1
|
Wang Y, Ma Z, Jiang L, Bojan N, Sha Y, Huang B, Ming L, Shen J, Pang W. Specific muscle targeted delivery of miR-130a loaded lipid nanoparticles: a novel approach to inhibit lipid accumulation in skeletal muscle and obesity. J Nanobiotechnology 2025; 23:159. [PMID: 40033366 PMCID: PMC11874848 DOI: 10.1186/s12951-025-03225-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/11/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Skeletal muscle lipid deposition is a key manifestation of obesity, often accompanied by decreased exercise capacity and muscle atrophy. Skeletal muscle as the largest organ in the body, makes it challenges for designing targeted drug delivery systems. Lipid nanoparticles (LNPs) are widely used as a safe and efficient delivery carrier, there is limited research on LNPs that specifically target skeletal muscle. RESULTS A LNP designed with five specific receptor complements on its surface, which specifically targets skeletal muscle in vivo in mice, without off-target effects on other tissues and organs. MiR-130a, a regulator of PPARG, which is a key factor in skeletal muscle lipid deposition, was encapsulated with LNP (LNP@miR-130a). In high-fat diet (HFD) mice, LNP@miR-130a effectively reduced skeletal muscle lipid deposition, increased exercise activity and enhanced muscle mass. Interestingly, the myokines in skeletal muscle have also changed which may leading to reduce the adipose tissue weight and liver lipid deposition in HFD mice. CONCLUSIONS These results indicated LNP@miR-130a is a promising inhibitor of skeletal muscle lipid deposition and may help alleviate obesity. This study provides new insights for obesity treatment and lays foundation for the development of targeted skeletal muscle therapeutics.
Collapse
Affiliation(s)
- Yingqian Wang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Zeqiang Ma
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Lehua Jiang
- Center for Metabolic & Gastroenterology, Institute of Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Nataraj Bojan
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Yiwen Sha
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Boyu Huang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Lianxi Ming
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Junnan Shen
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Shaanxi, China.
- , No. 22 Xinong Road, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
2
|
Letukienė A, Hendrixson V, Ginevičienė V. Current knowledge and scientific trends in myokines and exercise research in the context of obesity. Front Med (Lausanne) 2024; 11:1421962. [PMID: 39376657 PMCID: PMC11456489 DOI: 10.3389/fmed.2024.1421962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
The relationship between exercise and obesity has attracted increasing attention from researchers worldwide in recent years. The aim of the present study was to analyze the current knowledge and scientific trends of research into myokines and exercise in the context of obesity and provide ideas for future research strategies to prevent obesity. The study conducted a comprehensive bibliometric analysis of 300 scientific publications related to myokines, exercise, and obesity from 2004 to 2024. Applying the VOSviewer tool, the analysis revealed a significant increase over time in the number of publications on these topics, with a total of 1,142 related keywords identified. Key themes identified in the analysis included molecular processes, new organokines, skeletal muscle research, model organism studies, and human studies based on sex and age differences. The study highlighted the growing interest in the molecular mechanisms of obesity and role of myokines. Results showed a substantial increase in publications from 2014 to 2024, with a focus on new organokines (myokines, adipokines) and animal models. The analysis underscored the importance of myokines in modulating metabolic processes and their potential therapeutic implications in managing non-communicable diseases such as obesity. Furthermore, the study revealed the close relationship between exercise, myokine production, and regulation of metabolism, stress response, and inflammation. In conclusion, over the last years, increasing research interest has been focused on the molecular mechanisms of obesity and benefits of exercise, and probably will be focused on a set of myokines released during muscle contraction. A newly identified myokines has emerged as a promising marker for the prevention and control of obesity.
Collapse
|
3
|
Li X, Li Y, Hao Q, Jin J, Wang Y. Metabolic mechanisms orchestrated by Sirtuin family to modulate inflammatory responses. Front Immunol 2024; 15:1448535. [PMID: 39372420 PMCID: PMC11449768 DOI: 10.3389/fimmu.2024.1448535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Maintaining metabolic homeostasis is crucial for cellular and organismal health throughout their lifespans. The intricate link between metabolism and inflammation through immunometabolism is pivotal in maintaining overall health and disease progression. The multifactorial nature of metabolic and inflammatory processes makes study of the relationship between them challenging. Homologs of Saccharomyces cerevisiae silent information regulator 2 protein, known as Sirtuins (SIRTs), have been demonstrated to promote longevity in various organisms. As nicotinamide adenine dinucleotide-dependent deacetylases, members of the Sirtuin family (SIRT1-7) regulate energy metabolism and inflammation. In this review, we provide an extensive analysis of SIRTs involved in regulating key metabolic pathways, including glucose, lipid, and amino acid metabolism. Furthermore, we systematically describe how the SIRTs influence inflammatory responses by modulating metabolic pathways, as well as inflammatory cells, mediators, and pathways. Current research findings on the preferential roles of different SIRTs in metabolic disorders and inflammation underscore the potential of SIRTs as viable pharmacological and therapeutic targets. Future research should focus on the development of promising compounds that target SIRTs, with the aim of enhancing their anti-inflammatory activity by influencing metabolic pathways within inflammatory cells.
Collapse
Affiliation(s)
- Xiaoqing Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunjia Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Quan Hao
- China Spallation Neutron Source, Dongguan, Guangdong, China
| | - Jing Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| | - Yi Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Key Laboratory of Immune Response and Immunotherapy, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
4
|
Latorre J, de Vera N, Santalucía T, Balada R, Marazuela-Duque A, Vaquero A, Planas AM, Petegnief V. Lack of the Histone Deacetylase SIRT1 Leads to Protection against Endoplasmic Reticulum Stress through the Upregulation of Heat Shock Proteins. Int J Mol Sci 2024; 25:2856. [PMID: 38474102 DOI: 10.3390/ijms25052856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/21/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Histone deacetylase SIRT1 represses gene expression through the deacetylation of histones and transcription factors and is involved in the protective cell response to stress and aging. However, upon endoplasmic reticulum (ER) stress, SIRT1 impairs the IRE1α branch of the unfolded protein response (UPR) through the inhibition of the transcriptional activity of XBP-1 and SIRT1 deficiency is beneficial under these conditions. We hypothesized that SIRT1 deficiency may unlock the blockade of transcription factors unrelated to the UPR promoting the synthesis of chaperones and improving the stability of immature proteins or triggering the clearance of unfolded proteins. SIRT1+/+ and SIRT1-/- fibroblasts were exposed to the ER stress inducer tunicamycin and cell survival and expression of heat shock proteins were analyzed 24 h after the treatment. We observed that SIRT1 loss significantly reduced cell sensitivity to ER stress and showed that SIRT1-/- but not SIRT1+/+ cells constitutively expressed high levels of phospho-STAT3 and heat shock proteins. Hsp70 silencing in SIRT1-/- cells abolished the resistance to ER stress. Furthermore, accumulation of ubiquitinated proteins was lower in SIRT1-/- than in SIRT1+/+ cells. Our data showed that SIRT1 deficiency enabled chaperones upregulation and boosted the proteasome activity, two processes that are beneficial for coping with ER stress.
Collapse
Affiliation(s)
- Jessica Latorre
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Nuria de Vera
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Tomàs Santalucía
- Department of Fundamental and Clinical Nursing, School of Nursing, University of Barcelona, 08907 L'Hospitalet de Llobregat, Spain
| | - Rafel Balada
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Valérie Petegnief
- Department of Neuroscience and Experimental Therapeutics, Institute for Biomedical Research of Barcelona (IIBB), Spanish Research Council (CSIC), 08036 Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
5
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Tarantino G, Citro V. What are the common downstream molecular events between alcoholic and nonalcoholic fatty liver? Lipids Health Dis 2024; 23:41. [PMID: 38331795 PMCID: PMC10851522 DOI: 10.1186/s12944-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
Liver fat storage, also called hepatic steatosis, is increasingly common and represents a very frequent diagnosis in the medical field. Excess fat is not without consequences. In fact, hepatic steatosis contributes to the progression toward liver fibrosis. There are two main types of fatty liver disease, alcoholic fatty liver disease (AFLD) and nonalcoholic fatty liver disease (NAFLD). Although AFLD and NAFLD are similar in their initial morphological features, both conditions involve the same evolutive forms. Moreover, there are various common mechanisms underlying both diseases, including alcoholic liver disease and NAFLD, which are commonalities. In this Review, the authors explore similar downstream signaling events involved in the onset and progression of the two entities but not completely different entities, predominantly focusing on the gut microbiome. Downstream molecular events, such as the roles of sirtuins, cytokeratins, adipokines and others, should be considered. Finally, to complete the feature, some new tendencies in the therapeutic approach are presented.
Collapse
Affiliation(s)
| | - Vincenzo Citro
- Department of General Medicine, Umberto I Hospital, Nocera Inferiore, SA, 84014, Italy
| |
Collapse
|
7
|
Cho W, Oh H, Choi SW, Abd El-Aty AM, Yeşilyurt F, Jeong JH, Jung TW. Musclin Mitigates the Attachment of HUVECs to THP-1 Monocytes in Hyperlipidemic Conditions through PPARα/HO-1-Mediated Attenuation of Inflammation. Inflammation 2024; 47:1-12. [PMID: 37737929 DOI: 10.1007/s10753-023-01904-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Musclin, a myokine, undergoes modulation during exercise and has demonstrated anti-inflammatory effects in cardiomyocytes and glomeruli. However, its role in atherosclerotic responses remains unclear. This study aimed to explore the impact of musclin on inflammatory responses and the interaction between endothelial cells and monocytes under hyperlipidemic conditions. The attachment levels of THP-1 monocytes on cultured HUVECs were examined. Inflammation and the expression of cell adhesion molecules were also evaluated. To explore the molecular mechanisms of musclin, PPARα or heme oxygenase 1 (HO-1) siRNA transfection was performed in HUVECs. The results revealed that treatment with recombinant musclin effectively suppressed the attachment of palmitate-induced HUVECs to THP-1 cells and reduced the expression of cell adhesion proteins (ICAM-1, VCAM-1, and E-selectin) in HUVECs. Furthermore, musclin treatment ameliorated the expression of inflammation markers (phosphorylated NFκB and IκB) in both HUVECs and THP-1 monocytes, as well as the release of TNFα and MCP-1 from HUVECs and THP-1 monocytes. Notably, musclin treatment augmented the expression levels of PPARα and HO-1. However, when PPARα or HO-1 siRNA was employed, the beneficial effects of musclin on inflammation, cell attachment, and adhesion molecule expression were abolished. These findings indicate that musclin exerts anti-inflammatory effects via the PPARα/HO-1 pathway, thereby mitigating the interaction between endothelial cells and monocytes. This study provides evidence supporting the important role of musclin in ameliorating obesity-related arteriosclerosis and highlights its potential as a therapeutic agent for treating arteriosclerosis.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Fatma Yeşilyurt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea
- Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, 221, Heuksuk-dong, Dongjak-gu, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
8
|
Sun X, Yang X, Gui W, Liu S, Gui Q. Sirtuins and autophagy in lipid metabolism. Cell Biochem Funct 2023; 41:978-987. [PMID: 37755711 DOI: 10.1002/cbf.3860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
Sirtuins are a family of NAD+ -dependent deacetylases that regulate some important biological processes, including lipid metabolism and autophagy, through their deacetylase function. Autophagy is a new discovery in the field of lipid metabolism, which may provide a new idea for the regulation of lipid metabolism. There are many tandem parts in the regulation process of lipid metabolism and autophagy of sirtuins protein family. This paper summarized these tandem parts and proposed the possibility of sirtuins regulating lipid autophagy, as well as the interaction and synergy between sirtuins protein family. Currently, some natural drugs have been reported to affect metabolism by regulating sirtuins, some of which regulate autophagy by targeting sirtuins.
Collapse
Affiliation(s)
- Xuan Sun
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoting Yang
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Wanfei Gui
- Department of Medicine, Chuanshan College, University of South China, Hengyang, China
| | - Songling Liu
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Qingjun Gui
- Department of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|