1
|
Singhania RR, Patel AK, Kumar P, Perumal PK, Chen CW, Dong CD. Bioprospecting of cellulases from marine fungi for macro-algal biomass degradation for biofuel application. Int J Biol Macromol 2025; 307:141935. [PMID: 40074123 DOI: 10.1016/j.ijbiomac.2025.141935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/19/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
The marine ecosystem, the largest on Earth, supports around 80 % of plant and animal species. Marine macroalgae, rich in polysaccharides like cellulose, remain underutilized despite their potential in a circular bioeconomy. Efficient valorization can promote sustainability, whereas mismanagement raises ecological concerns. Unlike lignocellulosic biomass, macroalgae lack lignin, making their processing unique. Global interest in macroalgae for biofuel applications is growing, particularly through polysaccharide-degrading biocatalysts like cellulases. Fungi, known for secreting extracellular cellulases and other enzymes, play a key role in biomass degradation. Marine fungi associated with macroalgae may possess enhanced enzymatic capabilities, enabling efficient algal polysaccharide breakdown. These fungi have immense potential in macroalgal biorefineries, facilitating the conversion of complex polysaccharides into oligosaccharides and monosaccharides for biofuels, pharmaceuticals, nutraceuticals, and cosmetics. Developing advanced bioprocessing technologies for marine fungi could provide robust cellulases that withstand industrial conditions, optimizing macroalgal biomass conversion. This review comprehensively examines cellulase production from marine fungi, their bioprocessing strategies, and their role in degrading macroalgal biomass. Additionally, other fungal enzymes and their industrial applications are briefly discussed. This study highlights the potential of marine fungi-derived cellulases in biofuel production, aligning with sustainable development goals and supporting global bioeconomic advancements.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India.
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Pitchurajan Krishna Perumal
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
2
|
Barbosa RN, Felipe MTC, Silva LF, Silva EA, Silva SA, Herculano PN, Prazeres JFSA, Lima JMS, Bezerra JDP, Moreira KA, Magalhães OMC, Souza-Motta CM. A Review of the Biotechnological Potential of Cave Fungi: A Toolbox for the Future. J Fungi (Basel) 2025; 11:145. [PMID: 39997439 PMCID: PMC11856267 DOI: 10.3390/jof11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
The study of the intersection between biodiversity and biotechnology has revealed a rich source of innovations. Fungi, with their vast range of morphologies and lifestyles, thrive in various habitats, including caves. With impressive metabolic characteristics, they play a key role in producing essential biotechnological compounds for various economic sectors. This paper aims to consolidate evidence on the biotechnological potential of fungi isolated from caves, highlighting the urgency of conserving and exploring these ecosystems. For this purpose, we conducted a comprehensive literature search using scientific databases (SciELO, Medline Complete, Medline/PubMed, Web of Science, Scopus (Elsevier), and Google Scholar). We adopted an interdisciplinary approach by collecting information from 22 papers published between 2013 and 2024. Based on these data, our survey revealed broad potential, including antimicrobial compounds, antioxidants, antitumor agents, enzymes, and organic acids. We emphasize that accurately identifying and depositing fungal isolates in reference collections are crucial for reliable research and effective industrial applications, driving metabolic bioactivity and the production of substances with the potential to inhibit pathogens. Conserving and protecting the cave environment is imperative, considering its continuous potential for discovery and contribution to scientific advancement.
Collapse
Affiliation(s)
- Renan N. Barbosa
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Maria Tamara C. Felipe
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Leticia F. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Edna A. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Sabrina A. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Polyanna N. Herculano
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - José F. S. A. Prazeres
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Joenny M. S. Lima
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Jadson D. P. Bezerra
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Keila A. Moreira
- Departamento de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns 55292-270, Pernambuco, Brazil
| | - Oliane M. C. Magalhães
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
3
|
Application of fermentation for the valorization of residues from Cactaceae family. Food Chem 2023; 410:135369. [PMID: 36621336 DOI: 10.1016/j.foodchem.2022.135369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/04/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Cactaceae family is well-known for their adaptations to drought and arid environments. This family, formed by four subfamilies (Cactoideae, Opuntioideae, Pereskioideae, and Maihuenioideae) are known for being leafless stem succulent plants with numerous spines, and their commercial fruits, distinguished by their bright colors and their skin covered with bracts. Some of these species have been traditionally used in the food industry (e.g., pitaya, cactus, or prickly pear) or as pharmaceuticals to treat specific diseases due to their active properties. The processing of these fruits leads to different residues, namely pomace, skin, spines, and residues from cladodes; besides from others such as fruits, roots, flowers, mucilage, and seeds. In general, Cactaceae species produce large amounts of mucilage and fiber, although they can be also considered as a source of phenolic compounds (phenolic acids, flavonols and their glycosides), alkaloids (phenethylamines derived betalains), and triterpenoids. Therefore, considering their high content in fiber and fermentable carbohydrates, together with other target bioactive compounds, fermentation is a potential valorization strategy for certain applications such as enzymes and bioactive compounds production or aroma enhancement. This review will comprise the latest information about Cactaceae family, its potential residues, and its potential as a substrate for fermentation to obtain active molecules with application in the food industry.
Collapse
|
4
|
da Silva LF, de Pádua APSL, de Oliveira Ferro L, Agamez-Montalvo GS, Bezerra JDP, Moreira KA, de Souza-Motta CM. Cacti as low-cost substrates to produce L-asparaginase by endophytic fungi. World J Microbiol Biotechnol 2022; 38:247. [DOI: 10.1007/s11274-022-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
|
5
|
Brandelli A, Daroit DJ. Unconventional microbial proteases as promising tools for the production of bioactive protein hydrolysates. Crit Rev Food Sci Nutr 2022; 64:4714-4745. [PMID: 36377687 DOI: 10.1080/10408398.2022.2145262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Enzymatic hydrolysis is the most prominent strategy to release bioactive peptides from different food proteins and protein-rich by-products. Unconventional microbial proteases (UMPs) have gaining increased attention for such purposes, particularly from the 2010s. In this review, we present and discuss aspects related to UMPs production, and their use to obtain bioactive protein hydrolysates. Antioxidant and anti-hypertensive potentials, commonly evaluated through in vitro testing, are mainly reported. The in vivo bioactivities of protein hydrolysates and peptides produced through UMPs action are highlighted. In addition to bioactivities, enzymatic hydrolysis acts by modulating the functional properties of proteins for potential food uses. The compiled literature indicates that UMPs are promising biocatalysts to generate bioactive protein hydrolysates, adding up to commercially available enzymes. From the recent interest on this topic, continuous and in-depth research is needed to advance toward the applicability and commercial utility of both UMPs and obtained hydrolysates.
Collapse
Affiliation(s)
- Adriano Brandelli
- Laboratório de Bioquímica e Microbiologia Aplicada, Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis (PPGATS), Universidade Federal da Fronteira Sul (UFFS), Cerro Largo, Brazil
| |
Collapse
|
6
|
da Silva TAF, de Freitas LS, da Silva LVJB, Duarte Neto JMW, da Silva GR, Maranhão LMDAC, de Lacerda CA, Oliveira JDP, Bezerra RP, Porto ALF. Effect of the volumetric oxygen mass transfer coefficient on producing δ-endotoxins by Bacillus thuringiensis in culture medium based on forage palm. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Nascimento TCES, Molino JVD, Donado PRS, Montalvo GSA, Dos Santos WL, Gomes JEG, Santos JHPM, da Silva R, Sette LD, Pessoa Junior A, Moreira KA. Antarctic fungus proteases generate bioactive peptides from caseinate. Food Res Int 2021; 139:109944. [PMID: 33509497 DOI: 10.1016/j.foodres.2020.109944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 01/20/2023]
Abstract
The extracellular serine protease produced by Acremonium sp. L1-4B isolated from the Antarctic continent, was purified and used for the proteolysis of bovine and caprine sodium caseinate. Protein hydrolysates were evaluated in vitro to determine their antioxidant and antihypertensive potential, and later characterized by mass spectrometry. Bovine and caprine hydrolysates produced over 24 h showed a higher content of copper chelation (25.8 and 31.2% respectively), also at this time the ABTS+• scavenging was 65.2% (bovine sample) and 67.5% (caprine sample), and bovine caseinate hydrolysate (8 h) exhibited higher iron chelation capacity (43.1%). Statistically (p < 0.05), caprine caseinate hydrolysates showed relatively higher antioxidant potential in this study. All hydrolysates showed antihypertensive potential; however peptides released from caprine caseinate after 8 h of hydrolysis were able to inhibit 75% of angiotensin-converting enzyme (ACE) activity. Nano-ESI-Q-TOF-MS/MS analysis prospected a total of 23 different peptide sequences in the bovine hydrolysate fraction, originated from the αS1- and β-casein chain, whilst in caprine hydrolysate, 31 sequences were detected, all from β-casein. The low molecular weight bovine and caprine hydrolysates obtained in this research have the potential to act in the prevention of disorders caused by oxidative reactions and in the regulation of blood pressure. These findings support the development of new functional food and nutraceutical formulations.
Collapse
Affiliation(s)
- Talita C E S Nascimento
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Priscila R S Donado
- Department of Agribusiness, Food and Nutrition, ESALQ, University of Sao Paulo, Piracicaba, SP, Brazil
| | - Gualberto S A Montalvo
- Department of Statistics and Applied Mathematics, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Wellington L Dos Santos
- Department of Animal Morphology and Physiology, Federal Rural University of Pernambuco, Recife, PE, Brazil
| | - José Erick G Gomes
- Department of Chemistry and Environmental Science, IBILCE, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Roberto da Silva
- Department of Chemistry and Environmental Science, IBILCE, São Paulo State University (UNESP), São José do Rio Preto, SP, Brazil
| | - Lara Durães Sette
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Adalberto Pessoa Junior
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | |
Collapse
|
8
|
Biochemical and thermodynamic characteristics of a new serine protease from Mucor subtilissimus URM 4133. ACTA ACUST UNITED AC 2020; 28:e00552. [PMID: 33294402 PMCID: PMC7683317 DOI: 10.1016/j.btre.2020.e00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/27/2020] [Accepted: 10/29/2020] [Indexed: 11/22/2022]
Abstract
A protease from the fungus Mucor subtilissimus URM 4133, capable of producing bioactive peptides from goat casein, was purified. SDS-PAGE and zymography showed a molecular mass of 30 kDa. The enzyme was active and stable in a wide pH range (6.0–10.5) and (5.0–10.5), respectively. Optimum temperature was at 45–50 °C and stability was above 80 % (40 °C/2 h). Activity was not influenced by ions or organic substances (Triton, Tween, SDS and DMSO), but was completely inhibited by PMSF, suggesting that it belongs to the serine protease family. The Km and Vmax were 2.35 mg azocasein.mL-1 and 333.33 U.mg protein-1, respectively. Thermodynamic parameters of irreversible denaturation (40–60 °C) were enthalpy 123.63 – 123.46 kJ.mol-1, entropy 120.24–122.28 kJ.mol-1 and Gibbs free energy 85.97 – 82.45 kJ.mol-1. Any peptide sequences compatible with this protease were found after analysis by MALDI-TOF, which suggests that it is a new serine protease.
Collapse
|
9
|
Optimization of a culture medium based on forage palm for δ-endotoxin production. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
10
|
Cultivable fungi present in deep-sea sediments of Antarctica: taxonomy, diversity, and bioprospecting of bioactive compounds. Extremophiles 2019; 24:227-238. [PMID: 31758267 DOI: 10.1007/s00792-019-01148-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/07/2019] [Indexed: 12/24/2022]
Abstract
We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.
Collapse
|
11
|
Duarte AWF, Dos Santos JA, Vianna MV, Vieira JMF, Mallagutti VH, Inforsato FJ, Wentzel LCP, Lario LD, Rodrigues A, Pagnocca FC, Pessoa Junior A, Durães Sette L. Cold-adapted enzymes produced by fungi from terrestrial and marine Antarctic environments. Crit Rev Biotechnol 2017; 38:600-619. [PMID: 29228814 DOI: 10.1080/07388551.2017.1379468] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antarctica is the coldest, windiest, and driest continent on Earth. In this sense, microorganisms that inhabit Antarctica environments have to be adapted to harsh conditions. Fungal strains affiliated with Ascomycota and Basidiomycota phyla have been recovered from terrestrial and marine Antarctic samples. They have been used for the bioprospecting of molecules, such as enzymes. Many reports have shown that these microorganisms produce cold-adapted enzymes at low or mild temperatures, including hydrolases (e.g. α-amylase, cellulase, chitinase, glucosidase, invertase, lipase, pectinase, phytase, protease, subtilase, tannase, and xylanase) and oxidoreductases (laccase and superoxide dismutase). Most of these enzymes are extracellular and their production in the laboratory has been carried out mainly under submerged culture conditions. Several studies showed that the cold-adapted enzymes exhibit a wide range in optimal pH (1.0-9.0) and temperature (10.0-70.0 °C). A myriad of methods have been applied for cold-adapted enzyme purification, resulting in purification factors and yields ranging from 1.70 to 1568.00-fold and 0.60 to 86.20%, respectively. Additionally, some fungal cold-adapted enzymes have been cloned and expressed in host organisms. Considering the enzyme-producing ability of microorganisms and the properties of cold-adapted enzymes, fungi recovered from Antarctic environments could be a prolific genetic resource for biotechnological processes (industrial and environmental) carried out at low or mild temperatures.
Collapse
Affiliation(s)
- Alysson Wagner Fernandes Duarte
- a Universidade Federal de Alagoas, Campus Arapiraca , Arapiraca , Brazil.,b Divisão de Recursos Microbianos , Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas , Paulínia , Brazil
| | - Juliana Aparecida Dos Santos
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Marina Vitti Vianna
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Juliana Maíra Freitas Vieira
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Vitor Hugo Mallagutti
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fabio José Inforsato
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Lia Costa Pinto Wentzel
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Luciana Daniela Lario
- d Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario , Rosario , Argentina.,e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Andre Rodrigues
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Fernando Carlos Pagnocca
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| | - Adalberto Pessoa Junior
- e Departamento de Tecnologia Bioquímico-Farmacêutica , Faculdade de Ciências Farmacêuticas, Universidade de São Paulo , São Paulo , Brazil
| | - Lara Durães Sette
- c Departamento de Bioquímica e Microbiologia , Universidade Estadual Paulistra (UNESP), Câmpus de Rio Claro , Rio Claro , Brazil
| |
Collapse
|
12
|
Optimized production and characterization of a detergent-stable protease from Lysinibacillus fusiformis C250R. Int J Biol Macromol 2017; 101:383-397. [PMID: 28315440 DOI: 10.1016/j.ijbiomac.2017.03.051] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/23/2017] [Accepted: 03/10/2017] [Indexed: 11/20/2022]
Abstract
In this study, we aimed to optimize the cultural and nutritional conditions for protease production by Lysinibacillus fusiformis strain C250R in submerged fermentation process using statistical methodology. The most significant factors (gruel, wheat bran, yeast extract, and FeSO4) were identified by Plackett-Burman design. Response surface methodology (RSM) was used to determine the optimum levels of the screened factors and their interaction. Under the optimized conditions, protease yield 3100U/mL was 4.5 folds higher than those obtained by the use of the initial conditions (680U/mL). Additionally, a new extracellular 51kDa-protease, designated SAPLF, was purified and biochemically characterized from strain C250R. It shows optimum activity at 70°C and pH 10. Its half-life times at 70 and 80°C were 10 and 6-h, respectively. Irreversible inhibition of enzyme activity of SAPLF with serine protease inhibitors demonstrated that it belongs to the serine protease family. Interestingly, its catalytic efficiency was higher than that of SPVP from Aeribacillus pallidus strain VP3 and Alcalase Ultra 2.5L from Bacillus licheniformis. This study demonstrated that SAPLF has a high detergent compatibility and an excellent stain removal compared to Alcalase Ultra 2.5L; which offers an interesting potential for its application in the laundry detergent industry.
Collapse
|