1
|
Smith AN, Gregor A, Baker L, Sharp DJ, Byrnes KR. Downregulation of Fidgetin-Like 2 Increases Microglial Function: The Relationship Between Microtubules, Morphology, and Activity. Mol Neurobiol 2025; 62:2726-2739. [PMID: 39160390 PMCID: PMC11790376 DOI: 10.1007/s12035-024-04404-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/27/2024] [Indexed: 08/21/2024]
Abstract
The microtubule cytoskeleton regulates microglial morphology, motility, and effector functions. The microtubule-severing enzyme, fidgetin-like 2 (FL2), negatively regulates cell motility and nerve regeneration, making it a promising therapeutic target for central nervous system injury. Microglia perform important functions in response to inflammation and injury, but how FL2 affects microglia is unclear. In this study, we investigated the role of FL2 in microglial morphology and injury responses in vitro. We first determined that the pro-inflammatory stimulus, lipopolysaccharide (LPS), induced a dose- and time-dependent reduction in FL2 expression associated with reduced microglial ramification. We then administered nanoparticle-encapuslated FL2 siRNA to knockdown FL2 and assess microglial functions compared to negative control siRNA and vehicle controls. Time-lapse live-cell microscopy showed that FL2 knockdown increased the velocity of microglial motility. After incubation with fluorescently labeled IgG-opsonized beads, FL2 knockdown increased phagocytosis. Microglia were exposed to low-dose LPS after nanoparticle treatment to model injury-induced cytokine secretion. FL2 knockdown enhanced LPS-induced cytokine secretion of IL-1α, IL-1β, and TNFα. These results identify FL2 as a regulator of microglial morphology and suggest that FL2 can be targeted to increase or accelerate microglial injury responses.
Collapse
Affiliation(s)
- Austin N Smith
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alison Gregor
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - David J Sharp
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kimberly R Byrnes
- Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
2
|
Niu C, Zou Y, Dong M, Niu Y. Plant-derived compounds as potential neuroprotective agents in Parkinson's disease. Nutrition 2025; 130:112610. [PMID: 39546872 DOI: 10.1016/j.nut.2024.112610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/12/2024] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES Current Parkinson's disease (PD) medications treat symptoms; none can slow down or arrest the disease progression. Disease-modifying therapies for PD remain an urgent unmet clinical need. This review was designed to summarize recent findings regarding to the efficacy of phytochemicals in the treatment of PD and their underlying mechanisms. METHODS A literature search was performed using PubMed databases from inception until January 2024. RESULTS We first review the role of oxidative stress in PD and phytochemical-based antioxidant therapy. We then summarize recent work on neuroinflammation in the pathogenesis of PD, as well as preclinical data supporting anti-inflammatory efficacy in treating or preventing the disease. We last evaluate evidence for brain mitochondrial dysfunction in PD, together with the phytochemicals that protect mitochondrial function in preclinical model of PD. Furthermore, we discussed possible reasons for failures of preclinical-to-clinical translation for neuroprotective therapeutics. CONCLUSIONS There is now extensive evidence from preclinical studies that neuroprotective phytochemicals as promising candidate drugs for PD are needed to translate from the laboratory to the clinic.
Collapse
Affiliation(s)
- Chengu Niu
- Internal Medicine Residency Program, Rochester General Hospital, Rochester, NY 14621, USA
| | - Yu Zou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Miaoxian Dong
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
3
|
Sood R, Sanjay, Kang SU, Yoon NY, Lee HJ. Malvidin-3-O-Glucoside Mitigates α-Syn and MPTP Co-Induced Oxidative Stress and Apoptosis in Human Microglial HMC3 Cells. Int J Mol Sci 2024; 25:12733. [PMID: 39684444 DOI: 10.3390/ijms252312733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/08/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease (PD) is a widespread age-related neurodegenerative disorder characterized by the presence of an aggregated protein, α-synuclein (α-syn), which is encoded by the SNCA gene and localized to presynaptic terminals in a normal human brain. The α-syn aggregation is induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mitochondrial neurotoxin and is therefore used to mimic PD-like pathology in various in vitro and in vivo models. However, in vitro PD-like pathology using α-syn and MPTP in human microglial cells has not yet been reported. Malvidin-3-O-glucoside (M3G) is a major anthocyanin primarily responsible for pigmentation in various fruits and beverages and has been reported to possess various bioactivities. However, the neuroprotective effects of M3G in humanized in vitro PD-like pathologies have not been reported. Therefore, individual and co-treatments of α-syn and MPTP in a human microglial (HMC3) cell line were used to establish a humanized PD-like pathology model in vitro. The individual treatments were significantly less cytotoxic when compared to the α-syn and MPTP co-treatment. This study examined the neuroprotective effects of M3G by treating HMC3 cells with α-syn (8 μg/mL) and MPTP (2 mM) individually or in a co-treatment in the presence or absence of M3G (50 μM). M3G demonstrated anti-apoptotic, anti-inflammatory, and antioxidative properties against the α-syn- and MPTP-generated humanized in vitro PD-like pathology. This study determined that the cytoprotective effects of M3G are mediated by nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 signaling.
Collapse
Affiliation(s)
- Rachit Sood
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea
| | - Sanjay
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Na Young Yoon
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Science and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
4
|
Yang XP, Huang JH, Ye FL, Yv QY, Chen S, Li WW, Zhu M. Echinacoside exerts neuroprotection via suppressing microglial α-synuclein/TLR2/NF-κB/NLRP3 axis in parkinsonian models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155230. [PMID: 38000105 DOI: 10.1016/j.phymed.2023.155230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Echinacoside (ECH), a natural active compound, was found to exert neuroprotection in Parkinson's disease (PD). However, the underlying molecular mechanisms remain controversial. PURPOSE This study aimed to explore the roles of ECH in PD and its engaged mechanisms. CONCLUSION In vivo, MPTP was adapted to construct subacute PD mouse model to explore the regulation of ECH on NLRP3 inflammasome. In vitro, α-synuclein (α-syn)/MPP+ was used to mediate the activation of NLRP3 inflammasome in BV2 cells, and the mechanism of ECH regulation of it was explored with molecular docking, immunofluorescence, Western blotting, and small molecule inhibitors. CONCLUSION The activation of microglial NLRP3 inflammasome could be evoked by MPTP in vitro, but its toxic metabolite MPP+ alone cannot trigger the activation of NLRP3 inflammasome in vitro, which requires α-synuclein (α-syn) priming. Exogenous α-syn could evoke microglial TLR2/NF-κB/NLRP3 axis, playing the priming role in MPP+ -mediated NLRP3 inflammasome activation. ECH can suppress the upregulation of α-syn in MPTP-treated mice and BV2 microglia. It can also suppress the activation of the TLR2/NF-κB/NLRP3 axis induced by α-syn. CONCLUSION ECH exerts neuroprotective effects by downregulating the TLR2/NF-κB/NLRP3 axis via reducing the expression of α-syn in the PD models.
Collapse
Affiliation(s)
- Xue-Ping Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central South University, Changsha 410000, PR China; Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China; Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai 201500, China
| | - Jia-Hua Huang
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China; Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai 201500, China
| | - Fan-Long Ye
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China; Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai 201500, China
| | - Qing-Yun Yv
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China; Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai 201500, China
| | - Sheng Chen
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China; Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai 201500, China
| | - Wen-Wei Li
- Laboratory of Neuropathology and Neuropharmacology, Department of Neurology, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201500, China; Institute of Neurology, Institutes of Integrative Medicine, Fudan University, Shanghai 201500, China.
| | - Min Zhu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
5
|
Mazzetti S, Calogero AM, Pezzoli G, Cappelletti G. Cross-talk between α-synuclein and the microtubule cytoskeleton in neurodegeneration. Exp Neurol 2023; 359:114251. [PMID: 36243059 DOI: 10.1016/j.expneurol.2022.114251] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/30/2022]
Abstract
Looking at the puzzle that depicts the molecular determinants in neurodegeneration, many pieces are lacking and multiple interconnections among key proteins and intracellular pathways still remain unclear. Here we focus on the concerted action of α-synuclein and the microtubule cytoskeleton, whose interplay, indeed, is emerging but remains largely unexplored in both its physiology and pathology. α-Synuclein is a key protein involved in neurodegeneration, underlying those diseases termed synucleinopathies. Its propensity to interact with other proteins and structures renders the identification of neuronal death trigger extremely difficult. Conversely, the unbalance of microtubule cytoskeleton in terms of structure, dynamics and function is emerging as a point of convergence in neurodegeneration. Interestingly, α-synuclein and microtubules have been shown to interact and mediate cross-talks with other intracellular structures. This is supported by an increasing amount of evidence ranging from their direct interaction to the engagement of in-common partners and culminating with their respective impact on microtubule-dependent neuronal functions. Last, but not least, it is becoming even more clear that α-synuclein and tubulin work synergically towards pathological aggregation, ultimately resulting in neurodegeneration. In this respect, we supply a novel perspective towards the understanding of α-synuclein biology and, most importantly, of the link between α-synuclein with microtubule cytoskeleton and its impact for neurodegeneration and future development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
6
|
Lin YH, Shih YH, Yap YV, Chen YW, Kuo HL, Liu TY, Hsu LJ, Kuo YM, Chang NS. Zfra Inhibits the TRAPPC6AΔ-Initiated Pathway of Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314510. [PMID: 36498839 PMCID: PMC9739312 DOI: 10.3390/ijms232314510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
When WWOX is downregulated in middle age, aggregation of a protein cascade, including TRAPPC6AΔ (TPC6AΔ), TIAF1, and SH3GLB2, may start to occur, and the event lasts more than 30 years, which results in amyloid precursor protein (APP) degradation, amyloid beta (Aβ) generation, and neurodegeneration, as shown in Alzheimer's disease (AD). Here, by treating neuroblastoma SK-N-SH cells with neurotoxin MPP+, upregulation and aggregation of TPC6AΔ, along with aggregation of TIAF1, SH3GLB2, Aβ, and tau, occurred. MPP+ is an inducer of Parkinson's disease (PD), suggesting that TPC6AΔ is a common initiator for AD and PD pathogenesis. Zfra, a 31-amino-acid zinc finger-like WWOX-binding protein, is known to restore memory deficits in 9-month-old triple-transgenic (3xTg) mice by blocking the aggregation of TPC6AΔ, SH3GLB2, tau, and amyloid β, as well as inflammatory NF-κB activation. The Zfra4-10 peptide exerted a strong potency in preventing memory loss during the aging of 3-month-old 3xTg mice up to 9 months, as determined by a novel object recognition task (ORT) and Morris water maize analysis. Compared to age-matched wild type mice, 11-month-old Wwox heterozygous mice exhibited memory loss, and this correlates with pT12-WWOX aggregation in the cortex. Together, aggregation of pT12-WWOX may link to TPC6AΔ aggregation for AD progression, with TPC6AΔ aggregation being a common initiator for AD and PD progression.
Collapse
Affiliation(s)
- Yu-Hao Lin
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yao-Hsiang Shih
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
| | - Ye Vone Yap
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-Wei Chen
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsiang-Lin Kuo
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tsung-Yun Liu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Jin Hsu
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Min Kuo
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Sanmin District, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 404333, Taiwan
- Correspondence: ; Tel.: +886-6-2353535 (ext. 5268)
| |
Collapse
|
7
|
Araújo B, Caridade-Silva R, Soares-Guedes C, Martins-Macedo J, Gomes ED, Monteiro S, Teixeira FG. Neuroinflammation and Parkinson's Disease-From Neurodegeneration to Therapeutic Opportunities. Cells 2022; 11:cells11182908. [PMID: 36139483 PMCID: PMC9497016 DOI: 10.3390/cells11182908] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder worldwide. Clinically, it is characterized by a progressive degeneration of dopaminergic neurons (DAn), resulting in severe motor complications. Preclinical and clinical studies have indicated that neuroinflammation can play a role in PD pathophysiology, being associated with its onset and progression. Nevertheless, several key points concerning the neuroinflammatory process in PD remain to be answered. Bearing this in mind, in the present review, we cover the impact of neuroinflammation on PD by exploring the role of inflammatory cells (i.e., microglia and astrocytes) and the interconnections between the brain and the peripheral system. Furthermore, we discuss both the innate and adaptive immune responses regarding PD pathology and explore the gut–brain axis communication and its influence on the progression of the disease.
Collapse
Affiliation(s)
- Bruna Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Rita Caridade-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carla Soares-Guedes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Martins-Macedo
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Eduardo D. Gomes
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
| | - Fábio G. Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057/4805-017 Braga/Guimarães, Portugal
- Medical and Industrial Biotechnology Laboratory (LABMI), Porto Research, Technology, and Innovation Center (PORTIC), Porto Polytechnic Institute, 4200-375 Porto, Portugal
- I3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|