1
|
Li Y, Huang Y, Ding H, Huang Y, Xu D, Zhan S, Ma M. Effects of the plant growth-promoting rhizobacterium Zobellella sp. DQSA1 on alleviating salt-alkali stress in job's tears seedings and its growth-promoting mechanism. BMC PLANT BIOLOGY 2025; 25:368. [PMID: 40114039 PMCID: PMC11924913 DOI: 10.1186/s12870-025-06367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Plant probacteria as a sustainable microbial resource are crucial to plant, which not only promote plant growth but also increase the stress resistance of plants. In this study, whole-genome sequencing of Zobellella sp. DQSA1 was performed, and Zobellella sp. DQSA1 was applied to Job's tears seedings under salt-alkali stress. Whole-genome analysis revealed that Zobellella sp. DQSA1 can produce metabolites such as tryptophan, alpha-linolenic acid and other products through metabolism. In response to the action of Zobellella sp. DQSA1, the contents of jasmonic acid (JA) and indole-3-acetic acid (IAA) in the root system increased by 32.5% and 81.4% respectively, whereas the content of abscisic acid (ABA) decreased by 30.0%, and the contents of other endogenous hormones also significantly differed. Additionally, the physiological and biochemical indices related to growth and salinity demonstrated notable differences. Finally, sequencing analysis revealed that 57 differentially expressed genes (DEGs) were involved in 16 Gene Ontology (GO) pathways. Furthermore, the correlations between the contents of endogenous hormones and 57 DEGs were analyzed, and JA was found to be the most significantly correlated. These results provide a theoretical basis for further exploration of the functions and mechanisms of plant growth-promoting rhizobacteria (PGPR) under salt-alkali stress.
Collapse
Affiliation(s)
- Youzhen Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yulan Huang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Hongxia Ding
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Yibo Huang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Dengkun Xu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Shihan Zhan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mingli Ma
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| |
Collapse
|
2
|
Thiengo CC, Galindo FS, Rodak BW, Bernardes JVS, da Rocha LO, Gaziola SA, Azevedo RA, Burak DL, Olivares FL, Lavres J. Harnessing plant growth-promoting bacteria (Herbaspirillum seropedicae) from an optimal mineral nitrogen supply: A study on improving nitrogen use efficiency in marandu palisadegrass. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109497. [PMID: 39809032 DOI: 10.1016/j.plaphy.2025.109497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Increasing nitrogen use efficiency (NUE) remains a crucial topic in contemporary agriculture. Inoculation with endophytic diazotrophic bacteria offers a potential solution, but the results vary with the N-fertilization regime. Here, we examined the efficacy of inoculation with Herbaspirillum seropedicae strain HRC54 in enhancing NUE and promoting the growth of Marandu palisadegrass with varying levels of N-urea (0, 25, 50, and 100 mg N kg soil⁻1). We evaluated NUE indicators and conducted complementary analyses covering biochemical, physiological, nutritional and growth-related parameters after cultivating the plants within a greenhouse environment and maintaining controlled conditions of temperature and humidity. Growth promotion was evident in inoculated plants receiving up to 50 mg N kg soil-1, with enhanced root growth orchestrating the improvement in NUE. Inoculation also improved the nutritional status of the plants (increased N and P accumulation and N balance index) and increased photosynthesis-related parameters, resulting in increased biomass yield. Insufficient N supply led to oxidative stress (overproduction of H₂O₂ and MDA), which was associated with a reduction in photosystem II efficiency, chlorophyll concentration, and soluble proteins, but only in plants that did not receive microbial inoculation. Conversely, a high N supply (100 mg N kg soil-1) combined with H. seropedicae had no synergistic effect, as NUE and the associated benefits did not improve. Therefore, inoculation with H. seropedicae is effective at increasing NUE when combined with moderate N rates. These findings support a more rational use of N fertilizers to optimize inoculation benefits and enhance NUE in tropical forage crops.
Collapse
Affiliation(s)
- Cássio Carlette Thiengo
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil.
| | - Fernando Shintate Galindo
- Faculty of Agricultural and Technological Sciences, São Paulo State University, Dracena, 17900-000, Brazil
| | - Bruna Wurr Rodak
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| | | | - Letícia Oliveira da Rocha
- Laboratory of Cellular and Tissue Biology, North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, 28013-602, Brazil
| | | | - Ricardo Antunes Azevedo
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13418-900, Brazil
| | - Diego Lang Burak
- Center for Agricultural Sciences and Engineering, Federal University of Espírito Santo, Alegre, 29500-000, Brazil
| | - Fábio Lopes Olivares
- Laboratory of Cellular and Tissue Biology, North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, 28013-602, Brazil
| | - José Lavres
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, 13416-000, Brazil
| |
Collapse
|
3
|
Khan I, Rehman A, Akram W, Anjum T, Yasin NA, Aftab ZEH, Munir B, Khan WU, Li G. Unlocking Salinity Stress Resilience in Turnip ( Brassica rapa subsp. rapa) Plants Using Bacillus subtilis Z-12 and Bacillus aryabhattai Z-48. Microorganisms 2025; 13:359. [PMID: 40005726 PMCID: PMC11858075 DOI: 10.3390/microorganisms13020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
Salinity stress poses a severe risk to food security and crop productivity. Stress reduction techniques are not necessarily sustainable or environmentally friendly. With the increasing adverse impact of salinity and area, it is necessary to restore and ameliorate salinity stress using environmentally friendly approaches. In this context, beneficial rhizospheric microbes may offer a sustainable approach to managing salinity stress. We used Bacillus subtilis strain Z-12 and B. aryabhattai strain Z-48 to improve the growth of turnip (Brassica rapa subsp. rapa) plants under salinity stress conditions and elucidated the beneficial impact of these bacterial strains on different physiological and biochemical aspects of plants. The application of both strains had a significant (p < 0.05) positive influence on analyzed parameters under salt stress. Here, B. aryabhattai strain Z-48 superiorly increased shoot length (33.2-, 25.8%), root length (38.6-, 31.5%), fresh biomass (23.9-, 17.8%), and dry biomass (38.60-, 48.6%) in normal and saline stress (200 mM NaCl) conditions, respectively. Physiological studies showed that antioxidant enzyme activities were significantly increased by B. subtilis Z-12 and B. aryabhattai Z-48 under salinity stress, with a few exceptions. Moreover, the inoculation of both strains effectively increased total chlorophyll, soluble sugar, phenolic, flavonoid, and glucosinolate contents under simulated salinity stress and normal conditions. Hence, these findings support the framework that inoculating turnip plants with these strains can enhance their tolerance against salinity stress.
Collapse
Affiliation(s)
- Imran Khan
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (I.K.); (A.R.)
| | - Areeba Rehman
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (I.K.); (A.R.)
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (B.M.); (W.U.K.)
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (W.A.); (Z.-e.-H.A.)
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (W.A.); (Z.-e.-H.A.)
| | - Nasim Ahmad Yasin
- Department of Horticulture, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan;
| | - Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan; (W.A.); (Z.-e.-H.A.)
| | - Bareera Munir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (B.M.); (W.U.K.)
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore 54590, Pakistan; (B.M.); (W.U.K.)
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (I.K.); (A.R.)
| |
Collapse
|
4
|
Sharma A, Singh SK, Maurya N, Tripathi SM, Jaiswal S, Agrawal M, Sundaram S. Restoration of the soil fertility under Cr(VI) and artificial drought condition by the utilization of plant growth-promoting Bacillus spp. SSAU2. Int Microbiol 2025; 28:81-93. [PMID: 38730211 DOI: 10.1007/s10123-024-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
The study explores the potential of an indigenous halo-tolerant microbe identified as Bacillus spp. SSAU-2 in enhancing soil fertility and promoting plant growth for sustainable agricultural practices under the influence of multiple abiotic stresses such as Cr(VI), high salinity, and artificial drought condition. The study investigated various factors influencing IAA synthesis by SSAU-2, such as pH (5 to 11), salinity (10 to 50 g/L), tryptophan concentration (0.5 to 1%), carbon (mannitol mand lactose), and nitrogen sources (peptone and tryptone). The highest IAA concentration was observed at pH 10 (1.695 mg/ml) and pH 11 (0.782 mg/ml). IAA synthesis was optimized at a salinity level of 30 g/l, with lower and higher salinity levels resulting in decreased IAA concentrations. Notably, the presence of mannitol and lactose significantly augmented IAA synthesis, while glucose and sucrose had inhibitory effects. Furthermore, peptone and tryptone played a pivotal role in enhancing IAA synthesis, while ammonium chloride exerted an inhibitory influence. SSAU-2 showed a diverse array of capabilities, including the synthesis of gibberellins, extracellular polymeric substances, siderophores, and hydrogen cyanide along with nitrogen fixation and ammonia production. The microbe could efficiently tolerate 45% PEG-6000 concentration and effectively produce IAA in 15% PEG concentration. It could also tolerate high concentration of Cr(VI) and synthesize IAA even in 50 ppm Cr(VI). The findings of this study provide valuable insights into harnessing the potential of indigenous microorganisms to promote plant growth, enhance soil fertility, and establish sustainable agricultural practices essential for restoring the health of ecosystems.
Collapse
Affiliation(s)
- Abhijeet Sharma
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, India, 211002
| | - Shailendra Kumar Singh
- Department of Biochemistry, S. S. Khanna Girls' Degree College, Uttar Pradesh, Prayagraj, India, 211002
| | - Neetu Maurya
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, India, 211002
| | - Shashank Mani Tripathi
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, India, 211002
| | - Saumya Jaiswal
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, India, 211002
| | - Manshi Agrawal
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, India, 211002
| | - Shanthy Sundaram
- Centre of Biotechnology, University of Allahabad, Uttar Pradesh, Prayagraj, India, 211002.
| |
Collapse
|
5
|
Zamani E, Bakhtari B, Razi H, Hildebrand D, Moghadam A, Alemzadeh A. Comparative morphological, physiological, and biochemical traits in sensitive and tolerant maize genotypes in response to salinity and pb stress. Sci Rep 2024; 14:31036. [PMID: 39730710 DOI: 10.1038/s41598-024-82173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb). Our results show that NaCl or Pb treatment of the sensitive genotype caused a significant reduction in the root length, plant height, total fresh and dry weights, as well as chlorophyll, and carotenoid content. Salt stress led to a significant decrease in the relative water content, shoot and root length, fresh and dry weight as well as leaf area and K+ content but increase Na+ content. Both NaCl and Pb stresses increased the antioxidant enzyme activity, proline content, malondialdehyde, and hydrogen peroxide levels. Principal component analysis (PCA) accounted for 69.8% and 16.5% of the total variation among all the variables studied. PCA also suggested a positive correlation between hydrogen peroxide, malondialdehyde, peroxidase, catalase, ascorbate peroxidase levels, and Na+ content and a negative correlation between K+ content, chlorophyll content, relative water content, leaf area, root length, plant height, and total fresh, and dry weights. Together, these results suggest that the salt-tolerant maize genotype is more suitable for adapting to Pb stress compared to the salt-sensitive genotype.
Collapse
Affiliation(s)
- Elnaz Zamani
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahlanes Bakhtari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - David Hildebrand
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
6
|
Wu Y, Liu R, Si W, Zhang J, Yang J, Qiu Z, Luo R, Wang Y. The Growth and Ion Absorption of Sesbania ( Sesbania cannabina) and Hairy Vetch ( Vicia villosa) in Saline Soil Under Improvement Measures. PLANTS (BASEL, SWITZERLAND) 2024; 13:3413. [PMID: 39683206 DOI: 10.3390/plants13233413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Soil salinization is a serious threat to the ecological environment and sustainable agricultural development in the arid regions of northwest China. Optimal soil salinization amelioration methods were eagerly explored under different soil salinity levels. Sesbania and hairy vetch are salt-tolerant plants, and green manure improved the saline environment. In this study, two leguminous halophytic crops, sesbania (Sesbania cannabina) and hairy vetch (Vicia villosa), were planted under different salinity levels, combined with three saline soil improvement measures, namely gravel mulching, manure application, and straw returning. No improvement measures and no salinity treatment was set as the control (CK). This study was conducted to analyze the effects of soil salinization improvement measures on the growth and ion uptake of sesbania and hairy vetch as biological measures under different soil salinity levels. Sesbania under manure application absorbed the highest soil Na+ (2.71 g kg-1) and Cl- (2.66 g kg-1) amounts at a soil salinity of 3.2 g kg-1, which was 14.7% and 10.95% higher than under gravel mulching and straw returning, respectively. Na+ and Cl- absorption of hairy vetch under manure application reached the highest value of 1.39 g kg-1 and 1.38 g kg-1 at a soil salinity of 1.6 g kg-1, which was 24.46% and 22.31% higher than under gravel mulching and straw returning, respectively. Plant height and stem diameter as well as root growth and development of sesbania and hairy vetch were limited at soil salinities greater than 1.6 g kg-1 and 0.8 g kg-1. Overall, sesbania and hairy vetch effectively absorbed both soil Na+ and Cl- under manure application, thus regulating soil salinity and reducing soil salinization. However, soil salinity levels greater than 3.2 g kg-1 and 1.6 g kg-1 not only weakened the ionic absorption capacity but also inhibited the growth and development of sesbania and hairy vetch. This study provides evidence that soil salt ion absorption by sesbania and hairy vetch is promoted effectively, ameliorating soil salinity, under manure application as compared to under gravel mulching and straw returning.
Collapse
Affiliation(s)
- You Wu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Rui Liu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Wei Si
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Jiale Zhang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Jianhua Yang
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Zhenxin Qiu
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Renlei Luo
- College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- Ministry of Agriculture and Rural Affairs Smart Agriculture Irrigation Equipment Key Laboratory, Lanzhou 730050, China
| | - Yu Wang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|
7
|
Liao Y, Huang S, Hareem M, Hussain MB, Alarfaj AA, Alharbi SA, Alfarraj S. Addressing cadmium stress in rice with potassium-enriched biochar and Bacillus altitudinis rhizobacteria. BMC PLANT BIOLOGY 2024; 24:1084. [PMID: 39548402 PMCID: PMC11568540 DOI: 10.1186/s12870-024-05793-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Cadmium (Cd) is a potentially harmful metal with significant biological toxicity that adversely affects plant growth and physiological metabolism. Excessive Cd exposure in plants leads to stunted plant growth owing to its negative impact on physiological functions such as photosynthesis, nutrient uptake, and water balance. Potassium-enriched biochar (KBC) and Bacillus altitudinis rhizobacteria (RB) can effectively overcome this problem. Potassium-enriched biochar (KBC) significantly enhances plant growth by improving the soil structure, encouraging water retention, and enhancing microbial activity as a slow-release nutrient. Rhizobacteria promote plant growth by improving root ion transport and nutrient availability while promoting soil health and water conservation through RB production. This study examined the effects of combining RB + KBC as an amendment to rice, both with and without Cd stress. Four treatments (control, KBC, RB, and RB + KBC) were applied using a completely randomized design (CRD) in four replications. The results showed that the combination of RB + KBC increased rice plant height (38.40%), shoot length (53.90%), and root length (12.49%) above the control under Cd stress. Additionally, there were notable improvements in chlorophyll a (15.31%), chlorophyll b (25.01%), and total chlorophyll (19.37%) compared to the control under Cd stress, which also showed the potential of RB + KBC treatment. Moreover, increased N, P, and K concentrations in the roots and shoots confirmed that RB + KBC could improve rice plant growth under Cd stress. Consequently, these findings suggest that RB + KBC is an effective amendment to alleviate Cd stress in rice. Farmers should use RB + KBC to achieve better rice growth under cadmium stress.
Collapse
Affiliation(s)
- Yonghui Liao
- School of Life Science, Jinggangshan University, Ji'an, Jiangxi, 343009, China
| | - Shoucheng Huang
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
| | - Misbah Hareem
- Department of Environmental Sciences, Woman University Multan, Multan, Punjab, Pakistan.
| | - Muhammad Baqir Hussain
- Department of Soil and Environmental Sciences, Muhammad Nawaz Sharif University of Agriculture Multan, Multan, Punjab, Pakistan
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Ali N, Maitra Pati A. PGPR isolated from hot spring imparts resilience to drought stress in wheat (Triticum aestivum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109031. [PMID: 39137684 DOI: 10.1016/j.plaphy.2024.109031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Drought is a major abiotic stress that occurs frequently due to climate change, severely hampers agricultural production, and threatens food security. In this study, the effect of drought-tolerant PGPRs, i.e., PGPR-FS2 and PGPR-VHH4, was assessed on wheat by withholding water. The results indicate that drought-stressed wheat seedlings treated with PGPRs-FS2 and PGPR-VHH4 had a significantly higher shoot and root length, number of roots, higher chlorophyll, and antioxidant enzymatic activities of guaiacol peroxidase (GPX) compared to without PGPR treatment. The expression study of wheat genes related to tryptophan auxin-responsive (TaTAR), drought-responsive (TaWRKY10, TaWRKY51, TaDREB3, and TaDREB4) and auxin-regulated gene organ size (TaARGOS-A, TaARGOS-B, and TaARGOS-D) exhibited significantly higher expression in the PGPR-FS2 and PGPR-VHH4 treated wheat under drought as compared to without PGPR treatment. The results of this study illustrate that PGPR-FS2 and PGPR-VHH4 mitigate the drought stress in wheat and pave the way for imparting drought in wheat under water deficit conditions. Among the two PGPRs, PGPR-VHH4 more efficiently altered the root architecture to withstand drought stress.
Collapse
Affiliation(s)
- Nilofer Ali
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Aparna Maitra Pati
- CSIR- Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Patwa N, Pandey V, Gupta OP, Yadav A, Meena MR, Ram S, Singh G. Unravelling wheat genotypic responses: insights into salinity stress tolerance in relation to oxidative stress, antioxidant mechanisms, osmolyte accumulation and grain quality parameters. BMC PLANT BIOLOGY 2024; 24:875. [PMID: 39304828 DOI: 10.1186/s12870-024-05508-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Salt stress is a prominent abiotic stressor that imposes constraints on grain yield and quality across various crops, including wheat (Triticum aestivum). This study focused on assessing the genetic diversity of 20 wheat genotypes categorized as tolerant, moderately tolerant, and sensitive with three genotypes of unknown tolerance. To address salinity stress-related problems, different morpho-physiological, osmoprotectant, biochemical, yield, and grain quality-related parameters were analyzed under control (pH 8.0, EC 3.9) and saline-sodic (pH 9.4, EC 4.02) conditions in field. RESULTS Findings revealed noteworthy variations among the genotypes in response to salinity stress. Greater accumulation of Na+ and lower K+ content were observed in response to salt stress in the sensitive varieties HD1941 and K9162. Proline, a stress indicator, exhibited significantly (p ≤ 0.05) greater accumulation in response to salinity stress, particularly in the tolerant cultivars KRL210 and KH65. Salt stress induced the most significant decrease (p ≤ 0.05) in spike length, thousand-grain weight, and hectolitre weight coupled with increased protein content in sensitive varieties, resulting in diminished yield. CONCLUSION Correlation analysis of parameters under salinity stress showed that SOD, proline, and K+ contents can be used as the most efficient screening criteria for salinity stress during early developmental stages. Principal component analysis revealed that DBW187, DBW303, and DBW222 varieties were tolerant to salinity stress and exhibited an effective antioxidant system against salinity. This study will facilitate salt-tolerant wheat breeding in terms of the identification of tolerant lines by screening for limited traits in a wide range of germplasms.
Collapse
Affiliation(s)
- Neha Patwa
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
- Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119, India
| | - Vanita Pandey
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India.
| | - Om Prakash Gupta
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Anita Yadav
- Department of Biotechnology, Kurukshetra University, Kurukshetra, 136119, India
| | - Mintu Ram Meena
- ICAR-Sugarcane Breeding Institute, Regional Station, Karnal, 132001, India
| | - Sewa Ram
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Gyanendra Singh
- Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| |
Collapse
|
10
|
Binod Kumar S, Kalwasińska A, Swiontek Brzezinska M, Wróbel M. Using halotolerant Azotobacter chroococcum W4ii from technosoils to mitigate wheat salt stress. OPEN RESEARCH EUROPE 2024; 3:76. [PMID: 39148935 PMCID: PMC11325138 DOI: 10.12688/openreseurope.15821.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 08/17/2024]
Abstract
Background Technosoils in Inowrocław, central Poland, are impacted by human activities and exhibit high salinity (ECe up to 70 dS/m) due to a soda lime repository. These saline environments pose challenges to plant growth and soil health. However, they also offer an opportunity for the evolution of microorganisms adapted to such conditions, including plant growth-promoting rhizospheric (PGPR) bacteria. The hypothesis tested here was that introducing PGPR bacteria from these environments could boost degraded soil performance, leading to better plant biomass and improved pathogen defense. Methods Azotobacter chroococcum W4ii was isolated from the rhizosphere of wheat ( Triticum aestivum L.) for its plant growth properties on wheat plants under salt stress. Results Wheat seeds co-inoculated with A. chroococcum W4ii under 200 mM salt stress showed significant improvement in various growth parameters such as seeds germination (by 130%), shoot biomass (15%), chlorophyll b content (40%) compared to un-inoculated ones. Bacterial inoculation decreased the level of malondialdehyde (MDA) by 55.5% (P<0.001), whereas it elevated the antioxidative enzymatic activities of peroxidase (POD) by 33.69% (P<0.001). The test isolate also significantly (P<0.05) enhanced the level of defense enzymes like β-1,3-glucanase, which can protect plants from infection by pathogens. The bacterium could also successfully colonize the wheat plants. Conclusions These results indicate that A. chroococcum isolated from the technosoil has the potential to promote wheat growth under salt stress and can be further used as a bioinoculant in the salt affected agricultural fields.
Collapse
Affiliation(s)
- Sweta Binod Kumar
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| | - Monika Wróbel
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Kuyavian-Pomeranian Voivodeship, 87-100, Poland
| |
Collapse
|
11
|
Shahzadi A, Noreen Z, Alamery S, Zafar F, Haroon A, Rashid M, Aslam M, Younas A, Attia KA, Mohammed AA, Ercisli S, Fiaz S. Effects of biochar on growth and yield of Wheat (Triticum aestivum L.) under salt stress. Sci Rep 2024; 14:20024. [PMID: 39198538 PMCID: PMC11358134 DOI: 10.1038/s41598-024-70917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
Globally from abiotic stresses, salt stress is the major stress that limits crop production. One of them is wheat that has been utilized by more than 1/3 of the world population as staple food due to its nutritive value. Biochar is an activated carbon that can ameliorate the negative impacts on plants under saline conditions. The present study was conducted to examine the ameliorative impact of "Biochar application" to Triticum aestivum L. plant grown under salinity stress and evaluated on the basis of various growth, yield, physiological, biochemical attributes. Preliminary experiment was done to select the Triticum aestivum L. varieties with 90% germination rate for further experiment. The selected varieties, FSD08 and PUNJAB-11 of wheat were treated with two levels of sodium chloride (0 mM and 120 mM). Two varieties of wheat included FSD08 and PUNJAB-11 were treated with two levels of sodium chloride (0 mM and 120 mM). To address the impact of salt stress two levels of biochar 0% and 5% was used as exogenous application. A three way completely randomized experimentation was done in 24 pots of two wheat varieties with three replicates. The results demonstrated that salt stress affected growth, physiological attributes, yield and inorganic mineral ions (Ca2+ and K+) in roots and shoots parameters of wheat negatively while biochar overall improved the performance of plant. SOD, CAT, APX and POD activities enhanced during salt stress as the plant self-defense mechanism against salinity to minimize the damaging effect. Salt stress also significantly increased the membrane permeability, and levels of H2O2, MDA, Cl and Na ions. Biochar treatment nullified negative impacts of NaCl and improved the plant growth and yield significantly. Hence, biochar amendment can be suggested as suitable supplement for sustainable crop production under salinization.
Collapse
Affiliation(s)
- Aqsa Shahzadi
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Zahra Noreen
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan.
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Riyadh, Saudi Arabia
| | - Fizza Zafar
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Adeela Haroon
- Department of Botany, The Women University Multan, Multan, 66000, Pakistan
| | - Madiha Rashid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Muhammad Aslam
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Afifa Younas
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Kotb A Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Riyadh, Saudi Arabia
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Sajid Fiaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 59540, Lahore, Pakistan.
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, China.
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, 54590, Pakistan.
| |
Collapse
|
12
|
Alshaal T, Alharbi K, Naif E, Rashwan E, Omara AED, Hafez EM. Strengthen sunflowers resilience to cadmium in saline-alkali soil by PGPR-augmented biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116555. [PMID: 38870735 DOI: 10.1016/j.ecoenv.2024.116555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
In the center of the Nile Delta in Egypt, the Kitchener drain as the primary drainage discharges about 1.9 billion m3 per year of water, which comprises agricultural drainage (75 %), domestic water (23 %), and industrial water (2 %), to the Mediterranean Sea. Cadmium (Cd) stands out as a significant contaminant in this drain; therefore, this study aimed to assess the integration of biochar (0, 5, and 10 ton ha-1) and three PGPRs (PGPR-1, PGPR-2, and PGPR-3) to alleviate the negative impacts of Cd on sunflowers (Helianthus annuus L.) in saline-alkali soil. The treatment of biochar (10 ton ha-1) and PGPR-3 enhanced the soil respiration, dehydrogenase, nitrogenase, and phosphatase activities by 137 %, 129 %, 326 %, and 127 %, while it declined soil electrical conductivity and available Cd content by 31.7 % and 61.3 %. Also, it decreased Cd content in root, shoot, and seed by 55.3 %, 50.7 %, and 92.5 %, and biological concentration and translocation factors by 55 % and 5 %. It also declined the proline, lipid peroxidation, H2O2, and electrolyte leakage contents by 48 %, 94 %, 80 %, and 76 %, whereas increased the catalase, peroxidase, superoxide dismutase, and polyphenol oxidase activities by 80 %, 79 %, 61 %, and 116 %. Same treatment increased seed and oil yields increased by 76.1 % and 76.2 %. The unique aspect of this research is its investigation into the utilization of biochar in saline-alkali soil conditions, coupled with the combined application of biochar and PGPR to mitigate the adverse effects of Cd contamination on sunflower cultivation in saline-alkali soil.
Collapse
Affiliation(s)
- Tarek Alshaal
- Department of Applied Plant Biology, Institute of Crop Sciences, University of Debrecen, AGTC. 4032 Debrecen, Hungary; Soil and Water Department, Faculty of Agriculture, University of Kafrelsheikh, 33516 Kafr El-Sheikh, Egypt.
| | - Khadiga Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia
| | - Eman Naif
- Department of Crop Science, Faculty of Agriculture, Damanhour University, El-Beheira 22511, Egypt
| | - Emadelden Rashwan
- Agronomy Department, Faculty of Agriculture, Tanta University, Tanta 31527, Egypt
| | - Alaa El-Dein Omara
- Department of Microbiology, Soils, Water Environment Research Institute, Agricultural Research Center, Giza 12112, Egypt
| | - Emad M Hafez
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
13
|
Dong H, Wang Y, Di Y, Qiu Y, Ji Z, Zhou T, Shen S, Du N, Zhang T, Dong X, Guo Z, Piao F, Li Y. Plant growth-promoting rhizobacteria Pseudomonas aeruginosa HG28-5 improves salt tolerance by regulating Na +/K + homeostasis and ABA signaling pathway in tomato. Microbiol Res 2024; 283:127707. [PMID: 38582011 DOI: 10.1016/j.micres.2024.127707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Salinity stress badly restricts the growth, yield and quality of vegetable crops. Plant growth-promoting rhizobacteria (PGPR) is a friendly and effective mean to enhance plant growth and salt tolerance. However, information on the regulatory mechanism of PGPR on vegetable crops in response to salt stress is still incomplete. Here, we screened a novel salt-tolerant PGPR strain Pseudomonas aeruginosa HG28-5 by evaluating the tomatoes growth performance, chlorophyll fluorescence index, and relative electrolyte leakage (REL) under normal and salinity conditions. Results showed that HG28-5 colonization improved seedling growth parameters by increasing the plant height (23.7%), stem diameter (14.6%), fresh and dry weight in the shoot (60.3%, 91.1%) and root (70.1%, 92.5%), compared to salt-stressed plants without colonization. Likewise, HG28-5 increased levels of maximum photochemical efficiency of PSII (Fv/Fm) (99.3%), the antioxidant enzyme activities as superoxide dismutase (SOD, 85.5%), peroxidase (POD, 35.2%), catalase (CAT, 20.6%), and reduced the REL (48.2%), MDA content (41.3%) and ROS accumulation in leaves of WT tomatoes under salt stress in comparison with the plants treated with NaCl alone. Importantly, Na+ content of HG28-5 colonized salt-stressed WT plants were decreased by15.5% in the leaves and 26.6% in the roots in the corresponding non-colonized salt-stressed plants, which may be attributed to the higher K+ concentration and SOS1, SOS2, HKT1;2, NHX1 transcript levels in leaves of colonized plants under saline condition. Interestingly, increased abscisic acid (ABA) content and upregulation of ABA pathway genes (ABA synthesis-related genes NCED1, NCED2, NCED4, NECD6 and signal genes ABF4, ABI5, and AREB) were observed in HG28-5 inoculated salt-stressed WT plants. ABA-deficient mutant (not) with NCED1 deficiency abolishes the effect of HG28-5 on alleviating salt stress in tomato, as exhibited by the substantial rise of REL and ROS accumulation and sharp drop of Fv/Fm in the leaves of not mutant plants. Notably, HG28-5 colonization enhances tomatoes fruit yield by 54.9% and 52.4% under normal and saline water irrigation, respectively. Overall, our study shows that HG28-5 colonization can significantly enhance salt tolerance and improved fruit yield by a variety of plant protection mechanism, including reducing oxidative stress, regulating plant growth, Na+/K+ homeostasis and ABA signaling pathways in tomato. The findings not only deepen our understanding of PGPR regulation plant growth and salt tolerance but also allow us to apply HG28-5 as a microbial fertilizer for agricultural production in high-salinity areas.
Collapse
Affiliation(s)
- Han Dong
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China; College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yuanyuan Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yancui Di
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yingying Qiu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zelin Ji
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tengfei Zhou
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Shunshan Shen
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Nanshan Du
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiaoxing Dong
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Zhixin Guo
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Provincial Facility Horticulture Engineering Technology Research Center, Zhengzhou 450002, PR China.
| | - Yonghua Li
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
14
|
Xu Y, Li Y, Xiao Z, Zhang X, Jiao J, Zhang H, Li H, Hu F, Xu L. Endogenous IAA affected fluoranthene accumulation by regulating H +-ATPase and SOD activity in ryegrass. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116315. [PMID: 38614001 DOI: 10.1016/j.ecoenv.2024.116315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/23/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
This study explores the role of endogenous indole-3-acetic acid (IAA) in modulating plant responses to pollution stress and its effect on pollutant accumulation, with a focus on fluoranthene (Flu) in ryegrass. To elucidate the mechanism, we employed an IAA promoter (α-aminobutyric acid [α-AB]) and an IAA inhibitor (naphthylphthalamic acid [NPA]) to regulate IAA levels and analyze Flu uptake characteristics. The experimental setup included a Flu treatment group (ryegrass with Flu addition) and a control group (ryegrass without Flu). Our findings demonstrate that Flu treatment enhanced IAA content and plant growth in ryegrass compared to the control. The Flu+AB treatment further enhanced these effects, while the Flu+NPA treatment exhibited a contrasting trend. Moreover, Flu+AB treatment led to increased Flu accumulation, in contrast to the inhibitory effect observed with Flu+NPA treatment. Flu treatment also enhanced the activities of key antioxidant enzymes (SOD, POD, CAT) and increased soluble sugar and protein levels, indicative of enzymatic and nonenzymatic defense responses, respectively. The Flu+AB treatment amplified these responses, whereas the Flu+NPA treatment attenuated them. Significantly, Flu treatment raised H+-ATPase activity compared to the control, an effect further elevated by Flu+AB treatment and diminished by Flu+NPA treatment. A random forest analysis suggested that Flu accumulation dependency varied under different treatments: it relied more on H+-ATPase activity under Flu+AB treatment and more on SOD activity under Flu+NPA treatment. Additionally, Flu+AB treatment boosted the transpiration rate in ryegrass, thereby increasing the Flu translocation factor, a trend reversed by Flu+NPA treatment. This research highlights crucial factors influencing Flu accumulation in ryegrass, offering potential new avenues for controlling the gathering of contaminants within plant systems.
Collapse
Affiliation(s)
- Yuanzhou Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yunyun Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhuoliang Xiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xinyue Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Jiaguo Jiao
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huijuan Zhang
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Huixin Li
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China
| | - Li Xu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210014, People's Republic of China; Sanya Institute of Nanjing Agricultural University, Sanya, People's Republic of China.
| |
Collapse
|
15
|
Kulkova I, Wróbel B, Dobrzyński J. Serratia spp. as plant growth-promoting bacteria alleviating salinity, drought, and nutrient imbalance stresses. Front Microbiol 2024; 15:1342331. [PMID: 38562478 PMCID: PMC10982427 DOI: 10.3389/fmicb.2024.1342331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
In agricultural environments, plants are often exposed to abiotic stresses including temperature extremes, salt stress, drought, and heavy metal soil contamination, which leads to significant economic losses worldwide. Especially salt stress and drought pose serious challenges since they induce ionic toxicity, osmotic stress, and oxidative stress in plants. A potential solution can be the application of bacteria of the Serratia spp. known to promote plant growth under normal conditions Thus the mini-review aims to summarize the current knowledge on plant growth promotion by Serratia spp. (under the conditions of salinity stress, drought, and nutrient deficit) and highlight areas for development in the field. So far, it has been proven that Serratia spp. strains exhibit a variety of traits contributing to enhanced plant growth and stress tolerance, such as phytohormone production, ACC deaminase activity, nitrogen fixation, P and Zn solubilization, antioxidant properties improvement, and modulation of gene expression. Nevertheless, further research on Serratia spp. is needed, especially on two subjects: elucidating its mechanisms of action on plants at the molecular level and the effects of Serratia spp. on the indigenous soil and plant microbiota and, particularly, the rhizosphere. In both cases, it is advisable to use omics techniques to gain in-depth insights into the issues. Additionally, some strains of Serratia spp. may be phytopathogens, therefore studies to rule out this possibility are recommended prior to field trials. It is believed that by improving said knowledge the potential of Serratia spp. to stimulate plant growth will increase and strains from the genus will serve as an eco-friendly biofertilizer in sustainable agriculture more often.
Collapse
Affiliation(s)
- Iryna Kulkova
- Institute of Technology and Life Science – National Research Institute, Raszyn, Poland
| | | | | |
Collapse
|
16
|
Thakur R, Yadav S. Biofilm forming, exopolysaccharide producing and halotolerant, bacterial consortium mitigates salinity stress in Triticum aestivum. Int J Biol Macromol 2024; 262:130049. [PMID: 38346622 DOI: 10.1016/j.ijbiomac.2024.130049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Biofilm and EPS characterization of a rhizobacterial isolate BC-II-20 was done using biophysical techniques. SEM revealed surface morphology of EPS powder to be irregular porous web-like structure. FTIR spectra showed peaks of the polymeric carbohydrate functional groups with probable role in imparting biological properties to EPS. XRD analysis showed signal at 220 (2θ) and confirms its amorphous or semi-crystalline nature. EPS derived from bacterial consortium gradually increased under 200 mM, 400 mM, 600 mM and 800 mM NaCl and SEM-EDAX analysis of EPS showed increase in Na & Cl peaks under the above salt concentrations, depicting EPS-NaCl binding. Triticum aestivum plants under 200 mM NaCl stress with different combinations of treatments showed that bacterial consortium provides tolerance. Under 200 mM salt stress the shoot length was 7.74 cm and total chlorophyll was 4.16 mg g-1Fw of the uninoculated plants whereas inoculated ones were 9.94 cm and 5.62 mg g-1Fw respectively. Under salinity stress, membrane stability index was increased from 47 % to 61 % and electrolyte leakage was decreased to 48 % from 64 %, after inoculation with bacterial consortium. Therefore, consortium comprising of these halotolerant and biofilm forming, EPS producing bioinoculants provides salt tolerance and can be exploited as a sustainable alternative for stress tolerance.
Collapse
Affiliation(s)
- Rahul Thakur
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar (Garhwal) 246174, Uttarakhand, India
| | - Saurabh Yadav
- Department of Biotechnology, Hemvati Nandan Bahuguna Garhwal University (A Central University), Srinagar (Garhwal) 246174, Uttarakhand, India.
| |
Collapse
|
17
|
Kaya C, Uğurlar F, Ashraf M, Alyemeni MN, Dewil R, Ahmad P. Mitigating salt toxicity and overcoming phosphate deficiency alone and in combination in pepper (Capsicum annuum L.) plants through supplementation of hydrogen sulfide. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119759. [PMID: 38091729 DOI: 10.1016/j.jenvman.2023.119759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/14/2024]
Abstract
While it is widely recognized that hydrogen sulfide (H2S) promotes plant stress tolerance, the precise processes through which H2S modulates this process remains unclear. The processes by which H2S promotes phosphorus deficiency (PD) and salinity stress (SS) tolerance, simulated individually or together, were examined in this study. The adverse impacts on plant biomass, total chlorophyll and chlorophyll fluorescence were more pronounced with joint occurrence of PD and SS than with individual application. Malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL) levels in plant leaves were higher in plants exposed to joint stresses than in plants grown under an individual stress. When plants were exposed to a single stress as opposed to both stressors, sodium hydrosulfide (NaHS) treatment more efficiently decreased EL, MDA, and H2O2 concentrations. Superoxide dismutase, peroxidase, glutathione reductase and ascorbate peroxidase activities were increased by SS alone or in conjunction with PD, whereas catalase activity decreased significantly. The favorable impact of NaHS on all the evaluated attributes was reversed by supplementation with 0.2 mM hypotaurine (HT), a H2S scavenger. Overall, the unfavorable effects caused to NaHS-supplied plants by a single stress were less severe compared with those caused by the combined administration of both stressors.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey.
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa, Turkey
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Raf Dewil
- Department of Chemical Engineering, KU Leuven, Belgium; Department of Engineering Science, University of Oxford, United Kingdom
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
18
|
Daraz U, Ahmad I, Li QS, Zhu B, Saeed MF, Li Y, Ma J, Wang XB. Plant growth promoting rhizobacteria induced metal and salt stress tolerance in Brassica juncea through ion homeostasis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115657. [PMID: 37924800 DOI: 10.1016/j.ecoenv.2023.115657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Soil heavy metal contamination and salinity constitute a major environmental problem worldwide. The affected area and impact of these problems are increasing day by day; therefore, it is imperative to restore their potential using environmentally friendly technology. Plant growth-promoting rhizobacteria (PGPR) provides a better option in this context. Thirty-seven bacteria were isolated from the rhizosphere of maize cultivated in metal- and salt-affected soils. Some selected bacterial strains grew well under a wide range of pH (4-10), salt (5-50 g/L), and Cd (50-1000 mg/L) stress. Three bacterial strains, Exiguobacterium aestuarii (UM1), Bacillus cereus (UM8), and Bacillus megaterium (UM35), were selected because of their robust growth and high tolerance to both stress conditions. The bacterial strains UM1, UM8, and UM35 showed P-solubilization, whereas UM8 and UM35 exhibited 1-aminocyclopropane-1-carboxylate deaminase activity and indole acetic acid (IAA) production, respectively. The bacterial strains were inoculated on Brassica juncea plants cultivated in Cd and salt-affected soils due to the above PGP activities and stress tolerance. Plants inoculated with the bacterial strains B. cereus and B. megaterium significantly (p < 0.05) increased shoot fresh weight (17 ± 1.17-29 ± 0.88 g/plant), shoot dry weight (2.50 ± 0.03-4.40 ± 0.32 g/plant), root fresh weight (7.30 ± 0.58-13.30 ± 0.58 g/plant), root dry weight (0.80 ± 0.04-2.00 ± 0.01 g/plant), and shoot K contents (62.76 ± 1.80-105.40 ± 1.15 mg/kg dwt) in normal and stressful conditions. The bacterial strain B. megaterium significantly (p < 0.05) decreased shoot Na+ and Cd++ uptake in single and dual stress conditions. Both bacterial strains, E. aestuarii and B. cereus, efficiently reduced Cd++ translocation and bioaccumulation in the shoot. Bacterial inoculation improved the uptake of K+ and Ca++, while restricted Na+ and Cd++ in B. juncea shoots indicated their potential to mitigate the dual stresses of salt and Cd in B. juncea through ion homeostasis.
Collapse
Affiliation(s)
- Umar Daraz
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, Shanghai Cooperative Innovation Center for Modern Seed Industry, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Muhammad Farhan Saeed
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari 61100, Pakistan
| | - Yang Li
- State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, Anhui University of Science & Technology, Huainan, Anhui Province, China
| | - Jianguo Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Bo Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, and College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
19
|
Senousy HH, Hamoud YA, Abu-Elsaoud AM, Mahmoud Al zoubi O, Abdelbaky NF, Zia-ur-Rehman M, Usman M, Soliman MH. Algal Bio-Stimulants Enhance Salt Tolerance in Common Bean: Dissecting Morphological, Physiological, and Genetic Mechanisms for Stress Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:3714. [PMID: 37960071 PMCID: PMC10648064 DOI: 10.3390/plants12213714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Salinity adversely affects the plant's morphological characteristics, but the utilization of aqueous algal extracts (AE) ameliorates this negative impact. In this study, the application of AE derived from Chlorella vulgaris and Dunaliella salina strains effectively reversed the decline in biomass allocation and water relations, both in normal and salt-stressed conditions. The simultaneous application of both extracts in salt-affected soil notably enhanced key parameters, such as chlorophyll content (15%), carotene content (1%), photosynthesis (25%), stomatal conductance (7%), and transpiration rate (23%), surpassing those observed in the application of both AE in salt-affected as compared to salinity stress control. Moreover, the AE treatments effectively mitigated lipid peroxidation and electrolyte leakage induced by salinity stress. The application of AE led to an increase in GB (6%) and the total concentration of free amino acids (47%) by comparing with salt-affected control. Additionally, salinity stress resulted in an elevation of antioxidant enzyme activities, including superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase. Notably, the AE treatments significantly boosted the activity of these antioxidant enzymes under salinity conditions. Furthermore, salinity reduced mineral contents, but the application of AE effectively counteracted this decline, leading to increased mineral levels. In conclusion, the application of aqueous algal extracts, specifically those obtained from Chlorella vulgaris and Dunaliella salina strains, demonstrated significant efficacy in alleviating salinity-induced stress in Phaseolus vulgaris plants.
Collapse
Affiliation(s)
- Hoda H. Senousy
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
| | - Yousef Alhaj Hamoud
- College of Hydrology and Water Recourses, Hohai University, Nanjing 210098, China
| | - Abdelghafar M. Abu-Elsaoud
- Department of Biology, College of Science, Imam Muhammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Omar Mahmoud Al zoubi
- Biology Department, Faculty of Science Yanbu, Taibah University, Yanbu El-Bahr 46423, Saudi Arabia
| | - Nessreen F. Abdelbaky
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| | - Muhammad Zia-ur-Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mona H. Soliman
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.S.)
- Biology Department, Faculty of Science, Taibah University, Al-Sharm, Yanbu El-Bahr, Yanbu 46429, Saudi Arabia
| |
Collapse
|
20
|
Al-Turki A, Murali M, Omar AF, Rehan M, Sayyed R. Recent advances in PGPR-mediated resilience toward interactive effects of drought and salt stress in plants. Front Microbiol 2023; 14:1214845. [PMID: 37829451 PMCID: PMC10565232 DOI: 10.3389/fmicb.2023.1214845] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
The present crisis at hand revolves around the need to enhance plant resilience to various environmental stresses, including abiotic and biotic stresses, to ensure sustainable agriculture and mitigate the impact of climate change on crop production. One such promising approach is the utilization of plant growth-promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. Plants are constantly exposed to various stress factors, such as drought, salinity, pathogens, and nutrient deficiencies, which can significantly reduce crop yield and quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and have been shown to positively influence plant growth and stress tolerance through various mechanisms, including nutrient solubilization, phytohormone production, and induction of systemic resistance. The review comprehensively examines the various mechanisms through which PGPR promotes plant resilience, including nutrient acquisition, hormonal regulation, and defense induction, focusing on recent research findings. The advancements made in the field of PGPR-mediated resilience through multi-omics approaches (viz., genomics, transcriptomics, proteomics, and metabolomics) to unravel the intricate interactions between PGPR and plants have been discussed including their molecular pathways involved in stress tolerance. Besides, the review also emphasizes the importance of continued research and implementation of PGPR-based strategies to address the pressing challenges facing global food security including commercialization of PGPR-based bio-formulations for sustainable agricultural.
Collapse
Affiliation(s)
- Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - M. Murali
- Department of Studies in Botany, University of Mysore, Mysore, India
| | - Ayman F. Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Plant Pathology, Plant Pathology, and Biotechnology Lab. and EPCRS Excellence Center, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
- Department of Genetics, College of Agriculture, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - R.Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
- Faculty of Health and Life Sciences, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
21
|
Hussain S, Ahmed S, Akram W, Sardar R, Abbas M, Yasin NA. Selenium-Priming mediated growth and yield improvement of turnip under saline conditions. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:710-726. [PMID: 37753953 DOI: 10.1080/15226514.2023.2261548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Salt toxicity is one of the foremost environmental stresses that declines nutrient uptake, photosynthetic activity and growth of plants resulting in a decrease in crop yield and quality. Seed priming has become an emergent strategy to alleviate abiotic stress and improve plant growth. During the current study, turnip seed priming with sodium selenite (Na2SeO3) was investigated for its ability to mitigate salt stress. Turnip (Brassica rapa L. var. Purple Top White Globe) seeds primed with 75, 100, and 125 μML-1 of Se were subjected to 200 mM salt stress under field conditions. Findings of the current field research demonstrated that salt toxicity declined seed germination, chlorophyll content, and gas exchange characteristics of B. rapa seedling. Whereas, Se-primed seeds showed higher germination rate and plant growth which may be attributed to the decreased level of hydrogen peroxide (H2O2) and malondialdehyde (MDA) decreased synthesis of proline (36%) and besides increased total chlorophyll (46%) in applied turnip plants. Higher expression levels of genes encoding antioxidative activities (CAT, POD, SO,D and APX) mitigated oxidative stress induced by the salt toxicity. Additionally, Se treatment decreased Na+ content and enhanced K+ content resulting in elevated K+/Na+ ratio in the treated plants. The in-silico assessment revealed the interactive superiority of Se with antioxidant enzymes including CAT, POD, SOD, and APX as compared to sodium chloride (NaCl). Computational study of enzymes-Se and enzymes-NaCl molecules also revealed the stress ameliorative potential of Se through the presence of more Ramachandran-favored regions (94%) and higher docking affinities of Se (-6.3). The in-silico studies through molecular docking of Na2SeO3, NaCl, and ROS synthesizing enzymes (receptors) including cytochrome P450 (CYP), lipoxygenase (LOX), and xanthine oxidase (XO), also confirmed the salt stress ameliorative potential of Se in B. rapa. The increased Ca, P, Mg, and Zn nutrients uptake nutrients uptake in 100 μML-1 Se primed seedlings helped to adjust the stomatal conductivity (35%) intercellular CO2 concentration (32%), and photosynthetic activity (41%) resulting in enhancement of the yield attributes. More number of seeds per plant (6%), increased turnip weight (115 gm) root length (17.24 cm), root diameter (12 cm) as well as turnip yield increased by (9%tons ha-1) were recorded for 100 μML-1 Se treatment under salinity stress. Findings of the current research judiciously advocate the potential of Se seed priming for salt stress alleviation and growth improvement in B. rapa.
Collapse
Affiliation(s)
- Saber Hussain
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Institute of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Rehana Sardar
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | | |
Collapse
|
22
|
Gupta S, Pandey S, Kotra V, Kumar A. Assessing the role of ACC deaminase-producing bacteria in alleviating salinity stress and enhancing zinc uptake in plants by altering the root architecture of French bean (Phaseolus vulgaris) plants. PLANTA 2023; 258:3. [PMID: 37212904 DOI: 10.1007/s00425-023-04159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/14/2023] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION The consortium inoculation with strains R1 and R4 modified the root system to boost seedling growth, increase the zinc content of French bean pods, and reduce salinity stress. The present study demonstrated the effect of two 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing plant growth-promoting rhizobacteria (Pantoea agglomerans R1 and Pseudomonas fragi R4) alone and consortia on the root system development, French bean growth, and zinc content as well as salinity stress tolerance. Both the strains were characterized for ACC utilization activity (426.23 and 380.54 nmol α-ketobutyrate mg protein-1 h-1), indole acetic acid (IAA) production, phosphate solubilization, ammonia, hydrogen cyanide (HCN), and siderophore production. The strains exhibited zinc solubilization in both plate and broth assays with zinc oxide and zinc carbonate as zinc sources as validated by atomic absorption spectroscopy (AAS). Single or combined inoculations with the selected strains significantly modulated the architectural and morphological traits of the root system of French bean plants. Furthermore, the application of R1and R4 consortia has enhanced zinc content in roots (60.83 mg kg-1), shoots (15.41 mg kg-1), and pods (30.04 mg kg-1) of French bean plants grown in ZnCO3 amended soil. In another set of pot experiments, the consortium bacterization has significantly enhanced length as well as fresh and dry biomass of roots and shoots of the French bean plant under saline stress conditions. Additionally, inoculation with ACC-degrading rhizobacterial strains has increased chlorophyll and carotenoid contents, osmoprotectant content, and antioxidative enzyme (catalase and peroxidase) activity in comparison to their counterparts exposed to salt treatments only. Current findings suggested ACC deaminase-producing rhizobacterial strains hold the potential to improve root architecture which in turn promotes plant growth under salt-stressed conditions as well as enhances micronutrient concentration in host plants.
Collapse
Affiliation(s)
- Shikha Gupta
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Sangeeta Pandey
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India.
| | - Vashista Kotra
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, Uttar Pradesh, 201313, India
| | - Atul Kumar
- Division of Seed Science and Technology, ICAR, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| |
Collapse
|
23
|
Kaushal P, Ali N, Saini S, Pati PK, Pati AM. Physiological and molecular insight of microbial biostimulants for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2023; 14:1041413. [PMID: 36794211 PMCID: PMC9923114 DOI: 10.3389/fpls.2023.1041413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Increased food production to cater the need of growing population is one of the major global challenges. Currently, agro-productivity is under threat due to shrinking arable land, increased anthropogenic activities and changes in the climate leading to frequent flash floods, prolonged droughts and sudden fluctuation of temperature. Further, warm climatic conditions increase disease and pest incidences, ultimately reducing crop yield. Hence, collaborated global efforts are required to adopt environmentally safe and sustainable agro practices to boost crop growth and productivity. Biostimulants appear as a promising means to improve growth of plants even under stressful conditions. Among various categories of biostimulants, microbial biostimulants are composed of microorganisms such as plant growth-promoting rhizobacteria (PGPR) and/or microbes which stimulate nutrient uptake, produce secondary metabolites, siderophores, hormones and organic acids, participate in nitrogen fixation, imparts stress tolerance, enhance crop quality and yield when applied to the plants. Though numerous studies convincingly elucidate the positive effects of PGPR-based biostimulants on plants, yet information is meagre regarding the mechanism of action and the key signaling pathways (plant hormone modulations, expression of pathogenesis-related proteins, antioxidants, osmolytes etc.) triggered by these biostimulants in plants. Hence, the present review focuses on the molecular pathways activated by PGPR based biostimulants in plants facing abiotic and biotic challenges. The review also analyses the common mechanisms modulated by these biostimulants in plants to combat abiotic and biotic stresses. Further, the review highlights the traits that have been modified through transgenic approach leading to physiological responses akin to the application of PGPR in the target plants.
Collapse
Affiliation(s)
- Priya Kaushal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
| | - Nilofer Ali
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shivani Saini
- Department of Botany, Goswami Ganesh Dutta Sanatan Dharma College, Chandigarh, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Kumawat KC, Sharma B, Nagpal S, Kumar A, Tiwari S, Nair RM. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development. FRONTIERS IN PLANT SCIENCE 2023; 13:1101862. [PMID: 36714780 PMCID: PMC9878403 DOI: 10.3389/fpls.2022.1101862] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/16/2022] [Indexed: 06/12/2023]
Abstract
Soil salinity, a growing issue worldwide, is a detrimental consequence of the ever-changing climate, which has highlighted and worsened the conditions associated with damaged soil quality, reduced agricultural production, and decreasing land areas, thus resulting in an unsteady national economy. In this review, halo-tolerant plant growth-promoting rhizo-microbiomes (PGPRs) are evaluated in the salinity-affected agriculture as they serve as excellent agents in controlling various biotic-abiotic stresses and help in the augmentation of crop productivity. Integrated efforts of these effective microbes lighten the load of agro-chemicals on the environment while managing nutrient availability. PGPR-assisted modern agriculture practices have emerged as a green strategy to benefit sustainable farming without compromising the crop yield under salinity as well as salinity-affected supplementary stresses including increased temperature, drought, salinity, and potential invasive plant pathogenicity. PGPRs as bio-inoculants impart induced systemic tolerance (IST) to plants by the production of volatile organic compounds (VOCs), antioxidants, osmolytes, extracellular polymeric substances (EPS), phytohormones, and ACC-deaminase and recuperation of nutritional status and ionic homeostasis. Regulation of PGPR-induced signaling pathways such as MAPK and CDPK assists in salinity stress alleviation. The "Next Gen Agriculture" consists of the application of designer crop microbiomes through gene editing tools, for instance, CRISPR, and engineering of the metabolic pathways of the microbes so as to gain maximum plant resistance. The utilization of omics technologies over the traditional approaches can fulfill the criteria required to increase crop yields in a sustainable manner for feeding the burgeoning population and augment plant adaptability under climate change conditions, ultimately leading to improved vitality. Furthermore, constraints such as the crop specificity issue of PGPR, lack of acceptance by farmers, and legal regulatory aspects have been acknowledged while also discussing the future trends for product commercialization with the view of the changing climate.
Collapse
Affiliation(s)
- Kailash Chand Kumawat
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Barkha Sharma
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Sharon Nagpal
- Department of Microbiology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Ajay Kumar
- Department of Industrial Microbiology, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences (SHUATS), Prayagraj, Uttar Pradesh, India
| | - Shalini Tiwari
- Department of Microbiology, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| | - Ramakrishnan Madhavan Nair
- World Vegetable Centre, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| |
Collapse
|
25
|
Melebary SJ, Elnaggar MH. Impact of Moringa oleifera leaf extract in reducing the effect of lead acetate toxicity in mice. Saudi J Biol Sci 2023; 30:103507. [PMID: 36458096 PMCID: PMC9706165 DOI: 10.1016/j.sjbs.2022.103507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/23/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
This study aimed to assess the impact of Moringa oleifera (M. oleifera) leaf extract against the poisoning of lead acetate; therefore, sixty mice were allocated into 4 groups with 15 in each, as G1) blank control, G2) supplied with 300 mg/kg body weight (BWT). M. oleifera extract, G3) supplied with 60 mg/kg BWT of lead acetate [Pb(C2H3O2)2], and G4) supplied with extract of M. oleifera + lead acetate. The liver enzymes were elevated post-treatment with Pb(C2H3O2)2, which then lowered to almost the normal level when M. oleifera was supplied to mice previously treated with Pb(C2H3O2)2. The values in (G3) decreased when compared with G1 (92.33 ± 12.99, 21.67 ± 2.91 and 98.00 ± 13.20 U/L, respectively. Also, the cholesterol and low-density lipoprotein levels were elevated post-supplementation with M. oleifera and Pb(C2H3O2)2. Pb(C2H3O2)2 improves the lipid profile, whereas M. oleifera pretreatment reduced cholesterol (CHOL), high density low cholesterol (HDL-c), and low-density low cholesterol (LDL-c) levels in animals fed Pb(C2H3O2)2. Pb(C2H3O2)2 elevates the total protein but lowers the total bilirubin and triglycerides post M. oleifera treatment and Pb(C2H3O2)2 when contrasted with G1. The protective effect of M. oleifera was caused by the fact that it lowered triglycerides (TG) and total bilirubin (TBIL) and raised total protein (TP). After administration of Pb(C2H3O2)2, the histological examination revealed alterations in the hepatocytes and kidneys of G3. Also, the liver and kidney cells in mice supplied with M. oleifera after Pb(C2H3O2)2 poisoning recovered. In conclusion, Pb is toxic, and the usage of M. oleifera partially enhances the negative impacts induced by Pb(C2H3O2)2.
Collapse
Affiliation(s)
- Sahar J. Melebary
- Department of Biology, College of Science, University of Jeddah, Jeddah 21493, Saudi Arabia
| | - Moustafa H.R. Elnaggar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
26
|
Gupta A, Rai S, Bano A, Sharma S, Kumar M, Binsuwaidan R, Suhail Khan M, Upadhyay TK, Alshammari N, Saeed M, Pathak N. ACC Deaminase Produced by PGPR Mitigates the Adverse Effect of Osmotic and Salinity Stresses in Pisum sativum through Modulating the Antioxidants Activities. PLANTS (BASEL, SWITZERLAND) 2022; 11:3419. [PMID: 36559529 PMCID: PMC9782781 DOI: 10.3390/plants11243419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Salinity-induced ethylene production and reactive oxygen species (ROS) inhibit agricultural productivity. The plant synthesizes ethylene directly from aminocyclopropane-1-carboxylic acid (ACC). By using ACC as a nitrogen source, bacteria with ACC deaminase (ACCD) inhibit the overproduction of ethylene, thereby maintaining the ROS. The present study investigated the ACCD activity of previously identified rhizobacterial strains in Dworkin and Foster (DF) minimal salt media supplemented with 5 mM ACC (as N-source). Bacterial isolates GKP KS2_7 (Pseudomonas aeruginosa) and MBD 133 (Bacillus subtilis) could degrade ACC into α-ketobutyrate, exhibiting ACCD activity producing more than ~257 nmol of α-ketobutyrate mg protein−1 h−1, and were evaluated for other plant growth-promoting (PGP) traits including indole acetic acid production (>63 µg/mL), phosphate solubilization (>86 µg mL−1), siderophore (>20%) ammonia and exopolysaccharide production. Furthermore, Fourier Transform Infrared analysis also demonstrated α-ketobutyrate liberation from ACC deamination in DF minimal salt media, thereby confirming the ACCD activity. These isolates also showed enhanced tolerance to salinity stress of 3% w/v NaCl in vitro, in addition to facilitating multifarious PGP activities. Seed bacterization by these ACCD-producing bacterial isolates (GKP KS2_7 and MBD 133) revealed a significant decline in stress-stimulated ethylene levels and its associated growth inhibition during seedling germination. They also mitigated the negative effects of salt stress and increased the root-shoot length, fresh and dry weight of root and shoot, root-shoot biomass, total sugar, protein, reducing sugar, chlorophyll content, and antioxidants enzymes in Pisum sativum. As a result, these strains (GKP KS2_7 and MBD 133) might be applied as biofertilizers to counteract the negative effects of soil salinity.
Collapse
Affiliation(s)
- Anmol Gupta
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Smita Rai
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Ambreen Bano
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Swati Sharma
- IIRC-3, Plant-Microbe Interaction and Molecular Immunology Laboratory, Department of Biosciences, Faculty of Science, Integral University, Lucknow 226026, India
| | - Manoj Kumar
- CSIR—National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohammad Suhail Khan
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha 62521, Saudi Arabia
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre for Research for Development, Parul University, Vadodara 391760, India
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail 55476, Saudi Arabia
| | - Neelam Pathak
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Ayodhya 224001, India
| |
Collapse
|
27
|
Abdulmajeed AM, Alharbi BM, Alharby HF, Abualresh AM, Badawy GA, Semida WM, Rady MM. Simultaneous Action of Silymarin and Dopamine Enhances Defense Mechanisms Related to Antioxidants, Polyamine Metabolic Enzymes, and Tolerance to Cadmium Stress in Phaseolus vulgaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:3069. [PMID: 36432798 PMCID: PMC9692805 DOI: 10.3390/plants11223069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Silymarin (Sm) and dopamine (DA) act synergistically as potential antioxidants, mediating many physiological and biochemical processes. As a first report, we investigated the synergistic effect of Sm and DA in mitigating cadmium stress in Phaseolus vulgaris plants. Three experiments were conducted simultaneously using 40 cm diameter pots to elucidate how Sm and DA affect cadmium tolerance traits at morphological, physiological, and biochemical levels. Cadmium stress triggered a marked reduction in growth, productivity, and physio-biochemical characteristics of common bean plants compared to unstressed plants. Seed priming (SP) and foliar spraying (FS) with silymarin (Sm) or dopamine (DA) ((DA (SP) + Sm (FS) and Sm (SP) + DA (FS)) ameliorated the damaging effects of cadmium stress. Sm seed priming + DA foliar spraying (Sm (SP) + DA (FS)) was more efficient. The treated stressed common bean plants showed greater tolerance to cadmium stress by diminishing oxidative stress biomarkers (i.e., O2•-, H2O2, and MDA) levels through enhanced enzymatic (SOD, CAT, POD, APX) and non-enzymatic (ascorbic acid, glutathione, α-tocopherol, choline, phenolics, flavonoids) antioxidant activities and osmoprotectants (proline, glycine betaine, and soluble sugars) contents, as well as through improved photosynthetic efficiency (total chlorophyll and carotenoids contents, photochemical activity, and efficiencies of carboxylation (iCE) and PSII (Fv/Fm)), polyamines (Put, Spd, and Spm), and polyamine metabolic enzymes (ADC and ODC) accumulation. These findings signify that Sm and DA have remarkable anti-stress effects, which can help regulate plant self-defense systems, reflecting satisfactory plant growth and productivity. Thus, realizing the synergistic effect of Sm and DA in cadmium tolerance confers potential new capabilities for these compounds to function in sustainable agriculture.
Collapse
Affiliation(s)
- Awatif M. Abdulmajeed
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Basmah M. Alharbi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hesham F. Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amani M. Abualresh
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ghada A. Badawy
- Biology Department, Faculty of Science, University of Tabuk, Umluj 46429, Saudi Arabia
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| |
Collapse
|
28
|
Hasanuzzaman M, Raihan MRH, Nowroz F, Fujita M. Insight into the Mechanism of Salt-Induced Oxidative Stress Tolerance in Soybean by the Application of Bacillus subtilis: Coordinated Actions of Osmoregulation, Ion Homeostasis, Antioxidant Defense, and Methylglyoxal Detoxification. Antioxidants (Basel) 2022; 11:antiox11101856. [PMID: 36290578 PMCID: PMC9598349 DOI: 10.3390/antiox11101856] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Considering the growth-promoting potential and other regulatory roles of bacteria, we investigated the possible mechanism of the role of Bacillus subtilis in conferring salt tolerance in soybean. Soybean (Glycine max cv. BARI Soybean-5) seeds were inoculated with B. subtilis, either through a presoaking with seeds or a direct application with pot soil. After 20 days of sowing, both the seed- and soil-inoculated plants were exposed to 50, 100, and 150 mM of NaCl for 30 days. A clear sign of oxidative stress was evident through a remarkable increase in lipid peroxidation, hydrogen peroxide, methylglyoxal, and electrolyte leakage in the salt treated plants. Moreover, the efficiency of the ascorbate (AsA)–glutathione (GSH) pathways was declined. Consequently, the plant growth, biomass accumulation, water relations, and content of the photosynthetic pigments were decreased. Salt stress also caused an increased Na+/K+ ratio and decreased Ca2+. On the contrary, the B. subtilis inoculated plants showed increased levels of AsA and GSH, their redox balance, and the activities of the AsA–GSH pathway enzymes, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and peroxidase. The B. subtilis inoculated plants also enhanced the activities of glyoxalase enzymes, which mitigated methylglyoxal toxicity in coordination with ROS homeostasis. Besides this, the accumulation of K+ and Ca2+ was increased to maintain the ion homeostasis in the B. subtilis inoculated plants under salinity. Furthermore, the plant water status was uplifted in the salt treated soybean plants with B. subtilis inoculation. This investigation reveals the potential of B. subtilis in mitigating salt-induced oxidative stress in soybean plants through modulating the antioxidant defense and glyoxalase systems along with maintaining ion homeostasis and osmotic adjustments. In addition, it was evident that the soil inoculation performed better than the seed inoculation in mitigating salt-induced oxidative damages in soybean.
Collapse
Affiliation(s)
- Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
- Correspondence:
| | - Md. Rakib Hossain Raihan
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Farzana Nowroz
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Masayuki Fujita
- Laboratory of Plant Stress Responses, Faculty of Agriculture, Kagawa University, Miki-cho, Kita-gun, Takamatsu 761-0795, Japan
| |
Collapse
|
29
|
Ali M, Parveen A, Malik Z, Kamran M, Saleem MH, Abbasi GH, Ahmad I, Ahmad S, Sathish M, Okla MK, Al-Amri SS, Alaraidh IA, Ali S. Zn alleviated salt toxicity in Solanum lycopersicum L. seedlings by reducing Na + transfer, improving gas exchange, defense system and Zn contents. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:52-63. [PMID: 35809436 DOI: 10.1016/j.plaphy.2022.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 05/28/2023]
Abstract
Soil secondary salinization is a serious menace that has significant influence on the sustainability of agriculture and threatens food security around the world. Zinc (Zn) as an essential plant nutrient associated with many physio-biochemical processes in plants and improve resistance against various abiotic stresses. The role of Zn in acclimation of Solanum lycopersicum L. challenged with salt stress is miserly understood. A hydroponic study was performed with two tomato varieties (Riogrande and Sungold) exposed to the salinity stress (0 mM and 160 mM NaCl) under two Zn concentrations (15 μM and 30 μM ZnSO4). The results revealed that salt stress exerted strongly negative impacts on root and shoot length, fresh and dry biomass, plant water relations, membrane stability, chlorophyll contents, Na+/K+ ratio along with inferior gas exchange attributes and activities of antioxidant enzymes. Moreover, Riogrande was found to be more resistant to salinity stress than Sungold. However, Zn supply significantly alleviated the hazardous effects of salinity by altering compatible solutes accumulation, photosynthetic activity, water relation, soluble sugar contents and providing antioxidant defense against salt stress. The salinity + Zn2 treatment more obviously enhanced RWC (19.0%), MSI (30.8%), SPAD value (17.8%), and activities of SOD (31.7%), POD (28.5%), APX (64.5%) and CAT (23.3%) in Riogrande than Sungold, compared with the corresponding salinity treatment alone. In addition, salinity + Zn2 treatment significantly (P > 0.05) ameliorated salinity stress due to the depreciation in Na+/K+ ratio by 63.3% and 40.8%, Na+ ion relocation from root to shoot by 10.4% and 6.4%, and thereby significantly reduced Na+ ion accumulation by 47.4% and 16.3% in the leaves of Riogrande and Sungold respectively, compared to the salinity treatment alone. Therefore, it was obvious that 30 μM Zn concentration was more effective to induce resistance against salinity stress than 15 μM Zn concentration. Conclusively, it can be reported that exogenous Zn application helps tomato plant to combat adverse saline conditions by modulating photosynthetic and antioxidant capacity along with reduced Na+ uptake at the root surface of tomato plant.
Collapse
Affiliation(s)
- Muhammad Ali
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, South Australia, 5005, Australia.
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ijaz Ahmad
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Salman Ahmad
- Agriculture Extension Department, Government of Punjab, Markaz Bahawalpur, 63100, Pakistan
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud S Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
30
|
Heat stress in poultry with particular reference to the role of probiotics in its amelioration: An updated review. J Therm Biol 2022; 108:103302. [DOI: 10.1016/j.jtherbio.2022.103302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
|
31
|
Ali B, Hafeez A, Ahmad S, Javed MA, Sumaira, Afridi MS, Dawoud TM, Almaary KS, Muresan CC, Marc RA, Alkhalifah DHM, Selim S. Bacillus thuringiensis PM25 ameliorates oxidative damage of salinity stress in maize via regulating growth, leaf pigments, antioxidant defense system, and stress responsive gene expression. FRONTIERS IN PLANT SCIENCE 2022; 13:921668. [PMID: 35968151 PMCID: PMC9366557 DOI: 10.3389/fpls.2022.921668] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/30/2022] [Indexed: 07/30/2023]
Abstract
Soil salinity is the major abiotic stress that disrupts nutrient uptake, hinders plant growth, and threatens agricultural production. Plant growth-promoting rhizobacteria (PGPR) are the most promising eco-friendly beneficial microorganisms that can be used to improve plant responses against biotic and abiotic stresses. In this study, a previously identified B. thuringiensis PM25 showed tolerance to salinity stress up to 3 M NaCl. The Halo-tolerant Bacillus thuringiensis PM25 demonstrated distinct salinity tolerance and enhance plant growth-promoting activities under salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing (sfp and srfAA) genes that confer biotic and abiotic stresses were also amplified in B. thuringiensis PM25. Under salinity stress, the physiological and molecular processes were followed by the over-expression of stress-related genes (APX and SOD) in B. thuringiensis PM25. The results detected that B. thuringiensis PM25 inoculation substantially improved phenotypic traits, chlorophyll content, radical scavenging capability, and relative water content under salinity stress. Under salinity stress, the inoculation of B. thuringiensis PM25 significantly increased antioxidant enzyme levels in inoculated maize as compared to uninoculated plants. In addition, B. thuringiensis PM25-inoculation dramatically increased soluble sugars, proteins, total phenols, and flavonoids in maize as compared to uninoculated plants. The inoculation of B. thuringiensis PM25 significantly reduced oxidative burst in inoculated maize under salinity stress, compared to uninoculated plants. Furthermore, B. thuringiensis PM25-inoculated plants had higher levels of compatible solutes than uninoculated controls. The current results demonstrated that B. thuringiensis PM25 plays an important role in reducing salinity stress by influencing antioxidant defense systems and abiotic stress-related genes. These findings also suggest that multi-stress tolerant B. thuringiensis PM25 could enhance plant growth by mitigating salt stress, which might be used as an innovative tool for enhancing plant yield and productivity.
Collapse
Affiliation(s)
- Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saliha Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S. Almaary
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Crina Carmen Muresan
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Romina Alina Marc
- Food Engineering Department, Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
32
|
Sharma K, Sharma S, Vaishnav A, Jain R, Singh D, Singh HB, Goel A, Singh S. Salt tolerant PGPR strain Priestia endophytica SK1 promotes Fenugreek growth under salt stress by inducing nitrogen assimilation and secondary metabolites. J Appl Microbiol 2022; 133:2802-2813. [PMID: 35880391 DOI: 10.1111/jam.15735] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
AIMS Soil salinity is a huge obstacle in crop production worldwide. Saline soil can reduce active chemical contents in medicinal plants of Leguminosae family through crippled normal nodule function. Intensive efforts are underway to improve yield and medicinal value of leguminous herbs under salt stress condition by using benign microbes. Here, an attempt was made to explore the salt tolerant bacteria associated with rhizosphere of fenugreek plant (Trigonella foenum-graecum L.) and to evaluate their impact on host plant growth and metabolite of pharmaceutical importance. METHODS AND RESULTS A salt tolerant plant growth promoting rhizobacterial (PGPR) strain Priestia endophytica SK1 isolated from fenugreek rhizospheric soil, which increased biomass and metabolite content in plants grown under saline stress. SK1 bacterial application induced nodule formation and enhanced nitrogen and phosphorus content under salt (100 mM NaCl) stress as compared to control plants. H2O2 production and lipid peroxidation as a measure of stress were observed high in control plants, while a reduction in these parameters was observed in plants inoculated with SK1. In addition, a significant effect was found on the phenolic compounds and trigonelline content in fenugreek plant inoculated with SK1 bacterium. An increased trigonelline content of about 54% over uninoculated control was recorded under salt stress. CONCLUSION The results of this study revealed that application of salt tolerant PGPR strain P. endophytica SK1 induced nitrogen fixation machinery that leads to alleviate salt stress and improved the biosynthesis of trigonelline content in fenugreek. SIGNIFICANCE OF THE STUDY This study extends our understanding on significance of rhizosphere microbiome and their beneficial role in plant health under environmental stress to promote agro-eco-farming practices.
Collapse
Affiliation(s)
- Krishna Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Sonal Sharma
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India.,Plant-Soil Interaction Group, Agroscope (Reckenholz), Zurich, Switzerland
| | - Rahul Jain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Dinesh Singh
- Department of Plant Pathology, ICAR-Indian Agricultural Research Institute (IARI), Pusa, New Delhi, India
| | - Harikesh Bahadur Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Anjana Goel
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| | - Shoorvir Singh
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
33
|
Aljahdali N. The contribution of gastrointestinal microbiota in the existence of type 2 diabetes in Saudi Arabia: Current information and perspectives. Saudi J Biol Sci 2022; 29:103286. [PMID: 35602871 PMCID: PMC9120060 DOI: 10.1016/j.sjbs.2022.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/10/2022] [Accepted: 04/17/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetes mellitus (DM) is a genuine international health issue, with Saudi Arabia ranking among the top nations with the largest diabetes prevalence. Following the International Diabetes Federation (IDF), 3.8 million Saudi Arabian people had diabetes in 2014. The occurrence of diabetes in Saudi Arabia is likely to elevate due to the current trend in the general rise of socio-economic status, which positively correlates with diabetes prevalence. The incidence of Type 2 diabetes (T2D) is highest within the age group ≥ 45 years, especially in Riyadh and Jeddah, the metro cities of Saudi Arabia. Previous studies have shown that the incidence of T2D is larger in urban regions (25.5%) than in rural regions (19.5%). Both Riyadh and Jeddah are urban areas with different food habits and locations in Saudi Arabia. Recent studies have indicated the correlation between altered alimentary tract microbiota with type 2 diabetes. Gut microbiota plays a critical role in degrading undigested dietary compounds and releasing a vast array of metabolites that directly and indirectly affects host health. In the current review, we shed light on the state of information on the realization of the types and functions of the alimentary tract microbiome and how it plays a causative agent in the up growth of T2D.
Collapse
Affiliation(s)
- Nesreen Aljahdali
- Department of Biological Science, College of Science, King Abdulaziz University, 42742, University Avenue, Jeddah 21551, Saudi Arabia
| |
Collapse
|
34
|
Hou Y, Zeng W, Ao C, Luo Y, Wang Z, Hou M, Huang J. Bacillus atrophaeus WZYH01 and Planococcus soli WZYH02 Improve Salt Tolerance of Maize ( Zea mays L.) in Saline Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:891372. [PMID: 35599881 PMCID: PMC9121094 DOI: 10.3389/fpls.2022.891372] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/08/2022] [Indexed: 06/12/2023]
Abstract
With the increasing shortage of land resources and people's attention to the ecological environment, the application of microbial fertilizer with natural soil microorganisms as the main component has attracted increasing attention in saline agriculture. In this study, two salt-tolerant strains, YL07 (Bacillus atrophaeus) and YL10 (Planococcus soli), were isolated from maize (Zea mays L.) rhizosphere soil with a saturated conductivity (ECe) of 6.13 dS/m and pH of 8.32 (Xinjiang, China). The effects of B. atrophaeus WZYH01 (YL07) and Planococcus soli WZYH02 (YL10) on the growth and development of maize (Zea mays L.) under salt stress (ECe = 5.9 dS/m) were further studied. The results showed that compared with uninoculation, inoculation with B. atrophaeus WZYH01 and Planococcus soli WZYH02 significantly improved maize growth performance, biomass yield, and antioxidant levels under salt stress, and the effect of Planococcus soli WZYH02 was more prominent than the effect of B. atrophaeus WZYH01. Moreover, inoculation with B. atrophaeus WZYH01 and Planococcus soli WZYH02 protected maize from salt stress by regulating plant hormone [IAA and abscisic acid (ABA)] levels and increasing nutrient acquisition. In addition, the tested strains were most efficient for maize growth and health, increasing the content of K+ accompanied by an effective decrease in Na+ in maize tissues. The transcription levels of salt tolerance genes (ZMNHX1, ZMNHX2, ZMHKT, ZMWRKY58, and ZMDREB2A) in inoculated maize were also dramatically higher than the transcription levels of the specified salt tolerance genes in uninoculated maize. In conclusion, B. atrophaeus WZYH01 and Planococcus soli WZYH02 can alleviate the harmful effects of salt stress on crop growth, thereby promoting sustainable agricultural development.
Collapse
Affiliation(s)
- Yaling Hou
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Wenzhi Zeng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Chang Ao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Ying Luo
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| | - Zhao Wang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Menglu Hou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Gadallah FM, El-Sawah NA, Belal HE, Majrashi A, El-Tahan AM, El-Saadony MT, Elrys AS, El-Saadony FM. Nitrogen-molybdenum-manganese co-fertilization reduces nitrate accumulation and enhances spinach (Spinacia oleracea L.) yield and its quality. Saudi J Biol Sci 2022; 29:2238-2246. [PMID: 35531200 PMCID: PMC9072906 DOI: 10.1016/j.sjbs.2021.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/17/2021] [Indexed: 12/03/2022] Open
Abstract
Spinach (Spinacia oleracea L.) is considered a nitrogen (N) intensive plant with high nitrate (NO3−) accumulation in its leaves. The current study via a two-year field trial introduced an approach by combining N fertilization from different sources (e.g., ammonium nitrate; 33.5 % N, and urea; 48 % N) at different rates (180, and 360 kg N ha−1) with the foliar spraying of molybdenum (Mo) as sodium molybdate, and/or manganese (Mn) as manganese sulphate at rates of 50 and 100 mgL−1 of each or with a mixture of Mo and Mn at rates of 50 and 50 mg L−1, respectively on growth, chemical constituents, and NO3− accumulation in spinach leaves. Our findings revealed that the highest rate of N fertilization (360 kg N ha−1) significantly increased most of the measured parameters e.g., plant length, fresh and dry weight plant−1, number of leaves plant−1, leaf area plant−1, leaf pigments (chlorophyll a, b and carotenoids), nutrients (N, P, K, Fe, Mn, Zn), total soluble carbohydrates, protein content, net assimilation rate, and NO3− accumulation, but decreased leaf area ratio and relative growth rate. Moreover, plants received urea-N fertilizer gave the highest values of all previous attributes when compared with ammonium nitrate –N fertilizers, and the lowest values of NO3− accumulation. The co-fertilization of N-Mo-Mn gave the highest values in all studied attributes and the lowest NO3− accumulation. The best treatment was recorded under the treatment of 360 kg N-urea ha−1 in parallel with the combined foliar application of Mo and Mn (50 + 50 mg L−1). Our findings proposed that the co-fertilization of N-Mo-Mn could enhance spinach yield and its quality, while reducing NO3− accumulation in leaves, resulting agronomical, environmental and economic benefits.
Collapse
|
36
|
Sehsah MD, El-Kot GA, El-Nogoumy BA, Alorabi M, El-Shehawi AM, Salama NH, El-Tahan AM. Efficacy of Bacillus subtilis, Moringa oleifera seeds extract and potassium bicarbonate on Cercospora leaf spot on sugar beet. Saudi J Biol Sci 2022; 29:2219-2229. [PMID: 35531157 PMCID: PMC9072934 DOI: 10.1016/j.sjbs.2021.11.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/22/2022] Open
Abstract
Cercospora leaf spot caused by Cercospora beticola are among the most dangerous plant diseases on sugar beet plants. It causes heavy economic losses, whether on the yield of roots, the percentage of sugar in them, or the quality of sugar produced. In addition to the economic cost caused by chemical control, these chemical pesticides cause an imbalance in the ecosystem and harm the health of humans and animals. In an attempt to search for a safer method than pesticides and environmentally friendly, an evaluation of using biocontrol agents, Bacillus subtilis as cell suspension (108 cell/ml), was conducted in this study. Seeds extract of Moringa oleifera with two concentrations (25 and 50 g/L) and potassium bicarbonate at (5 and10 g/L (compared to fungicide Montoro 30% EC (Propiconazole 15% + Difenoconazole 15%). The evaluation results for twenty-five sugar beet varieties showed a significant discrepancy between these varieties in the extent of their susceptibility to infection with the disease under investigation. In-Vitro, B. subtilis induced an antagonist to C. beticola, and both M. oleifera seeds extract and potassium bicarbonate significantly reduced the linear growth of this pathogen. Under field conditions, the treatments used have given positive results in controlling Cercospora leaf spots. They significantly decreased the severity of disease and prevented C. beticola from creating conidiophores and conidiospores, along with examining their cell walls with the formation of plasmolysis of the fungus cells and reducing both the number and diameter of the spots on the surface leaves; this was demonstrated using a scanning electron microscope (SEM). It is worth noting that the best results obtained were most often when treated with M. oleifera seeds extract, followed by potassium bicarbonate, then cell suspension of B. subtilis. In addition, the percentage of the content of beet roots from total soluble solids and sucrose has improved significantly due to spraying sugar beet plants with the substances mentioned earlier. These treatments also contributed to a significant improvement in the enzymes polyphenol oxidase, peroxidase, and phenylalanine ammonia-lyase.
Collapse
Affiliation(s)
- Mohamed D. Sehsah
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Gabr A. El-Kot
- Agriculture Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Baher A. El-Nogoumy
- Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nagwa H. Salama
- Maize and Sugar Crops Diseases Research Department, Plant Pathology Research Institution, Agricultural Research Center, Giza, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
- Corresponding author.
| |
Collapse
|
37
|
Teo HM, A. A, A. WA, Bhubalan K, S. SNM, C. I. MS, Ng LC. Setting a Plausible Route for Saline Soil-Based Crop Cultivations by Application of Beneficial Halophyte-Associated Bacteria: A Review. Microorganisms 2022; 10:microorganisms10030657. [PMID: 35336232 PMCID: PMC8953261 DOI: 10.3390/microorganisms10030657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
The global scale of land salinization has always been a considerable concern for human livelihoods, mainly regarding the food-producing agricultural industries. The latest update suggested that the perpetual salinity problem claimed up to 900 million hectares of agricultural land worldwide, inducing salinity stress among salt-sensitive crops and ultimately reducing productivity and yield. Moreover, with the constant growth of the human population, sustainable solutions are vital to ensure food security and social welfare. Despite that, the current method of crop augmentations via selective breeding and genetic engineering only resulted in mild success. Therefore, using the biological approach of halotolerant plant growth-promoting bacteria (HT-PGPB) as bio-inoculants provides a promising crop enhancement strategy. HT-PGPB has been proven capable of forming a symbiotic relationship with the host plant by instilling induced salinity tolerance (IST) and multiple plant growth-promoting traits (PGP). Nevertheless, the mechanisms and prospects of HT-PGPB application of glycophytic rice crops remains incomprehensively reported. Thus, this review describes a plausible strategy of halophyte-associated HT-PGPB as the future catalyst for rice crop production in salt-dominated land and aims to meet the global Sustainable Development Goals (SDGs) of zero hunger.
Collapse
Affiliation(s)
- Han Meng Teo
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Aziz A.
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Wahizatul A. A.
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Kesaven Bhubalan
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Siti Nordahliawate M. S.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Muhamad Syazlie C. I.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Lee Chuen Ng
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
- Correspondence:
| |
Collapse
|
38
|
Ashry NM, Alaidaroos BA, Mohamed SA, Badr OAM, El-Saadony MT, Esmael A. Utilization of drought-tolerant bacterial strains isolated from harsh soils as a plant growth-promoting rhizobacteria (PGPR). Saudi J Biol Sci 2022; 29:1760-1769. [PMID: 35280578 PMCID: PMC8913418 DOI: 10.1016/j.sjbs.2021.10.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
Drought stress adversely affects plant health and productivity. Recently, drought-resistant bacterial isolates are used to combat drought resistance in crops. In this in vitro study, 20 bacterial isolates were isolated from harsh soil; their drought tolerance was evaluated using four concentrations of polyethylene glycol (PEG) 6000. The two most efficient isolates (DS4 and DS9) were selected and identified using 16S rRNA genetic sequencing. They were registered in the NCBI database and deposited under accession numbers MW916285 and MW916307 for Bacillus cereus (DS4) and Bacillus albus (DS9), respectively. These isolates were screened for plant growth-promoting properties compared to non-stressed conditions. Biochemical parameters; Proline, salicylic acid, gibberellic acid (GA), indole acetic acid (IAA), antioxidant activity, and antioxidant enzymes were measured under the same conditions, and in vitro seed germination was tested under stress conditions and inoculation with selected isolates. The results showed that under the harsh conditions of PEG6000, DS4 produced the highest amount of IAA of 1.61 µg/ml, followed by DS9 with 0.9 µg/ml. The highest amount of GA (49.95 µg/ml) was produced by DS9. On the other hand, the highest amount of siderophore was produced from DS4 isolate followed by DS9. Additionally, DS4 isolate recorded the highest exopolysaccharide (EPS) content of 3.4 mg/ml under PEG (-1.2 MPa) followed by DS9. The antioxidant activity increased in PEG concentrations depending manner, and the activity of the antioxidant enzymes increased, as catalase (CAT) recorded the highest activity in DS4 with an amount of 1.095 mg/ml. additionally, an increase in biofilm formation was observed under drought conditions. The isolated mixture protected the plant from the harmful effects of drought and showed an increase in the measured variables. Under unstressed conditions, the highest rates of emulsification index (EI 24%) were obtained for DS4 and DS9, at 14.92 and 11.54, respectively, and decreased under stress. The highest values of germination, total seedling length, and vigor index were obtained upon inoculation with the combination of two strains, and were 100%, 4.10 cm, and 410, respectively. Therefore, two strains combination is an effective vaccine capable of developing and improving drought tolerance in dryland plants.
Collapse
Affiliation(s)
- Noha M Ashry
- Agriculture Microbiology Department, Faculty of Agriculture, Benha University, Qalubia 13736, Egypt
| | - Bothaina A Alaidaroos
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Saudi Arabia
| | - Shereen A Mohamed
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt
| | - Omnia A M Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Qalubiya Governorate 13736, Egypt
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed Esmael
- Botany and Microbiology Department, Faculty of Science, Benha University, Qalubiya Governorate, 13511, Egypt
| |
Collapse
|
39
|
Evaluation of genetic behavior of some Egyption Cotton genotypes for tolerance to water stress conditions. Saudi J Biol Sci 2022; 29:1611-1617. [PMID: 35280572 PMCID: PMC8913392 DOI: 10.1016/j.sjbs.2021.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/23/2022] Open
Abstract
Water stress is a critical abiotic stress for plant reduction in arid and semiarid zones and, has been discovered to be detrimental to the development of seedlings as well as the growth and physiological characteristics of many crops such as cotton. The objectives of our study were to determine the combining ability and genetic components for five quantitative traits [(leaf area (LA), leaf dry weight (LDW), plant height (PH), fiber length (2.5 percent SL), and lint cotton yield/plant (LCY/P)] under water shortage stress, a half diallel cross between six cotton genotypes representing a wide range of cotton characteristics was evaluated in RCBD with four replications. The genotype mean squares were significant for all traits studied, demonstrating significant variation among genotypes for all characters under water shortage stress. LCY/P had the highest phenotypic and genotypic correlation co-efficient with PH, LDW, and LA shortage. The highest direct effect on lint cotton yield was exhibited by leaf area (3.905), and the highest indirect effects of all traits were through LA, with the exception of 2.5 percent SL, which was through LDW. The highest dissimilarity (Euclidean Distance) between parental genotypes was between G.87 and G.94, followed by G.87 and Menoufi. G.94 was also a well-adapted genotype, and the combinations G.87 x G.94 and G.87 x Menoufi may outperform their parents. The combining ability analysis revealed highly significant differences between parental GCA effects and F1 crosses SCA effects. The variation of GCA and SCA demonstrated the assurance of additive and non- additive gene action in the inheritance of all traits studied. In terms of general combining ability (GCA) effects, parental genotype G.94 demonstrated the highest significant and positive GCA effects for all traits studied, with the exception of 2.5 percent SL, where G.87 revealed the highest significant and positive GCA effects. The effects of specific combining ability (SCA) revealed that the cross (G.87 x2G.94) revealed stable, positive, and significant SCA for all of the studied traits.
Collapse
|
40
|
Ahmed DM, Mohsen AEAM, El-Deeb MA, Alkhedaide A, El-Tahan AM, Metwally ESM. The larvicidal effect of neemazal T/S, clove oil and ginger oil on tomato leafminer, Tuta absoluta compared to coragen. Saudi J Biol Sci 2022; 29:1447-1455. [PMID: 35280545 PMCID: PMC8913390 DOI: 10.1016/j.sjbs.2021.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/18/2021] [Accepted: 11/17/2021] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to evaluate the toxicity and biochemical changes of Tuta absoluta 3rd instar larvae affected by neemazal T/S, clove oil and ginger oil. These compounds were evaluated compared to the recommended pesticide, Coragen 20% SC. by means of sublethal concentrations, LC25 and LC50 under constant laboratory conditions. Results showed that neemazal T/S is more toxic than detected oils compared with higher toxicity of coragen with LC50 values of 57.52, 159.94, 633.38 and 930.71 μg mL−1 for coragen, neemazal, ginger oil and clove oil, respectively. There were highly significant differences between all treatments and untreated larvae. Neemazal possessed the greatest effect on activity level of most physiological parameters than selected oils. Larval content of digestive enzymes was decreased significantly 48 h after all treatments except for lipase, α-esterase and β-esterase (in case of coragen and clove oil). Also, total proteins, total carbohydrates, total lipids and total free amino acids take the same trend. Based on this study, these sublethal doses caused a significantly dose-dependent perturbation in determined components.
Collapse
|
41
|
Effects of rhizobacteria and seed oils as eco-friendly agents against Meloidogyne incognita infested pepper plants under greenhouse and repeated applications field conditions. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
42
|
Fouda SE, El-Saadony FM, Saad AM, Sayed SM, El-Sharnouby M, El-Tahan AM, El-Saadony MT. Improving growth and productivity of faba bean (Vicia faba L.) using chitosan, tryptophan, and potassium silicate anti-transpirants under different irrigation regimes. Saudi J Biol Sci 2022; 29:955-962. [PMID: 35197763 PMCID: PMC8847969 DOI: 10.1016/j.sjbs.2021.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
This work aims to study the effect of foliar spraying of three anti-transpirants i.e., A1: tryptophan (Tri), A2: potassium silicate (KS), A3: chitosan (Chi) as well as A0: control (Tap water) under three irrigation regimes, I1: 2400, I2: 3600, and I3: 4800 m3ha−1 on the quality and production of faba bean crop and its nutrient contents. The study was carried out during two successive winter seasons of 2018/2019 and 2019/2020. Drought stress affected the average performance of all studied traits as it reduced seed yield and traits, as a result of the decrease in chlorophyll related to photosynthesis, protein, carbohydrates, total phenols, amino acids, macronutrients (N, P, and K), micronutrient contents (Fe, Mn, and Zn) and their absorption. The single foliar spraying of faba bean with tryptophan 75 ppm, potassium silicate at 100 ppm, or chitosan at 750 ppm significantly increased all studied traits and reduced the drought stress compared to control under different irrigation systems. We recommended using a foliar spray of chitosan (750 ppm) on faba bean plants under an irrigation level of 4800 m3 led to an improvement in the physiological properties of the plant, i.e., plant height, the number of branches/plants, and the number of plants, pods plant−1, the number of seed pods−1, the weight of 100 seeds and seed yield ha−1 increased with relative increase about 42.29, 89.47, 28.85, 75.91, 24.43, and 306.48% compared to control. The quality properties also improved, as the total chlorophyll, protein, carbohydrates, total phenols, and amino acids were higher than the control with a relative increase of 63.83, 29.58, 27.72, 37.54, and 64.19%. Additionally, an increase in the contents and uptake of macronutrients (N, P, and K), and micronutrients (Fe, Mn, Zn) and their absorption. The increase was estimated with 29.41, 75.00, 16.56, 431.17, 630.48, 72.68%, 22.37, 35.69, 42.33, 397.63, 452.58, and 485.94% about the control. This was followed by potassium silicate (100 ppm), then tryptophan (75 ppm) compared to the control, which recorded the minimum values in plant traits.
Collapse
|
43
|
Abdou NM, El-Saadony FM, Roby MH, Mahdy HA, El-Shehawi AM, Elseehy MM, El-Tahan AM, Abdalla H, Saad AM, Idris Badawy AbouSreea A. Foliar spray of potassium silicate, aloe extract composite and their effect on growth and yielding capacity of roselle (Hibiscus sabdariffa L.) under water deficit stress conditions. Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.02.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
44
|
El-Ashry RM, El-Saadony MT, El-Sobki AE, El-Tahan AM, Al-Otaibi S, El-Shehawi AM, Saad AM, Elshaer N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J Biol Sci 2022; 29:920-932. [PMID: 35197760 PMCID: PMC8848026 DOI: 10.1016/j.sjbs.2021.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Nemours effective management tactics were used to reduce world crop losses caused by plant-parasitic nematodes. Nowadays the metallic nanoparticles are easily developed with desired size and shape. Nanoparticles (NPs) technology becomes a recognized need for researchers. Ecofriendly and biosafe SiNPs are developed from microorganisms. Recently, silicon nanoparticles (SiNPs) have gained novel pesticide properties against numerous agricultural pests. This study assessed the biosynthesis of SiNPs from Fusarium oxysporum SM5. The obtained SiNPs were spherical with a size of 45 nm and a negative charge of -25.65. The nematocidal effect of SiNPs against egg hatching and second-stage juveniles (J2) of root-knot nematode (RKN) (Meloidogyne incognita) was evaluated on eggplant,Solanum melongena L. plants. In vitro, all tested SiNPs concentrations significantly (p ≤ 0.05) inhibited the percentage of egg hatching at a different time of exposure than control. Meanwhile, after 72 h, the percent mortality of J2 ranged from 87.00 % to 98.50 %, with SiNPs (100 and 200 ppm). The combination between SiNPs and the half-recommended doses (0.5 RD) of commercial nematicides namely, fenamiphos (Femax 40 % EC)R, nemathorin (Fosthiazate 10 % WG) R, and fosthiazate (krenkel 75 % EC) R confirmed the increase of egg hatching inhibition and J2 mortality after exposure to SiNPs (100 ppm) mixed with 0.5 RD of synthetic nematicides. The findings suggest that the combination between SiNPs, and 0.5 RD of nematicides reduced nematode reproduction, gall formation, egg masses on roots and final population of J2 in the soil. Therefore, improving the plant growth parameters by reducing the M. incognita population.
Collapse
Affiliation(s)
- Ramadan M. El-Ashry
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed E.A. El-Sobki
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Saad Al-Otaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Nashwa Elshaer
- Department of Plant Protection, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| |
Collapse
|
45
|
Ali B, Wang X, Saleem MH, Sumaira, Hafeez A, Afridi MS, Khan S, Zaib-Un-Nisa, Ullah I, do Amaral Júnior AT, Alatawi A, Ali S. PGPR-Mediated Salt Tolerance in Maize by Modulating Plant Physiology, Antioxidant Defense, Compatible Solutes Accumulation and Bio-Surfactant Producing Genes. PLANTS (BASEL, SWITZERLAND) 2022; 11:345. [PMID: 35161325 PMCID: PMC8840115 DOI: 10.3390/plants11030345] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 07/30/2023]
Abstract
Salinity stress is a barrier to crop production, quality yield, and sustainable agriculture. The current study investigated the plant growth promotion, biochemical and molecular characterization of bacterial strain Enterobacter cloacae PM23 under salinity stress (i.e., 0, 300, 600, and 900 mM). E. cloacae PM23 showed tolerance of up to 3 M NaCl when subjected to salinity stress. Antibiotic-resistant Iturin C (ItuC) and bio-surfactant-producing genes (sfp and srfAA) were amplified in E. cloacae PM23, indicating its multi-stress resistance potential under biotic and abiotic stresses. Moreover, the upregulation of stress-related genes (APX and SOD) helped to mitigate salinity stress and improved plant growth. Inoculation of E. cloacae PM23 enhanced plant growth, biomass, and photosynthetic pigments under salinity stress. Bacterial strain E. cloacae PM23 showed distinctive salinity tolerance and plant growth-promoting traits such as indole-3-acetic acid (IAA), siderophore, ACC deaminase, and exopolysaccharides production under salinity stress. To alleviate salinity stress, E. cloacae PM23 inoculation enhanced radical scavenging capacity, relative water content, soluble sugars, proteins, total phenolic, and flavonoid content in maize compared to uninoculated (control) plants. Moreover, elevated levels of antioxidant enzymes and osmoprotectants (Free amino acids, glycine betaine, and proline) were noticed in E. cloacae PM23 inoculated plants compared to control plants. The inoculation of E. cloacae PM23 significantly reduced oxidative stress markers under salinity stress. These findings suggest that multi-stress tolerant E. cloacae PM23 could enhance plant growth by mitigating salt stress and provide a baseline and ecofriendly approach to address salinity stress for sustainable agriculture.
Collapse
Affiliation(s)
- Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (A.H.); (I.U.)
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sumaira
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Aqsa Hafeez
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (A.H.); (I.U.)
| | - Muhammad Siddique Afridi
- Department of Plant Pathology, Federal University of Lavras (UFLA), Lavras 37200-900, MG, Brazil;
| | - Shahid Khan
- Department of Agriculture, University of Swabi, Ambar, Swabi 94640, Pakistan;
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Zaib-Un-Nisa
- Cotton Research Institute, Multan 60000, Pakistan;
| | - Izhar Ullah
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (B.A.); (A.H.); (I.U.)
| | - Antônio Teixeira do Amaral Júnior
- Laboratório de Melhoramento Genético Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil;
| | - Aishah Alatawi
- Biology Department, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia;
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
46
|
Eltaly RI, Mohammed SH, Alakeel KA, Salem HH, Abdelfattah A, Ezzat Ahmed A, El-Tahan AM, El-Saadony MT, Saad AM, Abu El-Hassan GM, Farag SM. Phototoxicity of Eosin yellow Lactone and Phloxine B photosensitizers against mosquito larvae and their associated predators in El-Fayoum (Egypt). Saudi J Biol Sci 2022. [DOI: 10.1016/j.sjbs.2022.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
47
|
Naiem SY, Badran AE, Boghdady MS, Alotaibi SS, El-Shehawi AM, Salem HM, El-Tahan AM, El-Saadony MT, Ismail HE. Stability and anatomical parameters of irradiated potato cultivars under drought stress. Saudi J Biol Sci 2022; 29:2819-2827. [PMID: 35531191 PMCID: PMC9073068 DOI: 10.1016/j.sjbs.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022] Open
Abstract
This study was carried out in Desert Research Center and Faculty of Agriculture, Zagazig University, Egypt, under North Sinai conditions during three growing seasons, i.e., summer 2018, fall 2018/2019 and summer 2019 to assess the effect of radiation mutants on leaf histological features and genetic stability of the productivity of some potato cultivars under drought stress conditions. Results reveal that the genotypes can be statistically classified based on regression coefficient (bi), deviation from regression (S2di) to 4 groups (with low in S2di are considered in all groups) as: (i) Genotype with elevated average, bi = 1, it is considered as stable genotype where Cara cultivar (both generations) was included. (ii) Genotype with elevated average, bi > 1 as genotype with average stability where spunta cultivar was involved. (iii) Genotype with low mean, bi < 1 as genotype with low stability where hermes (both primary (M1) and secondary (M2) radiated generations) and Caruso (2nd generation) cultivars were involved. (iv) Genotypes including a few bi values in one generation, as genotype including low stability but are not recommended for use in this generation where Caruso cv in M1 was included. The results indicated that 20 Gy irradiation exposure revealed that Spunta cultivar produced markedly high mean combined over yield during M1 (11.771 ton/fed) and M2 (10.97 ton/fed) generations than other genotypes and ranked first over all environments. It proves that Hermes could be employed as anti-stress genotypes under stress conditions (negative conditions or poor yielding). However, spunta followed by cara cv. represented a good performance in M2 production yield (10.97 and 8.51 ton/fed, respectively), slight drift from the regression line and coefficient close to 1, therefore, both cultivars were excellent between genotypes in shape of yield stability and is recommended for different conditions. According to anatomical studies, 80 % from field capacity (FC) decreased the thickness of medvein and lamina of potato cv. spunta, also, dimensions of medvein bundle and mean diameter of vessels. In conclusion, plants treated with gamma ray at level 20 and grown under 80 % FC induced prominent increase in all previous characters.
Collapse
Affiliation(s)
- Sherin Y. Naiem
- Plant Genetic Resources Dept., Desert Research Center, Cairo, Egypt
| | - Ayman E. Badran
- Plant Genetic Resources Dept., Desert Research Center, Cairo, Egypt
| | - Mohamed S. Boghdady
- Agricultural Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
- Corresponding author.
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Hany E. Ismail
- Horticulture Deptartment Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| |
Collapse
|
48
|
Saad AM, Salem HM, El-Tahan AM, El-Saadony MT, Alotaibi SS, El-Shehawi AM, Abd El-Mageed TA, Taha AE, Alkahtani MA, Ezzat Ahmed A, Swelum AA. Biological control: An effective approach against nematodes using black pepper plants (Piper nigrum L.). Saudi J Biol Sci 2022; 29:2047-2055. [PMID: 35531173 PMCID: PMC9073003 DOI: 10.1016/j.sjbs.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/05/2021] [Accepted: 01/02/2022] [Indexed: 12/29/2022] Open
Abstract
Black pepper (Piper nigrum L.) is one of the oldest spices in the world, additionally, it is highly demanded. Several biotic and abiotic variables pose black pepper production worldwide. Plant-parasitic nematodes play a key role among biotic factors, causing considerable economic losses and affecting the production. Different synthetic nematicides were used for controlling plant nematodes, however the majority of pesticides have been pulled from the market due to substantial non-target effects and environmental risks. As a result, the search for alternative eco-friendly agents for controlling plant-parasitic nematodes populations. Microbial agents are a precious option. In this review the bacterial and fungal agents used as an alternative nematicides, they were studied and confirmed as essential anti-microbial agents against plant nematodes which infected Piper nigrum L. This work examines the most common plant nematodes infected Piper nigrum L., with a focus on root knot and burrowing nematodes, in addition, how to control plant parasitic nematodes using microorganisms.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Corresponding author.
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific, Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 4451, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Taia A. Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Mohammed A. Alkahtani
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, 61413 Abha, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Ayman A. Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| |
Collapse
|
49
|
El-Saadony MT, Abuljadayel DA, Shafi ME, Albaqami NM, Desoky ESM, El-Tahan AM, Mesiha PK, Elnahal AS, Almakas A, Taha AE, Abd El-Mageed TA, Hassanin AA, Elrys AS, Saad AM. Control of foliar phytoparasitic nematodes through sustainable natural materials: Current progress and challenges. Saudi J Biol Sci 2021; 28:7314-7326. [PMID: 34867034 PMCID: PMC8626253 DOI: 10.1016/j.sjbs.2021.08.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 10/28/2022] Open
Abstract
Nematodes are hidden enemies that inhibit the entire ecosystem causing adverse effects on animals and plants, leading to economic losses. Management of foliar phytoparasitic nematodes is an excruciating task. Various approaches were used to control nematodes dispersal, i.e., traditional practices, resistant cultivars, plant extract, compost, biofumigants, induced resistance, nano-biotechnology applications, and chemical control. This study reviews the various strategies adopted in combating plant-parasitic nematodes while examining the benefits and challenges. The significant awareness of biological and environmental factors determines the effectiveness of nematode control, where the incorporation of alternative methods to reduce the nematodes population in plants with increasing crop yield. The researchers were interested in explaining the fundamental molecular mechanisms, providing an opportunity to deepen our understanding of the sustainable management of nematodes in croplands. Eco-friendly pesticides are effective as a sustainable nematodes management tool and safe for humans. The current review presents the eco-friendly methods in controlling nematodes to minimize yield losses, and benefit the agricultural production efficiency and the environment.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dalia A. Abuljadayel
- Department of Biological Sciences, Zoology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Manal E. Shafi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - Najah M. Albaqami
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21577, Saudi Arabia
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Amira M. El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, the City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Philemon K. Mesiha
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed S.M. Elnahal
- Plant pathology Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Aisha Almakas
- Department of Crops and Pastures, Faculty of Agriculture, Sana’a University, Yemen
| | - Ayman E. Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Taia A. Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, 63514 Fayoum, Egypt
| | - Abdallah A. Hassanin
- Genetics department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Ahmed S. Elrys
- Soil Science Department, Faculty of Agriculture, Zagazig University, 44511 Zagazig, Egypt
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
50
|
Ahmed IH, Ali EF, Gad AA, Bardisi A, El-Tahan AM, Abd Esadek O, El-Saadony MT, Gendy AS. Impact of plant growth regulators spray on fruit quantity and quality of pepper (Capsicum annuum L.) cultivars grown under plastic tunnels. Saudi J Biol Sci 2021; 29:2291-2298. [PMID: 35531152 PMCID: PMC9072921 DOI: 10.1016/j.sjbs.2021.11.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/25/2021] [Accepted: 11/28/2021] [Indexed: 12/25/2022] Open
Abstract
The study aims to investigate the effect of foliar spray with three plant growth regulators (PGRs) p-Chlorophenoxyacetic acid (CPA) at 20 and 40 ppm; Gibberellic acid (GA3) at 20 and 30 ppm, 1-Naphthaleneacetic acid (NAA) at 10 and 20 ppm on the response of fruit set, yield, and fruit quality of some hot pepper cultivars (Chillina, Parbirian, Shampion, and Hyffa) grown in sandy soil under plastic tunnels as compared to the control. Spraying Chillina cultivar GA3 at 30 ppm significantly increased the number of fruits/ plant and fruit set (%), yield/plant, and total yield/fad. In addition, the contents of TSS and Vit C, furthermore, maximum capsaicin content were observed in chili fruits in both seasons. However, the interaction between Chillina cultivar and spraying with GA3 at 20 ppm ranked second in yield and quality. The interaction between Parbirian cultivars and spraying with GA3 at 20 or 30 ppm increased the number of flowers/plants in both seasons. On the other hand, the interaction between Shampion cultivar and spraying with tap water (control) gave the lowest values of the number of flowers/ plants, the number of fruits/ plant and fruit set (%), yield, and its components, and fruit quality in both seasons.
Collapse
|