with appropriate management. Although administering ICIs after PBT may increase the risk of irAEs, especially in the irradiation field, they appear manageable. These findings could help in the development of a treatment strategy for locally advanced HNMM that includes PBT and subsequent ICIs.
Collapse
Affiliation(s)
- Mao Uematsu
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Hiromichi Nakajima
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
| | - Ako Hosono
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Pediatric Oncology, National Cancer Center Hospital East
| | - Hikari Kiyohara
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Akira Hirota
- Department of Medical Oncology, National Cancer Center Hospital East
| | | | - Misao Fukuda
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Shota Kusuhara
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Takehiro Nakao
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Chikako Funasaka
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
| | - Chihiro Kondoh
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Kenichi Harano
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
| | - Nobuaki Matsubara
- Department of Medical Oncology, National Cancer Center Hospital East
| | - Yoichi Naito
- Department of Medical Oncology, National Cancer Center Hospital East
- Department of Experimental Therapeutics, National Cancer Center Hospital East
- Department of General Internal Medicine, National Cancer Center Hospital East
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Toru Mukohara
- Department of Medical Oncology, National Cancer Center Hospital East
| |
Collapse
|
12
|
Lo CY, Tsai SW, Niu H, Chen FH, Hwang HC, Chao TC, Hsiao IT, Liaw JW. Gold-Nanoparticles-Enhanced Production of Reactive Oxygen Species in Cells at Spread-Out Bragg Peak under Proton Beam Radiation. ACS OMEGA 2023; 8:17922-17931. [PMID: 37251180 PMCID: PMC10210040 DOI: 10.1021/acsomega.3c01025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/26/2023] [Indexed: 05/31/2023]
Abstract
This study investigates the radiobiological effects of gold nanoparticles (GNPs) as radiosensitizers for proton beam therapy (PBT). Specifically, we explore the enhanced production of reactive oxygen species (ROS) in GNP-loaded tumor cells irradiated by a 230 MeV proton beam in a spread-out Bragg peak (SOBP) zone obtained by a passive scattering system. Our findings indicate that the radiosensitization enhancement factor is 1.24 at 30% cell survival fraction, 8 days after 6 Gy proton beam irradiation. Since protons deposit the majority of their energy at the SOBP region and interact with GNPs to induce more ejected electrons from the high-Z GNPs, these ejected electrons then react with water molecules to produce excessive ROS that can damage cellular organelles. Laser scanning confocal microscopy reveals the excessive ROS induced inside the GNP-loaded cells immediately after proton irradiation. Furthermore, the damage to cytoskeletons and mitochondrial dysfunction in GNP-loaded cells caused by the induced ROS becomes significantly severe, 48 h after proton irradiation. Our biological evidence suggests that the cytotoxicity of GNP-enhanced ROS production has the potential to increase the tumoricidal efficacy of PBT.
Collapse
Affiliation(s)
- Chang-Yun Lo
- Department
of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan
| | - Shiao-Wen Tsai
- Department
of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Department
of Periodontics, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Huan Niu
- Accelerator
Laboratory, Nuclear Science and Technology Development Center, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Fang-Hsin Chen
- Institute
of Nuclear Engineering and Science, National
Tsing Hua University, Hsinchu 300, Taiwan
- Department
of Radiation Oncology, Chang Gung Memorial
Hospital, Taoyuan 333, Taiwan
- Department
of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsiao-Chien Hwang
- Proton
and Radiation Therapy Center, Linkou Chang
Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsi-Chian Chao
- Department
of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Ing-Tsung Hsiao
- Department
of Medical Imaging and Radiological Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Jiunn-Woei Liaw
- Department
of Mechanical Engineering, Chang Gung University, Taoyuan 333, Taiwan
- Proton
and Radiation Therapy Center, Linkou Chang
Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department
of Mechanical Engineering, Ming Chi University
of Technology, New Taipei City 243, Taiwan
| |
Collapse
|
13
|
Radiotherapy, PARP Inhibition, and Immune-Checkpoint Blockade: A Triad to Overcome the Double-Edged Effects of Each Single Player. Cancers (Basel) 2023; 15:cancers15041093. [PMID: 36831435 PMCID: PMC9954050 DOI: 10.3390/cancers15041093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Radiotherapy and, more recently, PARP inhibitors (PARPis) and immune-checkpoint inhibitors represent effective tools in cancer therapy. Radiotherapy exerts its effects not only by damaging DNA and inducing tumor cell death, but also stimulating anti-tumor immune responses. PARPis are known to exert their therapeutic effects by inhibiting DNA repair, and they may be used in combination with radiotherapy. Both radiotherapy and PARPis modulate inflammatory signals and stimulate type I IFN (IFN-I)-dependent immune activation. However, they can also support the development of an immunosuppressive tumor environment and upregulate PD-L1 expression on tumor cells. When provided as monotherapy, immune-checkpoint inhibitors (mainly antibodies to CTLA-4 and the PD-1/PD-L1 axis) result particularly effective only in immunogenic tumors. Combinations of immunotherapy with therapies that favor priming of the immune response to tumor-associated antigens are, therefore, suitable strategies. The widely explored association of radiotherapy and immunotherapy has confirmed this benefit for several cancers. Association with PARPis has also been investigated in clinical trials. Immunotherapy counteracts the immunosuppressive effects of radiotherapy and/or PARPis and synergies with their immunological effects, promoting and unleashing immune responses toward primary and metastatic lesions (abscopal effect). Here, we discuss the beneficial and counterproductive effects of each therapy and how they can synergize to overcome single-therapy limitations.
Collapse
|
14
|
The 'stealth-bomber' paradigm for deciphering the tumour response to carbon-ion irradiation. Br J Cancer 2023; 128:1429-1438. [PMID: 36639527 PMCID: PMC10070470 DOI: 10.1038/s41416-022-02117-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/14/2023] Open
Abstract
Numerous studies have demonstrated the higher biological efficacy of carbon-ion irradiation (C-ions) and their ballistic precision compared with photons. At the nanometre scale, the reactive oxygen species (ROS) produced by radiation and responsible for the indirect effects are differentially distributed according to the type of radiation. Photon irradiation induces a homogeneous ROS distribution, whereas ROS remain condensed in clusters in the C-ions tracks. Based on this linear energy transfer-dependent differential nanometric ROS distribution, we propose that the higher biological efficacy and specificities of the molecular response to C-ions rely on a 'stealth-bomber' effect. When biological targets are on the trajectories of the particles, the clustered radicals in the tracks are responsible for a 'bomber' effect. Furthermore, the low proportion of ROS outside the tracks is not able to trigger the cellular mechanisms of defence and proliferation. The ability of C-ions to deceive the cellular defence of the cancer cells is then categorised as a 'stealth' effect. This review aims to classify the biological arguments supporting the paradigm of the 'stealth-bomber' as responsible for the biological superiority of C-ions compared with photons. It also explains how and why C-ions will always be more efficient for treating patients with radioresistant cancers than conventional radiotherapy.
Collapse
|
15
|
Mirjolet C, Baude J, Galluzzi L. Dual impact of radiation therapy on tumor-targeting immune responses. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:xiii-xxiv. [PMID: 37438022 DOI: 10.1016/s1937-6448(23)00114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Affiliation(s)
- Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France.
| | - Jérémy Baude
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, GF Leclerc Centre, Unicancer, Dijon, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States.
| |
Collapse
|
16
|
Helm A, Totis C, Durante M, Fournier C. Are charged particles a good match for combination with immunotherapy? Current knowledge and perspectives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:1-36. [PMID: 36997266 DOI: 10.1016/bs.ircmb.2023.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Charged particle radiotherapy, mainly using protons and carbon ions, provides physical characteristics allowing for a volume conformal irradiation and a reduction of the integral dose to normal tissue. Carbon ion therapy additionally features an increased biological effectiveness resulting in peculiar molecular effects. Immunotherapy, mostly performed with immune checkpoint inhibitors, is nowadays considered a pillar in cancer therapy. Based on the advantageous features of charged particle radiotherapy, we review pre-clinical evidence revealing a strong potential of its combination with immunotherapy. We argue that the combination therapy deserves further investigation with the aim of translation in clinics, where a few studies have been set up already.
Collapse
Affiliation(s)
- A Helm
- Biophysics Department, GSI, Darmstadt, Germany
| | - C Totis
- Biophysics Department, GSI, Darmstadt, Germany
| | - M Durante
- Biophysics Department, GSI, Darmstadt, Germany.
| | - C Fournier
- Biophysics Department, GSI, Darmstadt, Germany
| |
Collapse
|
17
|
Kiseleva V, Gordon K, Vishnyakova P, Gantsova E, Elchaninov A, Fatkhudinov T. Particle Therapy: Clinical Applications and Biological Effects. Life (Basel) 2022; 12:2071. [PMID: 36556436 PMCID: PMC9785772 DOI: 10.3390/life12122071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Particle therapy is a developing area of radiotherapy, mostly involving the use of protons, neutrons and carbon ions for cancer treatment. The reduction of side effects on healthy tissues in the peritumoral area is an important advantage of particle therapy. In this review, we analyze state-of-the-art particle therapy, as compared to conventional photon therapy, to identify clinical benefits and specify the mechanisms of action on tumor cells. Systematization of published data on particle therapy confirms its successful application in a wide range of cancers and reveals a variety of biological effects which manifest at the molecular level and produce the particle therapy-specific molecular signatures. Given the rapid progress in the field, the use of particle therapy holds great promise for the near future.
Collapse
Affiliation(s)
- Viktoriia Kiseleva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
| | - Konstantin Gordon
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A. Tsyb Medical Radiological Research Center, 249031 Obninsk, Russia
| | - Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Elena Gantsova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 117198 Moscow, Russia
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| | - Timur Fatkhudinov
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia
- A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 117418 Moscow, Russia
| |
Collapse
|