1
|
Qu L, Wang F, Wang Y, Li Z. The regulation of LRPs by miRNAs in cancer: influencing cancer characteristics and responses to treatment. Cancer Cell Int 2025; 25:182. [PMID: 40382654 PMCID: PMC12085831 DOI: 10.1186/s12935-025-03804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 05/04/2025] [Indexed: 05/20/2025] Open
Abstract
The low-density lipoprotein receptor-related protein (LRP) family is a group of cell surface receptors that participate in a variety of biological processes, including lipid metabolism, Wnt signaling, and bone metabolism. miRNAs are small non-coding RNA molecules that regulate gene expression and play a role in many biological processes, including the occurrence and development of tumors. Accumulating evidence demonstrates that LRP members are modulated by miRNAs across multiple cancer types, influencing key oncogenic processes-including tumor cell proliferation, apoptosis suppression, extracellular matrix remodeling, cell adhesion, and angiogenesis. The LRPs, miRNAs, their upstream lncRNAs, and downstream signaling molecules often form complex signaling pathways to regulate the activity of tumor cells. However, the tissue-specific roles and mechanistic underpinnings of these pathways remain incompletely understood. When examining the emerging concept of the interaction between miRNAs and LRPs, we emphasize the significance of these complex regulatory layers in the initiation and progression of cancer. Collectively, these findings are critical for advancing our understanding of the role of the LRPs family in the occurrence and development of tumors, as well as for the development of new strategies for cancer treatment.
Collapse
Affiliation(s)
- Lianyue Qu
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Fan Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Yuxiang Wang
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China
- Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China
| | - Zixuan Li
- Key Laboratory of Diagnostic Imaging and Interventional Radiology of Liaoning Province, Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
- Department of Radiology, The First Hospital of China Medical University, Shenyang, P. R. China.
| |
Collapse
|
2
|
Hsu CY, Altalbawy FMA, Oghenemaro EF, Uthirapathy S, Chandra M, Nathiya D, Kaur P, Ravi Kumar M, Kadhim AJ, Kariem M. Exosomal lncRNAs in the Tumor Angiogenesis: As Therapeutic Targets in Cancer Treatment. Arch Pharm (Weinheim) 2025; 358:e202400940. [PMID: 40165644 DOI: 10.1002/ardp.202400940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Exosomes, as mediators of intercellular communication, can be released from different types of cells and regulate the function of the target cell by transferring cargo, such as proteins, DNA, and RNA. Recent investigations have revealed a preponderance of long noncoding RNAs (lncRNAs), a subclass of noncoding RNAs, within exosomes, where they exhibit notable stability and are implicated in the development and progression of neoplastic processes, such as tumor angiogenesis. Angiogenesis, as a hallmark of cancer, provides diffusible nutrients and oxygen to the distant cells and guarantees tumorigenesis and metastasis. Exosomal lncRNAs, including MALAT1, OIP5-AS1, PART1, SNHG family, FAM225A, ATB, RAMP2-AS1, UCA1, TRPM2-AS, FGD5-AS1, and LINC0016, could modulate tumor angiogenesis by activating signaling cascades and mediators within the target cells, such as microRNAs (miRNAs). Regulation of tumor angiogenesis through modulation of exosomal lncRNAs could be a reliable strategy for cancer therapy. In this review, we discuss the characteristics and biogenesis of exosomes and lncRNAs and how exosomal lncRNAs are involved in various processes of tumorigenesis. Our primary focus is on exosomal lncRNAs, their impact on tumor angiogenesis, and their potential as novel diagnostic markers and therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, USA
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Enwa Felix Oghenemaro
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Delta State University, Abraka, Delta State, Nigeria
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Muktesh Chandra
- Marwadi University Research Center, Department of Bioinformatics, Faculty of Engineering and Technology, Marwadi University, Rajkot, Gujarat, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, Institute of Pharmacy, NIMS University, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Abed J Kadhim
- Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq
| | - Muthena Kariem
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Roy D, Bhattacharya B, Chakravarti R, Singh P, Arya M, Kundu A, Patil A, Siva B, Mehta S, Kazi TA, Ghosh D. LncRNAs in oncogenic microenvironment: from threat to therapy. Front Cell Dev Biol 2025; 12:1423279. [PMID: 40176927 PMCID: PMC11962222 DOI: 10.3389/fcell.2024.1423279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
LncRNAs are RNA molecules of more than 200 nucleotides in length and participate in cellular metabolism and cellular responses through their diverse interactomedespite having no protein-coding capabilities. Such significant interactions also implicate the presence of lncRNAs in complex pathobiological pathways of various diseases, affecting cellular survival by modulating autophagy, inflammation and apoptosis. Proliferating cells harbour a complex microenvironment that mainly stimulate growth-specific activities such as DNA replication, repair, and protein synthesis. They also recognise damages at the macromolecular level, preventing them from reaching the next-generation. LncRNAs have shown significant association with the events occurring towards proliferation, regulating key events in dividing cells, and dysregulation of lncRNA transcriptome affects normal cellular life-cycle, promoting the development of cancer. Furthermore, lncRNAs also demonstrated an association with cancer growth and progression by regulating key pathways governing cell growth, epithelial-mesenchymal transition and metastasis. This makes lncRNAs an attractive target for the treatment of cancer and can also be used as a marker for the diagnosis and prognosis of diseases due to their differential expression in diseased samples. This review delves into the correlation of the lncRNA transcriptome with the fundamental cellular signalling and how this crosstalk shapes the complexity of the oncogenic microhabitat.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Dipanjan Ghosh
- Department of Natural Products, National Institute of Pharmaceutical Education and Research-Kolkata, Kolkata, India
| |
Collapse
|
4
|
Li X, Liu C, Gao Y. SUV39H1 Regulates Gastric Cancer Progression via the H3K9me3/ALDOB Axis. Cell Biochem Biophys 2025; 83:919-928. [PMID: 39302619 DOI: 10.1007/s12013-024-01524-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Gastric cancer (GC) is a malignant tumor with high incidence rate. H3K9me3 is related to transcriptional suppression and modulated by histone methyltransferase suppressor of variegation 3-9 homolog 1 (SUV39H1). SUV39H1 is dysregulated in assorted cancers and exerts the regulatory function. Nevertheless, the specific biofunction of SUV39H1 in GC needs further confirmation. SUV39H1 and H3K9me3 expressions were tested through RT-qPCR and western blot. Colony formation, wound healing, and transwell assays were employed for testing cell behaviors. ChIP assay was utilized for assessing the interaction between H3K9me3 and aldolase B (ALDOB). Xenograft experiment was employed for measuring tumor growth. We found that SUV39H1 and H3K9me3 were overexpressed in GC tissues and cells. SUV39H1 knockdown notably suppressed GC cell proliferative, migratory, and invasive capabilities. The treatment of chaetocin or F5446 (inhibitors of SUV39H1 enzymatic activity) also restrained GC cell behaviors. In addition, we discovered that SUV39H1 could negatively regulate ALDOB expression. SUV39H1 depletion reduced H3K9me3 modification to ALDOB promoter region. In rescue assays, we proved that ALDOB reduction reversed the inhibitory functions of SUV39H1 silencing on GC progression. Furthermore, tumor growth of mice was suppressed by sh-SUV39H1 transfection, chaetocin treatment, or F5446 treatment. In conclusion, SUV39H1 promoted GC progression by modulating the H3K9me3/ALDOB axis.
Collapse
Affiliation(s)
- Xueyong Li
- Department of Gastroenterology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225300, Jiangsu, China.
| | - Cuixia Liu
- Department of Gastroenterology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| | - Yi Gao
- Department of Gastroenterology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Taizhou, 225300, Jiangsu, China
| |
Collapse
|
5
|
Ahmadi S, Yazdi F, Khastar S, Kaur I, Ahmed MH, Kumar A, Rathore G, Kaur P, Shahsavan M, Dehghani-Ghorbi M, Akhavan-Sigari R. Molecular Mechanism of lncRNAs in Regulation of Breast Cancer Metastasis; a Comprehensive Review. Cell Biochem Biophys 2025; 83:229-245. [PMID: 39367197 DOI: 10.1007/s12013-024-01535-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/06/2024]
Abstract
Although the number of breast cancer deaths has decreased, and there have been developments in targeted therapies and combination treatments for the management of metastatic illness, metastatic breast cancer is still the second most common cause of cancer-related deaths in U.S. women. Numerous phases and a vast number of proteins and signaling molecules are involved in the invasion-metastasis cascade. The tumor cells penetrate and enter the blood or lymphatic vessels, and travel to distant organs via the lymphatic or blood vessels. Tumor cells enter cell cycle arrest, adhere to capillary beds in the target organ, and then disseminate throughout the organ's parenchyma, proliferating and enhancing angiogenesis. Each of these processes is regulated by changes in the expression of different genes, in which lncRNAs play a role in this regulation. Transcripts that are longer than 200 nucleotides and do not translate into proteins are called RNAs. LncRNA molecules, whose function depends on their unique molecular structure, play significant roles in controlling the expression of genes at various epigenetic levels, transcription, and so on. LncRNAs have essential functions in regulating the expression of genes linked to cell development in healthy and pathological processes, specialization, programmed cell death, cell division, invasion, DNA damage, and spread to other parts of the body. A number of cancer types have been shown to exhibit aberrant expression of lncRNAs. In this review, we describe the general characteristics, potential molecular mechanisms and targeted therapy of lncRNAs and discuss the emerging functions of lncRNAs in breast cancer.
Collapse
Affiliation(s)
- Shokoufeh Ahmadi
- Department of Microbiology, Rabe'Rashidi University, Tabriz, Iran
| | - Farzaneh Yazdi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Khastar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka-560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh-247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand-831001, India
| | - Gulshan Rathore
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Parjinder Kaur
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - Mohammad Shahsavan
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahmoud Dehghani-Ghorbi
- Hematology-Oncology Department, Imam Hossein Educational Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Hussen BM, Othman DI, Abdullah SR, Khudhur ZO, Samsami M, Taheri M. New insights of LncRNAs fingerprints in breast cancer progression: Tumorigenesis, drug resistance, and therapeutic opportunities. Int J Biol Macromol 2025; 287:138589. [PMID: 39662549 DOI: 10.1016/j.ijbiomac.2024.138589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Breast cancer (BC) is one of the common female cancers and it is characterized by considerable problems regarding its development and therapy. Long non-coding RNAs (lncRNAs) have been identified as significant modulators in BC development, especially, in tumorigenicity and chemoresistance. We therefore endeavor to present an up-to-date understanding of lncRNAs and their impact on BC progression and treatment, concerning molecular processes, treatment options, and use as a therapeutic opportunity. LncRNAs are novel regulators of genes that cause therapeutic resistance and directly impact the functioning of both coding and non-coding genes in BC patients, but little is known about their mechanisms of actions. Thus, additional study is required to have a deeper understanding of their modes of action and possible roles in BC disease. This study aims to investigate the functions of lncRNAs in the development of BC, with particular attention to their role in tumorigenesis, drug resistance mechanisms, and therapeutic targets. This will help to identify novel therapeutic targets and improve the effectiveness of BC treatment.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq; Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Diyar Idris Othman
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region 44001, Iraq
| | - Snur Rasool Abdullah
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology, Faculty of Education, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Research Institute for Urology and Nephrology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Łaźniak S, Sowińska A, Roszak A, Lianeri M, Pławski A, Mostowska A, Jagodziński PP. Role of rs2366152 single-nucleotide variant located in the long noncoding RNA HOTAIR gene in the cervical cancer susceptibility in a Polish population. J Appl Genet 2024; 65:511-518. [PMID: 38157198 PMCID: PMC11310296 DOI: 10.1007/s13353-023-00822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
Previous studies have demonstrated an association of the NC_000012.12:g.53962605A > G, (rs2366152) single-nucleotide variant (SNV) situated in the long noncoding homeobox transcript antisense intergenic RNA (HOTAIR) gene with HPV16-related cervical cancer pathogenesis. However, little is known about the role of rs2366152 in cervical cancer progression and how oral birth control pills use, parity, menopausal status, and cigarette smoking influence the role of rs2366152 in cervical carcinogenesis. HRM analysis was used to determine the rs2366152 SNV prevalence in patients with cervical squamous cell carcinoma (SCC) (n = 470) and control group (n = 499) in a Polish Caucasian population. Logistic regression analyses were adjusted for age, using birth control pills, parity, menopausal status, and cigarette smoking. Our genetic studies revealed that the G/A vs. A/A (p = 0.031, p = 0.002) and G/A + G/G vs. A/A (p = 0.035, p = 0.003) genotypes of rs2366152 SNV were significantly related to the grade of differentiation G3 and tumor stage III, respectively. Moreover, cervical cancer risk increased among patients with rs2366152 SNV who smoked cigarettes and used birth control pills. We conclude that rs2366152 may promote the invasion and rapid growth of cervical SCC. Moreover, rs2366152 with cigarette smoking and using birth control pills can also be a risk factor for cervical cancerogenesis.
Collapse
Affiliation(s)
- Sebastian Łaźniak
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland
| | - Anna Sowińska
- Department of Computer Science and Statistics, Poznań University of Medical Sciences Poznań, Poznań, Poland
| | - Andrzej Roszak
- Department of Radiotherapy and Gynecological Oncology, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznań University of Medical Sciences, Poznań, Poland
| | - Margarita Lianeri
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland
| | - Andrzej Pławski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479, Poznan, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland
| | - Paweł Piotr Jagodziński
- Department of Biochemistry and Molecular Biology, Poznań University of Medical Sciences, 6 Święcickiego St., 60-781, Poznań, Poland.
| |
Collapse
|
8
|
Abdel-Hamid NR, Mohammed EA, Toraih EA, Kamel MM, Abdelhafiz AS, Badr FM. Circulating ESR1, long non-coding RNA HOTAIR and microRNA-130a gene expression as biomarkers for breast cancer stage and metastasis. Sci Rep 2023; 13:22654. [PMID: 38114755 PMCID: PMC10730703 DOI: 10.1038/s41598-023-50007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Breast cancer, the most prevalent cancer among women, has posed a significant challenge in identifying biomarkers for early diagnosis and prognosis. This study aimed to elucidate the gene expression profile of Estrogen Receptor-1 (ESR-1), long non-coding RNA HOTAIR, and microRNA-130a in the serum of Egyptian breast cancer patients, evaluating the potential of HOTAIR and miR-130a as biomarkers for predicting pathological parameters in BC. The study involved 45 patients with primary BC, with serum samples collected preoperatively and postoperatively twice. The expression levels of ESR-1, HOTAIR, and miR-130a were quantified using real-time PCR and analyzed for correlations with each other and with the clinical and pathological parameters of the patients. Serum HOTAIR levels exhibited a strong positive association with metastasis and demonstrated a significant increase after 6 months in all patients with locally advanced and stage IV BC. Conversely, tumors with advanced stages and metastatic lesions showed significantly lower expression levels of miR-130a. Notably, a significant positive correlation was observed between preoperative ESR-1 expression and both HOTAIR and miR-130a levels. Serum HOTAIR and miR-130a levels have emerged as promising non-invasive biomarkers with the potential to predict the pathological features of BC patients. HOTAIR, an oncogenic long non-coding RNA (lncRNA), and miR-130a, a tumor suppressor miRNA, play crucial roles in tumor progression. Further investigations are warranted to elucidate the intricate interplay between HOTAIR and miR-130a and to fully comprehend the contribution of HOTAIR to BC recurrence and its potential utility in early relapse prediction.
Collapse
Affiliation(s)
- Noura R Abdel-Hamid
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Mohammed
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mahmoud M Kamel
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, From El-Khalig Square, Cairo, 11796, Egypt
- Baheya Centre for Early Detection and Treatment of Breast Cancer, Giza, Egypt
| | - Ahmed Samir Abdelhafiz
- Department of Clinical Pathology, National Cancer Institute, Cairo University, Kasr Al-Aini Street, From El-Khalig Square, Cairo, 11796, Egypt.
| | - Fouad M Badr
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
9
|
Tufail M. HOTAIR in colorectal cancer: structure, function, and therapeutic potential. Med Oncol 2023; 40:259. [PMID: 37530984 DOI: 10.1007/s12032-023-02131-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
lncRNAs play a vital part in cancer development by regulating gene expression. Among these, the lncRNA HOTAIR has gained considerable attention due to its entanglement in multiple cellular processes, including chromatin remodeling and gene regulation. HOTAIR has a complex structure consisting of multiple domains that interact with various protein complexes and RNA molecules. In colorectal cancer (CRC), HOTAIR expression is upregulated, and its overexpression has been correlated with poor patient prognosis and resistance to chemotherapy. HOTAIR has been found to regulate gene expression and promote cancer growth by interacting with specific miRNAs. In addition, HOTAIR has been implicated in the development of treatment resistance in colorectal cancer. To develop effective treatments, it's important to understand how HOTAIR regulates gene expression. This article discusses HOTAIR's structure, functions, and mechanisms in CRC and its potential as a target for therapy. The author also suggests future research directions to better understand HOTAIR's role in CRC progression and drug resistance.
Collapse
Affiliation(s)
- Muhammad Tufail
- Institute of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
10
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
11
|
Amicone L, Marchetti A, Cicchini C. The lncRNA HOTAIR: a pleiotropic regulator of epithelial cell plasticity. J Exp Clin Cancer Res 2023; 42:147. [PMID: 37308974 DOI: 10.1186/s13046-023-02725-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
The epithelial-to-mesenchymal transition (EMT) is a trans-differentiation process that endows epithelial cells with mesenchymal properties, including motility and invasion capacity; therefore, its aberrant reactivation in cancerous cells represents a critical step to gain a metastatic phenotype. The EMT is a dynamic program of cell plasticity; many partial EMT states can be, indeed, encountered and the full inverse mesenchymal-to-epithelial transition (MET) appears fundamental to colonize distant secondary sites. The EMT/MET dynamics is granted by a fine modulation of gene expression in response to intrinsic and extrinsic signals. In this complex scenario, long non-coding RNAs (lncRNAs) emerged as critical players. This review specifically focuses on the lncRNA HOTAIR, as a master regulator of epithelial cell plasticity and EMT in tumors. Molecular mechanisms controlling its expression in differentiated as well as trans-differentiated epithelial cells are highlighted here. Moreover, current knowledge about HOTAIR pleiotropic functions in regulation of both gene expression and protein activities are described. Furthermore, the relevance of the specific HOTAIR targeting and the current challenges of exploiting this lncRNA for therapeutic approaches to counteract the EMT are discussed.
Collapse
Affiliation(s)
- Laura Amicone
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Alessandra Marchetti
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy
| | - Carla Cicchini
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Dipartimento di Medicina Molecolare, Sapienza University of Rome, Viale Regina Elena 324, Rome, 00161, Italy.
| |
Collapse
|
12
|
Kumar S, Agrawal A, Vindal V. BCLncRDB: a comprehensive database of LncRNAs associated with breast cancer. Funct Integr Genomics 2023; 23:178. [PMID: 37227514 DOI: 10.1007/s10142-023-01112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Breast cancer, the most common cancer in women, is characterized by high morbidity and mortality worldwide. Recent evidence has shown that long non-coding RNAs (lncRNAs) play a crucial role in the development and progression of breast cancer. However, despite increasing data and evidence indicating the implication of lncRNAs in breast cancer, no web resource or database exists primarily for lncRNAs associated with only breast cancer. Therefore, we developed a manually curated, comprehensive database, "BCLncRDB," for lncRNAs associated with breast cancer. For this, we collected, processed, and analyzed available data on breast cancer-associated lncRNAs from different sources, including previously published research articles, the Gene Expression Omnibus (GEO) Database of the National Centre for Biotechnology Information (NCBI), The Cancer Genome Atlas (TCGA), and the Ensembl database; subsequently, these data were hosted at BCLncRDB for public access. Currently, the database contains 5324 unique breast cancer-lncRNA associations and has the following features: (i) a user-friendly, easy-to-use web interface for searching and browsing about lncRNAs of the user's interest, (ii) differentially expressed and methylated lncRNAs, (iii) stage- and subtype-specific lncRNAs, and (iv) drugs, subcellular localization, sequence, and chromosome information of these lncRNAs. Thus, the BCLncRDB provides a one-stop dedicated platform for exploring breast cancer-related lncRNAs to advance and support the ongoing research on this disease. The BCLncRDB is publicly available for use at http://sls.uohyd.ac.in/new/bclncrdb_v1 .
Collapse
Affiliation(s)
- Swapnil Kumar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, South Campus, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Avantika Agrawal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, South Campus, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, India
| | - Vaibhav Vindal
- Department of Biotechnology & Bioinformatics, School of Life Sciences, South Campus, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
13
|
Raju GSR, Pavitra E, Bandaru SS, Varaprasad GL, Nagaraju GP, Malla RR, Huh YS, Han YK. HOTAIR: a potential metastatic, drug-resistant and prognostic regulator of breast cancer. Mol Cancer 2023; 22:65. [PMID: 36997931 PMCID: PMC10061914 DOI: 10.1186/s12943-023-01765-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/14/2023] [Indexed: 04/01/2023] Open
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is an oncogenic non-coding RNA whose expression is strongly correlated with the tumor grade and prognosis of a variety of carcinomas including breast cancer (BC). HOTAIR regulates various target genes via sponging and epigenetic mechanisms and controls various oncogenic cellular and signaling mechanisms including metastasis and drug resistance. In BC cells, HOTAIR expression is regulated by a variety of transcriptional and epigenetic mechanisms. In this review, we describe the regulatory mechanisms that govern HOTAIR expression during cancer development and explore how HOTAIR drives BC development, metastasis, and drug resistance. In the final section of this review, we focus on the role of HOTAIR in BC management, therapeutic treatment, and prognosis, highlighting its potential therapeutic applications.
Collapse
Affiliation(s)
- Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Eluri Pavitra
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Ganji Lakshmi Varaprasad
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Rama Rao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530045, India.
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
14
|
Hashemi M, Rashidi M, Hushmandi K, Ten Hagen TLM, Salimimoghadam S, Taheriazam A, Entezari M, Falahati M. HMGA2 regulation by miRNAs in cancer: affecting cancer hallmarks and therapy response. Pharmacol Res 2023; 190:106732. [PMID: 36931542 DOI: 10.1016/j.phrs.2023.106732] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
High mobility group A 2 (HMGA2) is a protein that modulates the structure of chromatin in the nucleus. Importantly, aberrant expression of HMGA2 occurs during carcinogenesis, and this protein is an upstream mediator of cancer hallmarks including evasion of apoptosis, proliferation, invasion, metastasis, and therapy resistance. HMGA2 targets critical signaling pathways such as Wnt/β-catenin and mTOR in cancer cells. Therefore, suppression of HMGA2 function notably decreases cancer progression and improves outcome in patients. As HMGA2 is mainly oncogenic, targeting expression by non-coding RNAs (ncRNAs) is crucial to take into consideration since it affects HMGA2 function. MicroRNAs (miRNAs) belong to ncRNAs and are master regulators of vital cell processes, which affect all aspects of cancer hallmarks. Long ncRNAs (lncRNAs) and circular RNAs (circRNAs), other members of ncRNAs, are upstream mediators of miRNAs. The current review intends to discuss the importance of the miRNA/HMGA2 axis in modulation of various types of cancer, and mentions lncRNAs and circRNAs, which regulate this axis as upstream mediators. Finally, we discuss the effect of miRNAs and HMGA2 interactions on the response of cancer cells to therapy. Regarding the critical role of HMGA2 in regulation of critical signaling pathways in cancer cells, and considering the confirmed interaction between HMGA2 and one of the master regulators of cancer, miRNAs, targeting miRNA/HMGA2 axis in cancer therapy is promising and this could be the subject of future clinical trial experiments.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, 4815733971, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, the Netherlands.
| |
Collapse
|
15
|
Franco PIR, Neto JRDC, de Menezes LB, Machado JR, Miguel MP. Revisiting the hallmarks of cancer: A new look at long noncoding RNAs in breast cancer. Pathol Res Pract 2023; 243:154381. [PMID: 36857948 DOI: 10.1016/j.prp.2023.154381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
Breast cancer is one of the leading causes of death in women worldwide. The increasing understanding of the molecular mechanisms underlying its heterogeneity favors a better understanding of tumor biology and consequently the development of better diagnostic and treatment techniques. The advent of tumor genome sequencing techniques has highlighted more participants in the process, in addition to protein-coding genes. Thus, it is now known that long noncoding RNAs, previously described as transcriptional noise with no biological function, are intimately associated with tumor development. In breast cancer, they are abnormally expressed and closely associated with tumor progression, which makes them attractive diagnostic biomarkers and prognostic and specific therapeutic targets. Therefore, a thorough understanding of the regulatory mechanisms of long noncoding RNAs in breast cancer is essential for the search for new treatment strategies. In this review, we summarize the major long noncoding RNAs and their association with the cancer characteristics of the ability to sustain proliferative signaling, evasion of growth suppressors, replicative immortality, activation of invasion and metastasis, induction of angiogenesis, resistance to cell death, reprogramming of energy metabolism, genomic instability and sustained mutations, promotion of tumor inflammation, and evasion of the immune system. In addition, we report and suggest how they can be used as prognostic biomarkers and possible therapeutic targets.
Collapse
Affiliation(s)
- Pablo Igor Ribeiro Franco
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.
| | - José Rodrigues do Carmo Neto
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Liliana Borges de Menezes
- Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Juliana Reis Machado
- Instituto de Patologia Tropical e Saúde Pública, Programa de Pós-Graduação em Medicina Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Marina Pacheco Miguel
- Setor de Patologia Geral, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil; Escola de Veterinária e Zootecnia, Programa de Pós-Graduação em Ciência Animal, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|
16
|
Amer HT, Eissa RA, El Tayebi HM. A cutting-edge immunomodulatory interlinkage between HOTAIR and MALAT1 in tumor-associated macrophages in breast cancer: A personalized immunotherapeutic approach. Front Mol Biosci 2022; 9:1032517. [PMID: 36387279 PMCID: PMC9649622 DOI: 10.3389/fmolb.2022.1032517] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Breast cancer (BC) is one of the most common cancers, accounting for 2.3 million cases worldwide. BC can be molecularly subclassified into luminal A, luminal B HER2-, luminal B HER2+, HER2+, and triple-negative breast cancer (TNBC). These molecular subtypes differ in their prognosis and treatment strategies; thus, understanding the tumor microenvironment (TME) of BC could lead to new potential treatment strategies. The TME hosts a population of cells that act as antitumorigenic such as tumor-associated eosinophils or pro-tumorigenic such as cancer-associated fibroblasts (CAFs), tumor-associated neutrophils (TANs), monocytic-derived populations such as MDSCs, or most importantly "tumor-associated macrophages (TAMs)," which are derived from CD14+ monocytes. TAMs are reported to have the pro-inflammatory phenotype M1, which is found only in the very early stages of tumor and is not correlated with progression; however, the M2 phenotype is anti-inflammatory that is correlated with tumor progression and metastasis. The current study focused on controlling the anti-inflammatory activity in TAMs of hormonal, HER2+, and TNBC by epigenetic fine-tuning of two immunomodulatory proteins, namely, CD80 and mesothelin (MSLN), which are known to be overexpressed in BC with pro-tumorigenic activity. Long non-coding RNAs are crucial key players in tumor progression whether acting as oncogenic or tumor suppressors. We focused on the regulatory role of MALAT1 and HOTAIR lncRNAs and their role in controlling the tumorigenic activity of TAMs. This study observed the impact of manipulation of MALAT1 and HOTAIR on the expression of both CD80 and MSLN in TAMs of BC. Moreover, we analyzed the interlinkage between HOTAIR and MALAT1 as regulators to one another in TAMs of BC. The current study reported an upstream regulatory effect of HOTAIR on MALAT1. Moreover, our results showed a promising use of MALAT1 and HOTAIR in regulating oncogenic immune-modulatory proteins MSLN and CD80 in TAMs of HER2+ and TNBC. The downregulation of MALAT1 and HOTAIR resulted in the upregulation of CD80 and MSLN, which indicates that they might have a cell-specific activity in TAMs. These data shed light on novel key players affecting the anti-inflammatory activity of TAMs as a possible therapeutic target in HER2+ and TNBC.
Collapse
Affiliation(s)
- Hoda T. Amer
- Department of Pharmacology and Toxicology, The Molecular Pharmacology Research Group, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Reda A. Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hend M. El Tayebi
- Department of Pharmacology and Toxicology, The Molecular Pharmacology Research Group, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| |
Collapse
|
17
|
Piergentili R, Basile G, Nocella C, Carnevale R, Marinelli E, Patrone R, Zaami S. Using ncRNAs as Tools in Cancer Diagnosis and Treatment-The Way towards Personalized Medicine to Improve Patients' Health. Int J Mol Sci 2022; 23:9353. [PMID: 36012617 PMCID: PMC9409241 DOI: 10.3390/ijms23169353] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 12/06/2022] Open
Abstract
Although the first discovery of a non-coding RNA (ncRNA) dates back to 1958, only in recent years has the complexity of the transcriptome started to be elucidated. However, its components are still under investigation and their identification is one of the challenges that scientists are presently facing. In addition, their function is still far from being fully understood. The non-coding portion of the genome is indeed the largest, both quantitatively and qualitatively. A large fraction of these ncRNAs have a regulatory role either in coding mRNAs or in other ncRNAs, creating an intracellular network of crossed interactions (competing endogenous RNA networks, or ceRNET) that fine-tune the gene expression in both health and disease. The alteration of the equilibrium among such interactions can be enough to cause a transition from health to disease, but the opposite is equally true, leading to the possibility of intervening based on these mechanisms to cure human conditions. In this review, we summarize the present knowledge on these mechanisms, illustrating how they can be used for disease treatment, the current challenges and pitfalls, and the roles of environmental and lifestyle-related contributing factors, in addition to the ethical, legal, and social issues arising from their (improper) use.
Collapse
Affiliation(s)
- Roberto Piergentili
- Institute of Molecular Biology and Pathology, Italian National Research Council (CNR-IBPM), 00185 Rome, Italy
| | - Giuseppe Basile
- Trauma Unit and Emergency Department, IRCCS Galeazzi Orthopedics Institute, 20161 Milan, Italy
- Head of Legal Medicine Unit, Clinical Institute San Siro, 20148 Milan, Italy
| | - Cristina Nocella
- Department of Clinical Internal, Anaesthesiological and Cardiovascular Sciences, “Sapienza” University of Rome, Viale del Policlinico, 155, 00161 Rome, Italy
| | - Roberto Carnevale
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro-Napoli, Via Orazio, 80122 Naples, Italy
| | - Enrico Marinelli
- Department of Medico-Surgical Sciences and Biotechnologies, “Sapienza” University of Rome, 04100 Latina, Italy
| | - Renato Patrone
- PhD ICTH, University of Federico II, HPB Department INT F. Pascale IRCCS of Naples, Via Mariano Semmola, 80131 Naples, Italy
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Section of Forensic Medicine, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|