1
|
Zhang L, Yu Z, Liu S, Liu F, Zhou S, Zhang Y, Tian Y. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration. Stem Cell Res Ther 2025; 16:110. [PMID: 40038758 PMCID: PMC11881347 DOI: 10.1186/s13287-025-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tissue injury in maxillofacial region affects patients' physical function and specific mental health. This decade, utilizing regenerative medicine to achieve tissue regeneration has been proved a hopeful direction. Seed cells play a vital role in regeneration strategy. Among various kinds of stem cells that effectively to regenerate the soft and hard tissue of maxillofacial region, adipose-derived stem cells (ADSCs) have gained increasing interests of researchers due to their abundant sources, easy availability and multi-differentiation potentials in recent decades. Thus, this review focuses on the advances of ADSCs-based biomaterial in maxillofacial regeneration from the progress and strategies perspective. It is structured as introducing the properties of ADSCs, biomaterials (polymers, ceramics and metals) within ADSCs and the latest applications of ADSCs in maxillofacial regeneration, including temporomandibular joint (TMJ), bone, periodontal tissue, tooth, nerve as well as cosmetic field. In order to further facilitate ADSCs-based therapies as an emerging platform for regenerative medicine, this review also emphasized current challenges in translating ADSC-based therapies into clinical application and dissussed the strategies to solve these obstacles.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Zihang Yu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shuchang Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shijie Zhou
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China.
| |
Collapse
|
2
|
Manilall A, Mokotedi L, Gunter S, Roux RL, Fourie S, Millen AM. Tocilizumab does not ameliorate inflammation-induced left ventricular dysfunction in a collagen-induced arthritis rat model. Cardiovasc Pathol 2025; 75:107711. [PMID: 39734025 DOI: 10.1016/j.carpath.2024.107711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Interleukin-6 (IL-6) is an attractive therapeutic target due to its diverse roles in the pathogenesis of conditions characterized by systemic inflammation. IL-6 has also been implicated in the pathophysiology of heart failure. This study aimed to investigate the impact of IL-6 receptor blockade with tocilizumab on the molecular pathways underlying systemic inflammation-induced left ventricular (LV) dysfunction in a collagen-induced arthritis (CIA) rat model. METHODS Seventy-three Sprague-Dawley rats were divided into three groups: control (n=28), CIA (n=29), and CIA+IL-6 blocker (n=16). Inflammation was induced in the CIA and CIA+IL-6 blocker groups using bovine type II collagen emulsified in incomplete Freund's adjuvant. After arthritis onset, the CIA+IL-6 blocker group received tocilizumab for six weeks. Circulating inflammatory markers, relative LV mRNA gene expressions, and LV systolic and diastolic function were assessed. RESULTS CIA rats developed LV diastolic and early-stage LV systolic dysfunction, which was not ameliorated by IL-6 blocker administration (p > 0.05). IL-6 blocker administration did not impact circulating inflammatory markers (all p > 0.05) or LV mRNA expression of inflammatory markers compared to the CIA group, nor did it reverse inflammation-induced increases in LV mRNA expression of genes involved in fibrosis and collagen turnover, regulation of titin phosphorylation, Ca2+ handling, mitochondrial function, or apoptosis (all p > 0.05). However, LV mRNA expressions of CD68 and LOX, genes involved in macrophage infiltration and collagen cross-linking, were increased in the CIA group (p = 0.03, p = 0.0004), but not in the CIA+IL-6 blocker group compared to controls (p > 0.05). CONCLUSION These results suggest that although IL-6 blockade by tocilizumab may prevent inflammation-induced collagen cross-linking, the current treatment regimen may not protect against inflammation-induced LV dysfunction. Therefore, the role of IL-6 in the molecular mechanisms of inflammation-induced LV dysfunction remains inconclusive.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Rats, Sprague-Dawley
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/complications
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/etiology
- Ventricular Dysfunction, Left/prevention & control
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/drug therapy
- Ventricular Function, Left/drug effects
- Male
- Interleukin-6/metabolism
- Interleukin-6/antagonists & inhibitors
- Inflammation Mediators/blood
- Anti-Inflammatory Agents/pharmacology
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/metabolism
- Rats
- Inflammation/drug therapy
- Disease Models, Animal
Collapse
Affiliation(s)
- Ashmeetha Manilall
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa.
| | - Lebogang Mokotedi
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Sulè Gunter
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Regina Le Roux
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Serena Fourie
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| | - Aletta Me Millen
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 2193 Johannesburg, South Africa
| |
Collapse
|
3
|
Sasaninia K, Mohan AS, Badaoui A, Glassman I, Yoon S, Karapetyan A, Kolloli A, Kumar R, Ramasamy S, Subbian S, Venketaraman V. Glutathione Depletion Exacerbates Hepatic Mycobacterium tuberculosis Infection. BIOLOGY 2025; 14:131. [PMID: 40001899 PMCID: PMC11852144 DOI: 10.3390/biology14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
Extrapulmonary tuberculosis (EPTB) accounts for approximately 17% of all Mycobacterium tuberculosis (M.tb) infections globally. Immunocompromised individuals, such as those with HIV infection or type 2 diabetes mellitus (T2DM), are at an increased risk for EPTB. Previous studies have demonstrated that patients with HIV and T2DM exhibit diminished synthesis of glutathione (GSH) synthesizing enzymes. In a murine model, we showed that the diethyl maleate (DEM)-induced depletion of GSH in the lungs led to increased M.tb burden and an impaired pulmonary granulomatous response to M.tb infection. However, the effects of GSH depletion during active EPTB in the liver and spleen have yet to be elucidated. In this study, we evaluated hepatic GSH and malondialdehyde (MDA) levels, as well as cytokine profiles, in untreated and DEM-treated M.tb-infected wild-type (WT) C57BL/6 mice. Additionally, we assessed hepatic and splenic M.tb burdens and tissue pathologies. DEM treatment resulted in a significant decrease in the levels of the reduced form of GSH and an increase in MDA, oxidized GSH, and interleukin (IL)-6 levels. Furthermore, DEM-induced GSH decrease was associated with decreased production of IL-12 and IL-17 and elevated production of interferon-gamma (IFN-γ), tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β. A significant increase in M.tb growth was detected in the liver and spleen in DEM-treated M.tb-infected mice. Large, disorganized lymphocyte infiltrates were detected in the hepatic tissues of DEM-treated mice. Overall, GSH diminishment impaired the granulomatous response to M.tb in the liver and exacerbated M.tb growth in both the liver and spleen. These findings provide critical insights into the immunomodulatory role of GSH in TB pathogenesis and suggest potential therapeutic avenues for the treatment of extrapulmonary M.tb infections.
Collapse
Affiliation(s)
- Kayvan Sasaninia
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Aishvaryaa Shree Mohan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Ali Badaoui
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Sonyeol Yoon
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Arshavir Karapetyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| | - Afsal Kolloli
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Ranjeet Kumar
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Santhamani Ramasamy
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Selvakumar Subbian
- Public Health Research Institute—New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA; (A.K.); (R.K.); (S.R.); (S.S.)
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA; (K.S.); (A.S.M.); (A.B.); (I.G.); (S.Y.); (A.K.)
| |
Collapse
|
4
|
Jacobs B, Derese I, Derde S, Vander Perre S, Pauwels L, Van den Berghe G, Gunst J, Langouche L. A murine model of acute and prolonged abdominal sepsis, supported by intensive care, reveals time-dependent metabolic alterations in the heart. Intensive Care Med Exp 2025; 13:6. [PMID: 39821755 PMCID: PMC11748666 DOI: 10.1186/s40635-025-00715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/09/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Sepsis-induced cardiomyopathy (SICM) often occurs in the acute phase of sepsis and is associated with increased mortality due to cardiac dysfunction. The pathogenesis remains poorly understood, and no specific treatments are available. Although SICM is considered reversible, emerging evidence suggests potential long-term sequelae. We hypothesized that metabolic and inflammatory cardiac changes, previously observed in acute sepsis as potential drivers of SICM, partially persist in prolonged sepsis. METHODS In 24-week-old C57BL/6J mice, sepsis was induced by cecal ligation and puncture, followed by intravenous fluid resuscitation, subcutaneous analgesics and antibiotics, and, in the prolonged phase, by parenteral nutrition. Mice were killed after 5 days of sepsis (prolonged sepsis, n = 15). For comparison, we included acutely septic mice killed at 30 h (acute sepsis, n = 15) and healthy controls animals (HC, n = 15). Cardiac tissue was collected for assessment of inflammatory and metabolic markers through gene expression, metabolomic analysis and histological assessment. RESULTS In prolonged sepsis, cardiac expression of IL-1β and IL-6 and macrophage infiltration remained upregulated (p ≤ 0.05). In contrast, tissue levels of Krebs cycle intermediates and adenosine phosphates were normal, whereas NADPH levels were low in prolonged sepsis (p ≤ 0.05). Gene expression of fatty acid transporters and of the glucose transporter Slc2a1 was upregulated in prolonged sepsis (p ≤ 0.01). Lipid staining and glycogen content were elevated in prolonged sepsis together with increased gene expression of enzymes responsible for lipogenesis and glycogen synthesis (p ≤ 0.05). Intermediate glycolytic metabolites (hexose-phosphates, GADP, DHAP) were elevated (p ≤ 0.05), but gene expression of several enzymes for glycolysis and mitochondrial oxidation of pyruvate, fatty-acyl-CoA and ketone bodies to acetyl-CoA were suppressed in prolonged sepsis (p ≤ 0.05). Key metabolic transcription factors PPARα and PGC-1α were downregulated in acute, but upregulated in prolonged, sepsis (p ≤ 0.05 for both). Ketone body concentrations were normal but ketolytic enzymes remained suppressed (p ≤ 0.05). Amino acid metabolism showed mild, mixed changes. CONCLUSIONS Our results suggest myocardial lipid and glycogen accumulation and suppressed mitochondrial oxidation, with a functionally intact Krebs cycle, in the prolonged phase of sepsis, together with ongoing myocardial inflammation. Whether these alterations have functional consequences and predispose to long-term sequelae of SICM needs further research.
Collapse
Affiliation(s)
- Bart Jacobs
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium
| | - Inge Derese
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium
| | - Sarah Derde
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium
| | - Sarah Vander Perre
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium
| | - Lies Pauwels
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium
| | - Greet Van den Berghe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium
| | - Jan Gunst
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium
| | - Lies Langouche
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, O&N1 Box 503, 3000, Louvain, Belgium.
| |
Collapse
|
5
|
Gao Y, Chen Y, Gao L. Evaluation of Sepsis Severity Using Combined High-Density Lipoprotein and Red Cell Distribution Width Indicators. Br J Hosp Med (Lond) 2024; 85:1-12. [PMID: 39831484 DOI: 10.12968/hmed.2024.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Aims/Background Sepsis is a life-threatening condition resulting from dysregulated immune responses to infection, leading to organ dysfunction. High-density lipoprotein (HDL) and red cell distribution width (RDW) have shown significant correlations with sepsis severity, yet the combined prognostic value of HDL and RDW in evaluating sepsis severity and outcomes remains unclear. This study examines the relationship between HDL and RDW levels and sepsis severity, as well as evaluates the combined utility of these markers in predicting disease severity and patient outcomes. Methods This retrospective study included 103 patients diagnosed with sepsis. Clinical data, including HDL and RDW levels, were collected for analysis. Patients were divided into shock and non-shock groups based on the presence of septic shock and into survival and death groups based on 30-day in-hospital mortality. Multivariate logistic regression was used to identify factors influencing sepsis severity and prognosis, while the predictive value of HDL in combination with RDW was evaluated using receiver operating characteristic (ROC) curve analysis. Results Multivariate analysis identified sequential organ failure assessment (SOFA) score (OR = 6.566), interleukin-6 (IL-6) (OR = 2.568), HDL (OR = 0.864), and RDW (OR = 4.052) as independent predictors of sepsis severity (p < 0.05 for all). ROC analysis demonstrated that HDL combined with RDW yielded the highest diagnostic accuracy for sepsis severity, with an area under curve (AUC) of 0.962, sensitivity of 97.56%, and specificity of 91.94%. Additionally, SOFA score (OR = 2.354), interleukin-6 (IL-6) (OR = 1.446), HDL (OR = 0.870), and RDW (OR = 3.502) were independent prognostic indicators (p < 0.05 for all). ROC analysis for prognosis showed that HDL combined with RDW had the highest predictive efficacy for the prognosis of sepsis, with an AUC of 0.922, sensitivity of 79.31%, and specificity of 93.24%. Conclusion The combination of HDL and RDW is a robust indicator for the evaluation of sepsis severity and is a valuable prognostic tool for assessing 30-day mortality risk in sepsis patients.
Collapse
Affiliation(s)
- Yan Gao
- Intensive Care Unit, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi, China
| | - Yao Chen
- Hemodialysis Unit, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi, China
| | - Li Gao
- Department of General Medicine, The Second People's Hospital of Jingdezhen, Jingdezhen, Jiangxi, China
| |
Collapse
|
6
|
Chen ZT, Weng ZX, Lin JD, Meng ZX. Myokines: metabolic regulation in obesity and type 2 diabetes. LIFE METABOLISM 2024; 3:loae006. [PMID: 39872377 PMCID: PMC11749576 DOI: 10.1093/lifemeta/loae006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 01/30/2025]
Abstract
Skeletal muscle plays a vital role in the regulation of systemic metabolism, partly through its secretion of endocrine factors which are collectively known as myokines. Altered myokine levels are associated with metabolic diseases, such as type 2 diabetes (T2D). The significance of interorgan crosstalk, particularly through myokines, has emerged as a fundamental aspect of nutrient and energy homeostasis. However, a comprehensive understanding of myokine biology in the setting of obesity and T2D remains a major challenge. In this review, we discuss the regulation and biological functions of key myokines that have been extensively studied during the past two decades, namely interleukin 6 (IL-6), irisin, myostatin (MSTN), growth differentiation factor 11 (GDF11), fibroblast growth factor 21 (FGF21), apelin, brain-derived neurotrophic factor (BDNF), meteorin-like (Metrnl), secreted protein acidic and rich in cysteine (SPARC), β-aminoisobutyric acid (BAIBA), Musclin, and Dickkopf 3 (Dkk3). Related to these, we detail the role of exercise in myokine expression and secretion together with their contributions to metabolic physiology and disease. Despite significant advancements in myokine research, many myokines remain challenging to measure accurately and investigate thoroughly. Hence, new research techniques and detection methods should be developed and rigorously tested. Therefore, developing a comprehensive perspective on myokine biology is crucial, as this will likely offer new insights into the pathophysiological mechanisms underlying obesity and T2D and may reveal novel targets for therapeutic interventions.
Collapse
Affiliation(s)
- Zhi-Tian Chen
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang University-University of Edinburgh Institute (ZJE), School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zhi-Xuan Weng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Zhuo-Xian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People’s Hospital, Hangzhou, Zhejiang 310006, China
| |
Collapse
|
7
|
Zhang M, Jiao Z. Nonlinear Relationship Between Interleukin-6 and NT-proBNP at Admission in Hospitalized COVID-19 Patients. Infect Drug Resist 2023; 16:6259-6267. [PMID: 37753230 PMCID: PMC10519174 DOI: 10.2147/idr.s426470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Purpose Elevated levels of the inflammatory marker interleukin-6 (IL-6) and cardiac injury marker N-terminal pro-B-type natriuretic peptide (NT-proBNP) have been observed in patients with coronavirus disease 2019 (COVID-19). However, the relationship between IL-6 and NT-proBNP levels remains unclear. Therefore, we investigated the relationship between IL-6 and NT-proBNP levels in patients with COVID-19. Patients and Methods This was a cross-sectional study. Consecutive patients with COVID-19 were included herein. The independent and dependent target variables were the IL-6 and NT-proBNP levels, respectively, measured at baseline. Univariate and multivariate linear regression analyses and curve fitting were also performed. Results The average age of the 121 selected participants was 49.8 ± 15.8 years old, and 48.8% (59/121) were male. The estimated β value between Ln-transformed IL-6 and NT-proBNP was 0.28 (95% confidence interval [CI] 0.12-0.44, P = 0.001) in univariate logistic regression analysis and 0.09 (95% CI -0.04-0.21, P = 0.176) in the fully adjusted model. This relationship was nonlinear, with a point of 2.7, and the β values (and CIs) for the left (<2.7) and right (≥2.7) sides of the inflection point were -0.06 (95% CI -0.23-0.12, P = 0.534) and 0.77 (95% CI 0.18-1.37, P = 0.016) in the fully adjusted model, respectively. Conclusion Our results suggest a nonlinear association between IL-6 and NT-proBNP levels. Higher IL-6 levels are associated with NT-proBNP in patients with COVID-19.
Collapse
Affiliation(s)
- Meijuan Zhang
- Department of Cardiology, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin University, Tianjin, People’s Republic of China
| | - Zhanquan Jiao
- Department of Cardiology, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin University, Tianjin, People’s Republic of China
| |
Collapse
|
8
|
Félix-Soriano E, Stanford KI. Exerkines and redox homeostasis. Redox Biol 2023; 63:102748. [PMID: 37247469 PMCID: PMC10236471 DOI: 10.1016/j.redox.2023.102748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Exercise physiology has gained increasing interest due to its wide effects to promote health. Recent years have seen a growth in this research field also due to the finding of several circulating factors that mediate the effects of exercise. These factors, termed exerkines, are metabolites, growth factors, and cytokines secreted by main metabolic organs during exercise to regulate exercise systemic and tissue-specific effects. The metabolic effects of exerkines have been broadly explored and entail a promising target to modulate beneficial effects of exercise in health and disease. However, exerkines also have broad effects to modulate redox signaling and homeostasis in several cellular processes to improve stress response. Since redox biology is central to exercise physiology, this review summarizes current evidence for the cross-talk between redox biology and exerkines actions. The role of exerkines in redox biology entails a response to oxidative stress-induced pathological cues to improve health outcomes and to modulate exercise adaptations that integrate redox signaling.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, OH, USA; Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH, USA.
| |
Collapse
|
9
|
Leveque C, Mrakic Sposta S, Theunissen S, Germonpré P, Lambrechts K, Vezzoli A, Gussoni M, Levenez M, Lafère P, Guerrero F, Balestra C. Oxidative Stress Response Kinetics after 60 Minutes at Different Levels (10% or 15%) of Normobaric Hypoxia Exposure. Int J Mol Sci 2023; 24:10188. [PMID: 37373334 DOI: 10.3390/ijms241210188] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, the metabolic responses of hypoxic breathing for 1 h to inspired fractions of 10% and 15% oxygen were investigated. To this end, 14 healthy nonsmoking subjects (6 females and 8 males, age: 32.2 ± 13.3 years old (mean ± SD), height: 169.1 ± 9.9 cm, and weight: 61.6 ± 16.2 kg) volunteered for the study. Blood samples were taken before, and at 30 min, 2 h, 8 h, 24 h, and 48 h after a 1 h hypoxic exposure. The level of oxidative stress was evaluated by considering reactive oxygen species (ROS), nitric oxide metabolites (NOx), lipid peroxidation, and immune-inflammation by interleukin-6 (IL-6) and neopterin, while antioxidant systems were observed in terms of the total antioxidant capacity (TAC) and urates. Hypoxia abruptly and rapidly increased ROS, while TAC showed a U-shape pattern, with a nadir between 30 min and 2 h. The regulation of ROS and NOx could be explained by the antioxidant action of uric acid and creatinine. The kinetics of ROS allowed for the stimulation of the immune system translated by an increase in neopterin, IL-6, and NOx. This study provides insights into the mechanisms through which acute hypoxia affects various bodily functions and how the body sets up the protective mechanisms to maintain redox homeostasis in response to oxidative stress.
Collapse
Affiliation(s)
- Clément Leveque
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Simona Mrakic Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Sigrid Theunissen
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Peter Germonpré
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Hyperbaric Centre, Queen Astrid Military Hospital, 1120 Brussels, Belgium
| | - Kate Lambrechts
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Alessandra Vezzoli
- Institute of Clinical Physiology, National Research Council (CNR), 20162 Milan, Italy
| | - Maristella Gussoni
- Institute of Chemical Sciences and Technologies "G. Natta", National Research Council (SCITEC-CNR), 20133 Milan, Italy
| | - Morgan Levenez
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
| | - Pierre Lafère
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
| | - François Guerrero
- Laboratoire ORPHY, Université de Bretagne Occidentale, UFR Sciences et Techniques, 93837 Brest, France
| | - Costantino Balestra
- Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| |
Collapse
|
10
|
Nong Y, Wei X, Yu D. Inflammatory mechanisms and intervention strategies for sepsis-induced myocardial dysfunction. Immun Inflamm Dis 2023; 11:e860. [PMID: 37249297 PMCID: PMC10187025 DOI: 10.1002/iid3.860] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is the leading cause of death in patients with sepsis in the intensive care units. The main manifestations of SIMD are systolic and diastolic dysfunctions of the myocardium. Despite our initial understanding of the SIMD over the past three decades, the incidence and mortality of SIMD remain high. This may be attributed to the large degree of heterogeneity among the initiating factors, disease processes, and host states involved in SIMD. Previously, organ dysfunction caused by sepsis was thought to be an impairment brought about by an excessive inflammatory response. However, many recent studies have shown that SIMD is a consequence of a combination of factors shaped by the inflammatory responses between the pathogen and the host. In this article, we review the mechanisms of the inflammatory responses and potential novel therapeutic strategies in SIMD.
Collapse
Affiliation(s)
- Yuxin Nong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Xuebiao Wei
- Department of Geriatric Intensive Medicine, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Danqing Yu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| |
Collapse
|
11
|
Takahashi K, Higashizono K, Fukatsu K, Murakoshi S, Takayama H, Noguchi M, Matsumoto N, Seto Y. Prehabilitation Ameliorates Gut Ischemia Reperfusion Injury in Mice. J Surg Res 2023; 282:71-83. [PMID: 36257166 DOI: 10.1016/j.jss.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION We previously demonstrated that prehabilitation by running on a treadmill leads to improved survival after gut ischemia reperfusion (I/R) in mice. The purpose of this research was to examine whether prehabilitation attenuates inflammatory responses after gut I/R in mice. MATERIALS AND METHODS Male C57BL/6J mice (n = 92) were assigned to the sedentary (n = 46) or the exercise (n = 46) group. The exercise group ran on a treadmill for 4 wk, while the sedentary mice did not exercise. After the 4-week pretreatment, all mice underwent gut I/R and the blood, urine, small intestine, lung, liver, and gastrocnemius were harvested prior to ischemia or at 0, 3, 6, or 24 h after reperfusion. Histologically demonstrated organ damage, cytokine levels in the blood, gut and gastrocnemius, myeloperoxidase activity in the gut, 8-hydroxy-2'-deoxyguanosine levels in urine and the gut, and adenosine triphosphate (ATP) and ATP + ADP + adenosine monophosphate levels in the gut and gastrocnemius were evaluated. RESULTS The treadmill exercise reduced gut and lung injuries at 3 h and liver injury at 6 h after reperfusion. Running on the treadmill also decreased proinflammatory cytokine levels in the blood at 6 h, gut at 3 h and gastrocnemius at 6 h after reperfusion, myeloperoxidase activity in the gut prior to ischemia, and 6 h after reperfusion and the urinary 8-hydroxy-2'-deoxyguanosine level at 24 h after reperfusion, while ATP levels in exercised mice prior to ischemia and 3 h after reperfusion were increased in the intestine as compared to the levels in sedentary mice. CONCLUSIONS Prehabilitation with treadmill exercise reduces inflammatory responses after gut I/R and may exert protective actions against gut I/R.
Collapse
Affiliation(s)
- Kazuya Takahashi
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuya Higashizono
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Fukatsu
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan.
| | - Satoshi Murakoshi
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Haruka Takayama
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Midori Noguchi
- Surgical Center, The University of Tokyo Hospital, Tokyo, Japan
| | - Nana Matsumoto
- Operating Room Management and Surgical Metabolism, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Seto
- Department of Gastrointestinal Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines-A Review. Pathogens 2023; 12:pathogens12020166. [PMID: 36839438 PMCID: PMC9962459 DOI: 10.3390/pathogens12020166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite's developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs.
Collapse
|
13
|
Zhang LL, Tang RJ, Yang YJ. The underlying pathological mechanism of ferroptosis in the development of cardiovascular disease. Front Cardiovasc Med 2022; 9:964034. [PMID: 36003910 PMCID: PMC9393259 DOI: 10.3389/fcvm.2022.964034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been attracting the attention of academic society for decades. Numerous researchers contributed to figuring out the core mechanisms underlying CVDs. Among those, pathological decompensated cellular loss posed by cell death in different kinds, namely necrosis, apoptosis and necroptosis, was widely regarded to accelerate the pathological development of most heart diseases and deteriorate cardiac function. Recently, apart from programmed cell death revealed previously, ferroptosis, a brand-new cellular death identified by its ferrous-iron-dependent manner, has been demonstrated to govern the occurrence and development of different cardiovascular disorders in many types of research as well. Therefore, clarifying the regulatory function of ferroptosis is conducive to finding out strategies for cardio-protection in different conditions and improving the prognosis of CVDs. Here, molecular mechanisms concerned are summarized systematically and categorized to depict the regulatory network of ferroptosis and point out potential therapeutic targets for diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Jie Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yue-Jin Yang,
| |
Collapse
|