1
|
Simovic A, Radomirovic M, Gligorijevic N, Milcic M, Bicanin M, Minic S, Stojanovic M, Stanic-Vucinic D, Cirkovic Velickovic T. Food-derived bioactive pigment phycocyanobilin binds to SARS-CoV-2 spike protein both covalently and noncovalently affecting its conformation and functionality. Arch Biochem Biophys 2025; 770:110475. [PMID: 40404003 DOI: 10.1016/j.abb.2025.110475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 05/16/2025] [Accepted: 05/19/2025] [Indexed: 05/24/2025]
Abstract
Phycocyanobilin (PCB), tetrapyrrole chromophore of Spirulina phycocyanin, is bilirubin analog and weak thiol-modifying agent. SARS-CoV-2 spike protein (SP) has bilirubin binding pocket, lacks free sulfhydryl, but it has two pairs of functionally important semi-stable disulfides reactive towards thiol-modifying agents. We investigated covalent and noncovalent binding of PCB to SP and its receptor-binding domain (RBD) and impact of covalent PCB conjugation to RBD on structure and binding to human angiotensin-converting enzyme 2 (ACE-2). PCB shows high-affinity for SP (Ka = 2.1 × 107 M-1), moderate-affinity for RBD (Ka = 8.4 × 104 M-1) and binds covalently to SP and RBD in reaction involving thiols. PCB binding alters RBD conformation. Molecular docking identified two binding sites of PCB to SP, bilirubin/biliverdin binding site and hydrophobic pocket of RBD in vicinity of Cys432, preferential target for covalent binding in in silico covalent docking of PCB to RBD. Redox proteomics mapped reactive Cys432, Cys391 and Cys525 in RBD. PCB-modified RBD exhibited reduced ability to bind to ACE-2. This is the first study demonstrating PCB reactivity towards semi-stable disulfides of proteins lacking free sulfhydryl groups. PCB may affect functionality and structure of SP and its RBD by noncovalent and covalent binding.
Collapse
Affiliation(s)
- Ana Simovic
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade, Faculty of Chemistry, 11000, Belgrade, Serbia
| | - Mirjana Radomirovic
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade, Faculty of Chemistry, 11000, Belgrade, Serbia
| | - Nikola Gligorijevic
- Center for Chemistry, University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, 11000, Belgrade, Serbia
| | - Milos Milcic
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade, Faculty of Chemistry, 11000, Belgrade, Serbia
| | - Masa Bicanin
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade, Faculty of Chemistry, 11000, Belgrade, Serbia
| | - Simeon Minic
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade, Faculty of Chemistry, 11000, Belgrade, Serbia
| | - Marijana Stojanovic
- Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", National Institute of the Republic of Serbia, University of Belgrade, 11000, Belgrade, Serbia
| | - Dragana Stanic-Vucinic
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade, Faculty of Chemistry, 11000, Belgrade, Serbia
| | - Tanja Cirkovic Velickovic
- Centre of Excellence for Molecular Food Sciences and Department of Biochemistry, University of Belgrade, Faculty of Chemistry, 11000, Belgrade, Serbia; Serbian Academy of Sciences and Arts, 11000, Belgrade, Serbia.
| |
Collapse
|
2
|
Menezes Pinto N, das Chagas Mendonça MR, da Silva Santos J, Dos Santos Ferraz CM, Santos Oliveira D, Dos Santos LVB, de Souza Araújo AA, José Quintans Júnior L, Lyra Júnior DP, de Oliveira Filho AD, Lira AAM, Russo Serafini M, de Souza Nunes R. Lessons learned from the COVID-19 pandemic: the intranasal administration as a route for treatment - a patent review. Pharm Dev Technol 2025; 30:400-416. [PMID: 40186505 DOI: 10.1080/10837450.2025.2487575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
The COVID-19 pandemic exposed the fragility of today's marketed treatments for respiratory infections. As a primary site of infection, the upper airways may represent a key access route for the control and treatment for these conditions. The present study aims to explore and identify, through a patent review, the novelty of therapies for COVID-19 that use the intranasal route for drug administration. A search was carried out in Wipo and Espacenet, using the descriptors 'COVID-19 OR SARS-CoV 2' AND 'treatment OR therapy' AND NOT 'vaccine OR immunizing' and the classification 'A61K9/0043'. Of the 151 patents identified, we excluded 73 duplicates, and 36 documents that meet the criteria adopted for exclusion (not nasally administered formulations, vaccines, post COVID-19 treatments, uncertain route of administration or form). We identified 78 unique patents on patent databases, of which 42 were selected for this review. The documents revealed the use of the intranasal pathway not only for drug repositioning but also for using plant-derived and biological molecules. Overall, the new formulations explore a variety of known drugs and natural products incorporated in drug carrier systems and devices for drug delivery and administration. Thus, the intranasal route remains a promising strategy for drug delivery, offering direct access to the primary infection site and warranting further exploration.
Collapse
|
3
|
Chaopreecha J, Phueakphud N, Suksatu A, Krobthong S, Manopwisedjaroen S, Panyain N, Hongeng S, Thitithanyanont A, Wongtrakoongate P. Andrographolide attenuates SARS-CoV-2 infection via an up-regulation of glutamate-cysteine ligase catalytic subunit (GCLC). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156279. [PMID: 39631298 DOI: 10.1016/j.phymed.2024.156279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Andrographolide is a medicinal compound which possesses anti-SARS-CoV-2 activity. A number of cellular targets of andrographolide have been identified by target predictions and computational studies. PURPOSE However, a potential cellular target of andrographolide has never been explored in SARS-CoV-2 infected lung epithelial cells. We aimed to identify cellular pathways involved in andrographolide-mediated anti-SARS-CoV-2 activity. METHODS The viral infection was determined by immunofluorescence staining, enzyme-linked immunosorbent assay and focus-forming assay. Proteomic analysis was employed to identify cellular pathways and key proteins controlled by andrographolide in the human lung epithelial cells Calu-3 infected by SARS-CoV-2. Immunofluorescence staining was used to test protein expression and localization. Western blot and realtime PCR were utilized to elucidate gene expression. Cellular glutathione level was examined by a reduced/oxidized glutathione assay. An ectopic gene expression was delivered by plasmid transfection. RESULTS Gene ontology analysis indicates that proteins involved in nuclear factor erythroid 2-related factor 2 (NRF2)-regulated pathways were differentially expressed by andrographolide. Notably, andrographolide increased expression and nuclear localization of the transcription factor NRF2. In addition, transcriptional expression of GCLC and glutamate-cysteine ligase modifier subunit (GCLM), which are NRF2 target genes, were induced by andrographolide. We further find that infection of SARS-CoV-2 resulted in a reduction of glutathione level in Calu-3; the effect that was rescued by andrographolide. Moreover, andrographolide also induced expression of the glutathione producing enzyme GCLC in SARS-CoV-2 infected lung epithelial cells. Importantly, an ectopic over-expression of GCLC or treatment of N-acetyl-L-cysteine in Calu-3 cells led to a decrease in SARS-CoV-2 infection. CONCLUSION Collectively, our findings suggest the interplay between GCLC-mediated glutathione biogenesis induced by andrographolide and the anti-SARS-CoV-2 activity. The glutathione biogenesis and recycling pathways should be further exploited as a targeted therapy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jarinya Chaopreecha
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Nut Phueakphud
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ampa Suksatu
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sucheewin Krobthong
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Nattawadee Panyain
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Arunee Thitithanyanont
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Patompon Wongtrakoongate
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Center for Neuroscience, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
García‐Arribas AB, Ibáñez‐Freire P, Carlero D, Palacios‐Alonso P, Cantero‐Reviejo M, Ares P, López‐Polín G, Yan H, Wang Y, Sarkar S, Chhowalla M, Oksanen HM, Martín‐Benito J, de Pablo PJ, Delgado‐Buscalioni R. Broad Adaptability of Coronavirus Adhesion Revealed from the Complementary Surface Affinity of Membrane and Spikes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404186. [PMID: 39231361 PMCID: PMC11538687 DOI: 10.1002/advs.202404186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/21/2024] [Indexed: 09/06/2024]
Abstract
Coronavirus stands for a large family of viruses characterized by protruding spikes surrounding a lipidic membrane adorned with proteins. The present study explores the adhesion of transmissible gastroenteritis coronavirus (TGEV) particles on a variety of reference solid surfaces that emulate typical virus-surface interactions. Atomic force microscopy informs about trapping effectivity and the shape of the virus envelope on each surface, revealing that the deformation of TGEV particles spans from 20% to 50% in diameter. Given this large deformation range, experimental Langmuir isotherms convey an unexpectedly moderate variation in the adsorption-free energy, indicating a viral adhesion adaptability which goes beyond the membrane. The combination of an extended Helfrich theory and coarse-grained simulations reveals that, in fact, the envelope and the spikes present complementary adsorption affinities. While strong membrane-surface interaction lead to highly deformed TGEV particles, surfaces with strong spike attraction yield smaller deformations with similar or even larger adsorption-free energies.
Collapse
Affiliation(s)
- Aritz B. García‐Arribas
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ibáñez‐Freire
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Diego Carlero
- Departamento de Estructura de MacromoléculasCentro Nacional de Biotecnología CSICMadrid28049Spain
| | - Pablo Palacios‐Alonso
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Miguel Cantero‐Reviejo
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pablo Ares
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Guillermo López‐Polín
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Han Yan
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Yan Wang
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Soumya Sarkar
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Manish Chhowalla
- Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeCB3 0FSUK
| | - Hanna M. Oksanen
- Faculty of Biological and Environmental SciencesVijkki BiocenterUniversity of HelsinkiHelsinki00014Finland
| | - Jaime Martín‐Benito
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
| | - Pedro J. de Pablo
- Departamento de Física de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| | - Rafael Delgado‐Buscalioni
- Departamento de Física Teórica de la Materia CondensadaUniversidad Autónoma de MadridMadrid28049Spain
- Instituto de Física de la Materia Condensada IFIMACUniversidad Autónoma de MadridMadrid28049Spain
| |
Collapse
|
5
|
Fujimuro M. The Interactions between Cells and Viruses. Int J Mol Sci 2024; 25:6886. [PMID: 38999995 PMCID: PMC11241451 DOI: 10.3390/ijms25136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Many infectious diseases are caused by life-threatening DNA and RNA viruses and have been reported worldwide, including those caused by emerging and re-emerging viruses [...].
Collapse
Affiliation(s)
- Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| |
Collapse
|
6
|
Inoue T, Yamamoto Y, Sato K, Okemoto-Nakamura Y, Shimizu Y, Ogawa M, Onodera T, Takahashi Y, Wakita T, Kaneko MK, Fukasawa M, Kato Y, Noguchi K. Overcoming antibody-resistant SARS-CoV-2 variants with bispecific antibodies constructed using non-neutralizing antibodies. iScience 2024; 27:109363. [PMID: 38500835 PMCID: PMC10946335 DOI: 10.1016/j.isci.2024.109363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
A current challenge is the emergence of SARS-CoV-2 variants, such as BQ.1.1 and XBB.1.5, that can evade immune defenses, thereby limiting antibody drug effectiveness. Emergency-use antibody drugs, including the widely effective bebtelovimab, are losing their benefits. One potential approach to address this issue are bispecific antibodies which combine the targeting abilities of two antibodies with distinct epitopes. We engineered neutralizing bispecific antibodies in the IgG-scFv format from two initially non-neutralizing antibodies, CvMab-6 (which binds to the receptor-binding domain [RBD]) and CvMab-62 (targeting a spike protein S2 subunit epitope adjacent to the known anti-S2 antibody epitope). Furthermore, we created a bispecific antibody by incorporating the scFv of bebtelovimab with our anti-S2 antibody, demonstrating significant restoration of effectiveness against bebtelovimab-resistant BQ.1.1 variants. This study highlights the potential of neutralizing bispecific antibodies, which combine existing less effective anti-RBD antibodies with anti-S2 antibodies, to revive the effectiveness of antibody therapeutics compromised by immune-evading variants.
Collapse
Affiliation(s)
- Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Kaoru Sato
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
| | - Yuko Okemoto-Nakamura
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano, Nakano-ku 164-8530, Japan
| | - Motohiko Ogawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taishi Onodera
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Masayoshi Fukasawa
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi 980-8575, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Yamazaki 2641, Noda, Chiba 278-8510, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
7
|
Govednik T, Lainšček D, Kuhar U, Lachish M, Janežič S, Štrbenc M, Krapež U, Jerala R, Atlas D, Manček-Keber M. TXM peptides inhibit SARS-CoV-2 infection, syncytia formation, and lower inflammatory consequences. Antiviral Res 2024; 222:105806. [PMID: 38211737 DOI: 10.1016/j.antiviral.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/23/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.
Collapse
Affiliation(s)
- Tea Govednik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Graduate School of Biomedicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Duško Lainšček
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Urška Kuhar
- Institute for Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Marva Lachish
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Sandra Janežič
- National Laboratory of Health, Environment and Food, 2000, Maribor, Slovenia
| | - Malan Štrbenc
- Institute for Preclinical Sciences, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Uroš Krapež
- Institute of Poultry, Birds, Small Mammals and Reptiles, Veterinary Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia
| | - Daphne Atlas
- Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Mateja Manček-Keber
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, 1000, Ljubljana, Slovenia; Centre of Excellence EN-FIST, 1000, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Sam S, Ofoghi H, Farahmand B. Developing of SARS-CoV-2 fusion protein expressed in E. coli Shuffle T7 for enhanced ELISA detection sensitivity - an integrated experimental and bioinformatic approach. J Biomol Struct Dyn 2024:1-16. [PMID: 38234051 DOI: 10.1080/07391102.2024.2302941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
In the recent COVID-19 pandemic, developing effective diagnostic assays is crucial for controlling the spread of the SARS-CoV-2 virus. Multi-domain fusion proteins are a promising approach to detecting SARS-CoV-2 antibodies. In this study, we designed an antigen named CoV2-Pro, containing two RBD domains from SARS-CoV-2 Omicron and Delta variants and one CTD domain of the nucleoprotein in the order of RBD-RBD-N, linked by a super flexible glycine linker. We evaluated the suitability of E. coli Shuffle T7 and BL21 (DE3) strain for expressing CoV2-Pro. Moreover, Bioinformatic studies were conducted first to analyze the tertiary structure of CoV2-Pro. The CoV2-Pro sequences were cloned into a pET-32b (+) vector for expression in E. coli Shuffle T7 and BL21 (DE3). SDS-PAGE and western blot confirmed the protein expression and folding structure. The CoV2-Pro-TRX was purified by Ni-NTA affinity chromatography. Dot blot analysis was performed to evaluate the antigenic characterization of the CoV2-Pro. A molecular docking simulation was conducted to assess the binding affinity of CoV2-Pro with LY-COV555 (Bamlanivimab) monoclonal antibody. A molecular dynamic was performed to analyze the stability of the structure. Bioinformatic and experimental studies revealed a stable conformational 3D structure of the CoV2-Pro. The CoV2-Pro interacted with SARS-CoV-2 antibodies, confirming the correct antigenic structure. We assert with confidence that CoV2-Pro is ideal for developing an ELISA assay for precise diagnosis and rigorous vaccine evaluation during the COVID-19 prevalence.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sohrab Sam
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Hamideh Ofoghi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Behrokh Farahmand
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
9
|
Hulscher N, Procter BC, Wynn C, McCullough PA. Clinical Approach to Post-acute Sequelae After COVID-19 Infection and Vaccination. Cureus 2023; 15:e49204. [PMID: 38024037 PMCID: PMC10663976 DOI: 10.7759/cureus.49204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
The spike protein of SARS-CoV-2 has been found to exhibit pathogenic characteristics and be a possible cause of post-acute sequelae after SARS-CoV-2 infection or COVID-19 vaccination. COVID-19 vaccines utilize a modified, stabilized prefusion spike protein that may share similar toxic effects with its viral counterpart. The aim of this study is to investigate possible mechanisms of harm to biological systems from SARS-CoV-2 spike protein and vaccine-encoded spike protein and to propose possible mitigation strategies. We searched PubMed, Google Scholar, and 'grey literature' to find studies that (1) investigated the effects of the spike protein on biological systems, (2) helped differentiate between viral and vaccine-generated spike proteins, and (3) identified possible spike protein detoxification protocols and compounds that had signals of benefit and acceptable safety profiles. We found abundant evidence that SARS-CoV-2 spike protein may cause damage in the cardiovascular, hematological, neurological, respiratory, gastrointestinal, and immunological systems. Viral and vaccine-encoded spike proteins have been shown to play a direct role in cardiovascular and thrombotic injuries from both SARS-CoV-2 and vaccination. Detection of spike protein for at least 6-15 months after vaccination and infection in those with post-acute sequelae indicates spike protein as a possible primary contributing factor to long COVID. We rationalized that these findings give support to the potential benefit of spike protein detoxification protocols in those with long-term post-infection and/or vaccine-induced complications. We propose a base spike detoxification protocol, composed of oral nattokinase, bromelain, and curcumin. This approach holds immense promise as a base of clinical care, upon which additional therapeutic agents are applied with the goal of aiding in the resolution of post-acute sequelae after SARS-CoV-2 infection and COVID-19 vaccination. Large-scale, prospective, randomized, double-blind, placebo-controlled trials are warranted in order to determine the relative risks and benefits of the base spike detoxification protocol.
Collapse
Affiliation(s)
- Nicolas Hulscher
- Epidemiology, Unversity of Michigan School of Public Health, Ann Arbor, USA
| | | | - Cade Wynn
- Family Medicine, McKinney Family Medicine, McKinney, USA
| | - Peter A McCullough
- Internal Medicine, Cardiology, McKinney Family Medicine, McKinney, USA
- Cardiology, Epidemiology, and Public Health, McCullough Foundation, Dallas, USA
| |
Collapse
|
10
|
Bejoy J, Williams CI, Cole HJ, Manzoor S, Davoodi P, Battaile JI, Kaushik A, Nikolaienko SI, Brelidze TI, Gychka SG, Suzuki YJ. Effects of spike proteins on angiotensin converting enzyme 2 (ACE2). Arch Biochem Biophys 2023; 748:109769. [PMID: 37769892 PMCID: PMC10615800 DOI: 10.1016/j.abb.2023.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic was caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which enters host cells through interactions of its spike protein to Angiotensin-Converting Enzyme 2 (ACE2). ACE2 is a peptidase that cleaves Angiotensin II, a critical pathological mediator. This study investigated if the spike protein binding to ACE2 compromises its peptidase activity. Spike/ACE2 Binding Assays suggested that spike proteins of SARS-CoV-2, SARS-CoV and MERS-CoV, but not HKU1, bind to ACE2. S1 and receptor-binding domain (RBD), but not S2, extracellular domain (ECD) or CendR domain, bind to ACE2. While glycosylated spike proteins prepared in HEK293 cells bind to ACE2, non-glycosylated proteins produced in E. coli do not. Cysteine residues of the spike protein expressed in HEK293 cells are fully oxidized, while those of the protein expressed in E. coli are reduced. The deglycosylation of HEK cell-produced protein attenuates the ACE2 binding, while the oxidation of the E. coli protein does not promote the binding. The S1 protein of SARS-CoV-2 enhances the ACE2 peptidase activity, while SARS-CoV, MERS-CoV or HKU1 does not. The ACE2 activity is enhanced by RBD, but not ECD or CendR. In contrast to distinct ACE2 binding capacities of proteins expressed in HEK293 cells and in E. coli, spike proteins expressed in both systems enhance the ACE2 activity. Thus, the spike protein of SARS-CoV-2, but not other coronaviruses, enhances the ACE2 peptidase activity through its RBD in a glycosylation-independent manner.
Collapse
Affiliation(s)
- Jennyfer Bejoy
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Charlye I Williams
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Hattie J Cole
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Shavaiz Manzoor
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Parsa Davoodi
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Jacqueline I Battaile
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Arjun Kaushik
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Sofia I Nikolaienko
- Department of Pathological Anatomy, Bogomolets National Medical University, Kyiv, 01601, Ukraine
| | - Tinatin I Brelidze
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA
| | - Sergiy G Gychka
- Department of Pathological Anatomy, Bogomolets National Medical University, Kyiv, 01601, Ukraine
| | - Yuichiro J Suzuki
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC, 20007, USA.
| |
Collapse
|
11
|
Naushad SM, Mandadapu G, Ramaiah MJ, Almajhdi FN, Hussain T. The role of TLR7 agonists in modulating COVID-19 severity in subjects with loss-of-function TLR7 variants. Sci Rep 2023; 13:13078. [PMID: 37567916 PMCID: PMC10421879 DOI: 10.1038/s41598-023-40114-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
We investigate the mechanism associated with the severity of COVID-19 in men with TLR7 mutation. Men with loss-of-function (LOF) mutations in TLR7 had severe COVID-19. LOF mutations in TLR7 increased the risk of critical COVID by 16.00-fold (95% confidence interval 2.40-106.73). The deleterious mutations affect the binding of SARS-CoV2 RNA (- 328.66 ± 26.03 vs. - 354.08 ± 27.70, p = 0.03) and MYD88 (β: 40.279, p = 0.003) to TLR7 resulting in the disruption of TLR7-MyD88-TIRAP complex. In certain hypofunctional variants and all neutral/benign variants, there is no disruption of TLR7-MyD88-TIRAP complex and four TLR7 agonists showed binding affinity comparable to that of wild protein. N-acetylcysteine (NAC) also showed a higher binding affinity for the LOF variants (p = 0.03). To conclude, TLR7 LOF mutations increase the risk of critical COVID-19 due to loss of viral RNA sensing ability and disrupted MyD88 signaling. Majority of hypofunctional and neutral variants of TLR7 are capable of carrying MyD88 signaling by binding to different TLR7 agonists and NAC.
Collapse
Affiliation(s)
- Shaik Mohammad Naushad
- Yoda LifeLine Diagnostics Pvt Ltd, 6-3-862/A, Lal Bungalow Add on, Ameerpet, Hyderabad, 500016, India.
| | | | | | - Fahad N Almajhdi
- COVID-19 Virus Research Chair, Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Yao Z, Geng B, Marcon E, Pu S, Tang H, Merluza J, Bello A, Snider J, Lu P, Wood H, Stagljar I. Omicron Spike Protein Is Vulnerable to Reduction. J Mol Biol 2023; 435:168128. [PMID: 37100168 PMCID: PMC10125213 DOI: 10.1016/j.jmb.2023.168128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/28/2023]
Abstract
SARS-CoV-2 virus spike (S) protein is an envelope protein responsible for binding to the ACE2 receptor, driving subsequent entry into host cells. The existence of multiple disulfide bonds in the S protein makes it potentially susceptible to reductive cleavage. Using a tri-part split luciferase-based binding assay, we evaluated the impacts of chemical reduction on S proteins from different virus variants and found that those from the Omicron family are highly vulnerable to reduction. Through manipulation of different Omicron mutations, we found that alterations in the receptor binding module (RBM) are the major determinants of this vulnerability. Specifically we discovered that Omicron mutations facilitate the cleavage of C480-C488 and C379-C432 disulfides, which consequently impairs binding activity and protein stability. The vulnerability of Omicron S proteins suggests a mechanism that can be harnessed to treat specific SARS-CoV-2 strains.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Betty Geng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Edyta Marcon
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Shuye Pu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Hua Tang
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - John Merluza
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Alexander Bello
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Jamie Snider
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Ping Lu
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Heidi Wood
- Zoonotic Diseases and Special Pathogens division, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Mediterranean Institute for Life Sciences, Meštrovićevo Šetalište 45, HR-21000 Split, Croatia.
| |
Collapse
|
13
|
How the Competition for Cysteine May Promote Infection of SARS-CoV-2 by Triggering Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020483. [PMID: 36830041 PMCID: PMC9952211 DOI: 10.3390/antiox12020483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
SARS-CoV-2 induces a broad range of clinical manifestations. Besides the main receptor, ACE2, other putative receptors and co-receptors have been described and could become genuinely relevant to explain the different tropism manifested by new variants. In this study, we propose a biochemical model envisaging the competition for cysteine as a key mechanism promoting the infection and the selection of host receptors. The SARS-CoV-2 infection produces ROS and triggers a massive biosynthesis of proteins rich in cysteine; if this amino acid becomes limiting, glutathione levels are depleted and cannot control oxidative stress. Hence, infection succeeds. A receptor should be recognized as a marker of suitable intracellular conditions, namely the full availability of amino acids except for low cysteine. First, we carried out a comparative investigation of SARS-CoV-2 proteins and human ACE2. Then, using hierarchical cluster protein analysis, we searched for similarities between all human proteins and spike produced by the latest variant, Omicron BA.1. We found 32 human proteins very close to spike in terms of amino acid content. Most of these potential SARS-CoV-2 receptors have less cysteine than spike. We suggest that these proteins could signal an intracellular shortage of cysteine, predicting a burst of oxidative stress when used as viral entry mediators.
Collapse
|
14
|
Fraternale A, De Angelis M, De Santis R, Amatore D, Masini S, Monittola F, Menotta M, Biancucci F, Bartoccini F, Retini M, Fiori V, Fioravanti R, Magurano F, Chiarantini L, Lista F, Piersanti G, Palamara AT, Nencioni L, Magnani M, Crinelli R. Targeting SARS-CoV-2 by synthetic dual-acting thiol compounds that inhibit Spike/ACE2 interaction and viral protein production. FASEB J 2023; 37:e22741. [PMID: 36583713 PMCID: PMC9880737 DOI: 10.1096/fj.202201157rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/31/2022]
Abstract
The SARS-CoV-2 life cycle is strictly dependent on the environmental redox state that influences both virus entry and replication. A reducing environment impairs the binding of the spike protein (S) to the angiotensin-converting enzyme 2 receptor (ACE2), while a highly oxidizing environment is thought to favor S interaction with ACE2. Moreover, SARS-CoV-2 interferes with redox homeostasis in infected cells to promote the oxidative folding of its own proteins. Here we demonstrate that synthetic low molecular weight (LMW) monothiol and dithiol compounds induce a redox switch in the S protein receptor binding domain (RBD) toward a more reduced state. Reactive cysteine residue profiling revealed that all the disulfides present in RBD are targets of the thiol compounds. The reduction of disulfides in RBD decreases the binding to ACE2 in a cell-free system as demonstrated by enzyme-linked immunosorbent and surface plasmon resonance (SPR) assays. Moreover, LMW thiols interfere with protein oxidative folding and the production of newly synthesized polypeptides in HEK293 cells expressing the S1 and RBD domain, respectively. Based on these results, we hypothesize that these thiol compounds impair both the binding of S protein to its cellular receptor during the early stage of viral infection, as well as viral protein folding/maturation and thus the formation of new viral mature particles. Indeed, all the tested molecules, although at different concentrations, efficiently inhibit both SARS-CoV-2 entry and replication in Vero E6 cells. LMW thiols may represent innovative anti-SARS-CoV-2 therapeutics acting directly on viral targets and indirectly by inhibiting cellular functions mandatory for viral replication.
Collapse
Affiliation(s)
| | - Marta De Angelis
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | - Sofia Masini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Monittola
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Michele Retini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Raoul Fioravanti
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Magurano
- Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Chiarantini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | | | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Anna T Palamara
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy.,Department of Infectious Disease, Istituto Superiore di Sanità, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Rita Crinelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| |
Collapse
|
15
|
Development of spray-dried N-acetylcysteine dry powder for inhalation. Int J Pharm 2023; 631:122550. [PMID: 36577481 DOI: 10.1016/j.ijpharm.2022.122550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/21/2022] [Accepted: 12/23/2022] [Indexed: 12/26/2022]
Abstract
N-acetylcysteine (NAC) has both antioxidant and immunomodulatory activities and has been used as adjuvant therapy in several viral infections. Recently, NAC attracted attention for its possible role in reducing the affinity of the spike protein receptor binding domain to angiotensin-converting enzyme (ACE2) receptors. Since only NAC solutions are available for inhalation, the purpose of the work was to develop a NAC dry powder for inhalation using mannitol or leucine as excipient. The powder was successfully produced using co-spray-drying with leucine. ATR-FTIR analyses evidenced spectral variations ascribed to the formation of specific interactions between NAC and leucine. This effect on the NAC environment was not evident for NAC-mannitol powders, but mannitol was in a different polymorphic form compared to the supplied material. Both the feedstock concentration and the leucine content have an impact on the powder aerodynamic features. In particular, to maximize the respirable fraction, it is preferable to produce the powder starting from a 0.5 % w/v feedstock solution using 33 to 50 % w/w leucine content. The NAC-leucine powder was stable for ten months maintaining NAC content of 50 % (w/w) and about 200 μg of NAC was able to deposit on a transwell insert, useful for future in vitro studies.
Collapse
|
16
|
Yamamoto Y, Nakano Y, Murae M, Shimizu Y, Sakai S, Ogawa M, Mizukami T, Inoue T, Onodera T, Takahashi Y, Wakita T, Fukasawa M, Miyazaki S, Noguchi K. Direct Inhibition of SARS-CoV-2 Spike Protein by Peracetic Acid. Int J Mol Sci 2022; 24:20. [PMID: 36613459 PMCID: PMC9820423 DOI: 10.3390/ijms24010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Peracetic acid (PAA) disinfectants are effective against a wide range of pathogenic microorganisms, including bacteria, fungi, and viruses. Several studies have shown the efficacy of PAA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, its efficacy in SARS-CoV-2 variants and the molecular mechanism of action of PAA against SARS-CoV-2 have not been investigated. SARS-CoV-2 infection depends on the recognition and binding of the cell receptor angiotensin-converting enzyme 2 (ACE2) via the receptor-binding domain (RBD) of the spike protein. Here, we demonstrated that PAA effectively suppressed pseudotyped virus infection in the Wuhan type and variants, including Delta and Omicron. Similarly, PAA reduced the authentic viral load of SARS-CoV-2. Computational analysis suggested that the hydroxyl radicals produced by PAA cleave the disulfide bridges in the RBD. Additionally, the PAA treatment decreased the abundance of the Wuhan- and variant-type spike proteins. Enzyme-linked immunosorbent assay showed direct inhibition of RBD-ACE2 interactions by PAA. In conclusion, the PAA treatment suppressed SARS-CoV-2 infection, which was dependent on the inhibition of the interaction between the spike RBD and ACE2 by inducing spike protein destabilization. Our findings provide evidence of a potent disinfection strategy against SARS-CoV-2.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yoshio Nakano
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Mana Murae
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimi Shimizu
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
- Department of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2, Nakano, Nakano-ku, Tokyo 164-8530, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Motohiko Ogawa
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tomoharu Mizukami
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Taishi Onodera
- Reseach Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshimasa Takahashi
- Reseach Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masayoshi Fukasawa
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Satoru Miyazaki
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Kohji Noguchi
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| |
Collapse
|
17
|
SARS-CoV-2 Spike Protein Mutation at Cysteine-488 Impairs Its Golgi Localization and Intracellular S1/S2 Processing. Int J Mol Sci 2022; 23:ijms232415834. [PMID: 36555473 PMCID: PMC9779352 DOI: 10.3390/ijms232415834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor-angiotensin-converting enzyme-2 (ACE2) as the first step in viral cell entry. SARS-CoV-2 spike protein expression in the ACE2-expressing cell surface induces cell-cell membrane fusion, thus forming syncytia. To exert its fusogenic activity, the spike protein is typically processed at a specific site (the S1/S2 site) by cellular proteases such as furin. The C488 residue, located at the spike-ACE2 interacting surface, is critical for the fusogenic and infectious roles of the SARS-CoV-2 spike protein. We have demonstrated that the C488 residue of the spike protein is involved in subcellular targeting and S1/S2 processing. C488 mutant spike localization to the Golgi apparatus and cell surface were impaired. Consequently, the S1/S2 processing of the spike protein, probed by anti-Ser-686-cleaved spike antibody, markedly decreased in C488 mutant spike proteins. Moreover, brefeldin-A-mediated endoplasmic-reticulum-to-Golgi traffic suppression also suppressed spike protein S1/S2 processing. As brefeldin A treatment and C488 mutation inhibited S1/S2 processing and syncytia formation, the C488 residue of spike protein is required for functional spike protein processing.
Collapse
|
18
|
Inhibition of the Cell Uptake of Delta and Omicron SARS-CoV-2 Pseudoviruses by N-Acetylcysteine Irrespective of the Oxidoreductive Environment. Cells 2022; 11:cells11203313. [PMID: 36291178 PMCID: PMC9599975 DOI: 10.3390/cells11203313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The binding of SARS-CoV-2 spikes to the cell receptor angiotensin-converting enzyme 2 (ACE2) is a crucial target both in the prevention and in the therapy of COVID-19. We explored the involvement of oxidoreductive mechanisms by investigating the effects of oxidants and antioxidants on virus uptake by ACE2-expressing cells of human origin (ACE2-HEK293). The cell uptake of pseudoviruses carrying the envelope of either Delta or Omicron variants of SARS-CoV-2 was evaluated by means of a cytofluorimetric approach. The thiol N-acetyl-L-cysteine (NAC) inhibited the uptake of both variants in a reproducible and dose-dependent fashion. Ascorbic acid showed modest effects. In contrast, neither hydrogen peroxide (H2O2) nor a system-generating reactive oxygen species (ROS), which play an important role in the intracellular alterations produced by SARS-CoV-2, were able to affect the ability of either Delta or Omicron SARS-CoV-2 pseudoviruses to be internalized into ACE2-expressing cells. In addition, neither H2O2 nor the ROS generating system interfered with the ability of NAC to inhibit that mechanism. Moreover, based on previous studies, a preventive pharmacological approach with NAC would have the advantage of decreasing the risk of developing COVID-19, irrespective of its variants, and at the same time other respiratory viral infections and associated comorbidities.
Collapse
|
19
|
Labarrere CA, Kassab GS. Glutathione deficiency in the pathogenesis of SARS-CoV-2 infection and its effects upon the host immune response in severe COVID-19 disease. Front Microbiol 2022; 13:979719. [PMID: 36274722 PMCID: PMC9582773 DOI: 10.3389/fmicb.2022.979719] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes coronavirus disease 19 (COVID-19) has numerous risk factors leading to severe disease with high mortality rate. Oxidative stress with excessive production of reactive oxygen species (ROS) that lower glutathione (GSH) levels seems to be a common pathway associated with the high COVID-19 mortality. GSH is a unique small but powerful molecule paramount for life. It sustains adequate redox cell signaling since a physiologic level of oxidative stress is fundamental for controlling life processes via redox signaling, but excessive oxidation causes cell and tissue damage. The water-soluble GSH tripeptide (γ-L-glutamyl-L-cysteinyl-glycine) is present in the cytoplasm of all cells. GSH is at 1-10 mM concentrations in all mammalian tissues (highest concentration in liver) as the most abundant non-protein thiol that protects against excessive oxidative stress. Oxidative stress also activates the Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) redox regulator pathway, releasing Nrf2 to regulate the expression of genes that control antioxidant, inflammatory and immune system responses, facilitating GSH activity. GSH exists in the thiol-reduced and disulfide-oxidized (GSSG) forms. Reduced GSH is the prevailing form accounting for >98% of total GSH. The concentrations of GSH and GSSG and their molar ratio are indicators of the functionality of the cell and its alteration is related to various human pathological processes including COVID-19. Oxidative stress plays a prominent role in SARS-CoV-2 infection following recognition of the viral S-protein by angiotensin converting enzyme-2 receptor and pattern recognition receptors like toll-like receptors 2 and 4, and activation of transcription factors like nuclear factor kappa B, that subsequently activate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) expression succeeded by ROS production. GSH depletion may have a fundamental role in COVID-19 pathophysiology, host immune response and disease severity and mortality. Therapies enhancing GSH could become a cornerstone to reduce severity and fatal outcomes of COVID-19 disease and increasing GSH levels may prevent and subdue the disease. The life value of GSH makes for a paramount research field in biology and medicine and may be key against SARS-CoV-2 infection and COVID-19 disease.
Collapse
|
20
|
Tsermpini EE, Glamočlija U, Ulucan-Karnak F, Redenšek Trampuž S, Dolžan V. Molecular Mechanisms Related to Responses to Oxidative Stress and Antioxidative Therapies in COVID-19: A Systematic Review. Antioxidants (Basel) 2022; 11:1609. [PMID: 36009328 PMCID: PMC9405444 DOI: 10.3390/antiox11081609] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic is a leading global health and economic challenge. What defines the disease's progression is not entirely understood, but there are strong indications that oxidative stress and the defense against reactive oxygen species are crucial players. A big influx of immune cells to the site of infection is marked by the increase in reactive oxygen and nitrogen species. Our article aims to highlight the critical role of oxidative stress in the emergence and severity of COVID-19 and, more importantly, to shed light on the underlying molecular and genetic mechanisms. We have reviewed the available literature and clinical trials to extract the relevant genetic variants within the oxidative stress pathway associated with COVID-19 and the anti-oxidative therapies currently evaluated in the clinical trials for COVID-19 treatment, in particular clinical trials on glutathione and N-acetylcysteine.
Collapse
Affiliation(s)
- Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Una Glamočlija
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
- School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Fulden Ulucan-Karnak
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, 35100 İzmir, Turkey
| | - Sara Redenšek Trampuž
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
21
|
Characterization and Utilization of Disulfide-Bonded SARS-CoV-2 Receptor Binding Domain of Spike Protein Synthesized by Wheat Germ Cell-Free Production System. Viruses 2022; 14:v14071461. [PMID: 35891441 PMCID: PMC9321213 DOI: 10.3390/v14071461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023] Open
Abstract
The spike protein (SP) of SARS-CoV-2 is an important target for COVID-19 therapeutics and vaccines as it binds to the ACE2 receptor and enables viral infection. Rapid production and functional characterization of properly folded SP is of the utmost importance for studying the immunogenicity and receptor-binding activity of this protein considering the emergence of highly infectious viral variants. In this study, we attempted to express the receptor-binding region (RBD) of SARS-CoV-2 SP containing disulfide bonds using the wheat germ cell-free protein synthesis system. By adding protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase (ERO1α) to the translational reaction mixture, we succeeded in synthesizing a functionally intact RBD protein that can interact with ACE2. Using this RBD protein, we have developed a high-throughput AlphaScreen assay to evaluate the RBD–ACE2 interaction, which can be applied for drug screening and mutation analysis. Thus, our method sheds new light on the structural and functional properties of SARS-CoV-2 SP and has the potential to contribute to the development of new COVID-19 therapeutics.
Collapse
|
22
|
Khanna K, Raymond W, Jin J, Charbit AR, Gitlin I, Tang M, Werts AD, Barrett EG, Cox JM, Birch SM, Martinelli R, Sperber HS, Franz S, Duff T, Hoffmann M, Healy AM, Oscarson S, Pöhlmann S, Pillai SK, Simmons G, Fahy JV. Exploring antiviral and anti-inflammatory effects of thiol drugs in COVID-19. Am J Physiol Lung Cell Mol Physiol 2022; 323:L372-L389. [PMID: 35762590 PMCID: PMC9448286 DOI: 10.1152/ajplung.00136.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for the binding of SARS-2-S to angiotensin-converting enzyme 2 (ACE2), suggesting that drugs with a functional thiol group (“thiol drugs”) may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore the antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection, but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with intraperitoneal delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury, and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.
Collapse
Affiliation(s)
- Kritika Khanna
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Wilfred Raymond
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Jing Jin
- Vitalant Research Institute, San Francisco, California, United States
| | - Annabelle R Charbit
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Irina Gitlin
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy and Sleep and the Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - Adam D Werts
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Edward G Barrett
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Jason M Cox
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Sharla M Birch
- Lovelace Biomedical Research Institute, Albuquerque, New Mexico, United States
| | - Rachel Martinelli
- Vitalant Research Institute, San Francisco, California, United States
| | - Hannah S Sperber
- Vitalant Research Institute, San Francisco, California, United States
| | - Sergej Franz
- Vitalant Research Institute, San Francisco, California, United States
| | - Thomas Duff
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Ireland.,SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Trinity College Dublin, Ireland
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Dublin, Ireland
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-University Göttingen, Göttingen, Germany
| | - Satish K Pillai
- Vitalant Research Institute, San Francisco, California, United States.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, California, United States.,Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States
| | - John V Fahy
- Cardiovascular Research Institute, University of California San Francisco Medical Center, San Francisco, CA, United States.,Division of Pulmonary, Critical Care, Allergy and Sleep and the Department of Medicine, University of California San Francisco, San Francisco, California, United States
| |
Collapse
|
23
|
COVID-19 and One-Carbon Metabolism. Int J Mol Sci 2022; 23:ijms23084181. [PMID: 35456998 PMCID: PMC9026976 DOI: 10.3390/ijms23084181] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/31/2022] Open
Abstract
Dysregulation of one-carbon metabolism affects a wide range of biological processes and is associated with a number of diseases, including cardiovascular disease, dementia, neural tube defects, and cancer. Accumulating evidence suggests that one-carbon metabolism plays an important role in COVID-19. The symptoms of long COVID-19 are similar to those presented by subjects suffering from vitamin B12 deficiency (pernicious anemia). The metabolism of a cell infected by the SARS-CoV-2 virus is reshaped to fulfill the need for massive viral RNA synthesis, which requires de novo purine biosynthesis involving folate and one-carbon metabolism. Many aspects of host sulfur amino acid metabolism, particularly glutathione metabolism underlying antioxidant defenses, are also taken over by the SARS-CoV-2 virus. The purpose of this review is to summarize recent findings related to one-carbon metabolism and sulfur metabolites in COVID-19 and discuss how they inform strategies to combat the disease.
Collapse
|