1
|
Alharthi F, Althagafi HA, Jafri I, Oyouni AAA, Althaqafi MM, Al-Hijab LYA, Al-Hazmi NE, Elagib SM, Naguib DM. Phytochemical Composition and Bioactivities of Some Hydrophytes: Antioxidant, Antiparasitic, Antibacterial, and Anticancer Properties and Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:2148. [PMID: 39124266 PMCID: PMC11313917 DOI: 10.3390/plants13152148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Few researches have explored the production of pharmaceuticals from aquatic plants. Therefore, this study explored, for the first time, the phytochemical composition and bioactivities of ten aquatic plants. Aquatic plant shoots from various Nile River canals were collected, dried, and ground for aqueous extract preparation. Phytochemical composition and antioxidant capacity were assessed using DPPH assays. Extracts were tested for antiparasitic, antibacterial, anti-biofilm, and anticancer activities through standard in vitro assays, measuring IC50 values, and evaluating mechanisms of action, including cell viability and high-content screening assays. The results showed that the aquatic plants were rich in pharmaceutical compounds. The antioxidant capacity of these extracts exceeded that of vitamin C. The extracts showed promising antiparasitic activity against pathogens like Opisthorchis viverrini and Plasmodium falciparum, with IC50 values between 0.7 and 2.5 µg/mL. They also demonstrated low MICs against various pathogenic bacteria, causing DNA damage, increased plasma membrane permeability, and 90% biofilm inhibition. In terms of anticancer activity, extracts were effective against a panel of cancer cell lines, with Ludwigia stolonifera exhibiting the highest efficacy. Its IC50 ranged from 0.5 µg/mL for pancreatic, esophageal, and colon cancer cells to 1.5 µg/mL for gastric cancer cells. Overall, IC50 values for all extracts were below 6 µg/mL, showing significant apoptotic activity, increased nuclear intensity, plasma membrane permeability, mitochondrial membrane permeability, and cytochrome c release, and outperforming doxorubicin. This study highlights the potential of aquatic plants as sources for new, safe, and effective drugs with strong antiparasitic, antibacterial, and anticancer properties.
Collapse
Affiliation(s)
- Fahad Alharthi
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Hussam A. Althagafi
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (I.J.); (M.M.A.)
| | - Atif Abdulwahab A. Oyouni
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia;
- Biodiversity Genomics Unit, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed M. Althaqafi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (I.J.); (M.M.A.)
| | - Layla Yousif Abdullah Al-Hijab
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
| | - Nawal E. Al-Hazmi
- Department of Chemistry, Division of Biology (Microbiology), University College of Qunfudah, Umm Al-Qura University, Qunfudah 21961, Saudi Arabia;
| | - Somia M. Elagib
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
- Science Department, Faculty of Teachers, Nile Valley University, Edammer, Atbara 46611, Sudan
| | - Deyala M. Naguib
- Department of Biology, Faculty of Science, Al-Baha University, Al-Baha 65525, Saudi Arabia; (H.A.A.); (L.Y.A.A.-H.); (S.M.E.)
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
2
|
Elhrech H, Aguerd O, El Kourchi C, Gallo M, Naviglio D, Chamkhi I, Bouyahya A. Comprehensive Review of Olea europaea: A Holistic Exploration into Its Botanical Marvels, Phytochemical Riches, Therapeutic Potentials, and Safety Profile. Biomolecules 2024; 14:722. [PMID: 38927125 PMCID: PMC11201932 DOI: 10.3390/biom14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Human health is now inextricably linked to lifestyle choices, which can either protect or predispose people to serious illnesses. The Mediterranean diet, characterized by the consumption of various medicinal plants and their byproducts, plays a significant role in protecting against ailments such as oxidative stress, cancer, and diabetes. To uncover the secrets of this natural treasure, this review seeks to consolidate diverse data concerning the pharmacology, toxicology, phytochemistry, and botany of Olea europaea L. (O. europaea). Its aim is to explore the potential therapeutic applications and propose avenues for future research. Through web literature searches (using Google Scholar, PubMed, Web of Science, and Scopus), all information currently available on O. europaea was acquired. Worldwide, ethnomedical usage of O. europaea has been reported, indicating its effectiveness in treating a range of illnesses. Phytochemical studies have identified a range of compounds, including flavanones, iridoids, secoiridoids, flavonoids, triterpenes, biophenols, benzoic acid derivatives, among others. These components exhibit diverse pharmacological activities both in vitro and in vivo, such as antidiabetic, antibacterial, antifungal, antioxidant, anticancer, and wound-healing properties. O. europaea serves as a valuable source of conventional medicine for treating various conditions. The findings from pharmacological and phytochemical investigations presented in this review enhance our understanding of its therapeutic potential and support its potential future use in modern medicine.
Collapse
Affiliation(s)
- Hamza Elhrech
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Oumayma Aguerd
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| | - Chaimae El Kourchi
- Laboratory of Materials, Nanotechnology and Environment, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Monica Gallo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Daniele Naviglio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia, 4, 80126 Naples, Italy;
| | - Imane Chamkhi
- Geo-Biodiversity and Natural Patrimony Laboratory (GeoBio), Geophysics, Natural Patrimony, Research Center (GEOPAC), Scientific Institute, Mohammed V University in Rabat, Rabat 10106, Morocco;
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco; (H.E.); (O.A.)
| |
Collapse
|
3
|
Gateva S, Jovtchev G, Angelova T, Gerasimova T, Dobreva A, Mileva M. Genotoxic and Anti-Genotoxic Potential of Hydrosols from Water-Steam Distillation of Oil-Bearing Roses Rosa centifolia L. and Rosa gallica L. from Bulgaria. Pharmaceuticals (Basel) 2024; 17:657. [PMID: 38794227 PMCID: PMC11125326 DOI: 10.3390/ph17050657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Rosa centifolia L. and Rosa gallica L. (Rosaceae) are grown as raw materials for valuable essential oils and hydrosols. There are scarce data about the biological activities and the genoprotective potential of the hydrosols of these roses. The aim of the study was to provide information on their cytotoxic/genotoxic activity and anti-cytotoxic/anti-genotoxic capacity against mutagenic N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The evaluation was performed using classical tests for chromosomal aberrations and micronuclei in the higher plant Hordeum vulgare and human lymphocyte test systems. The experimental schemes included combined hydrosol and mutagen treatment. Both hydrosols (6, 14, 20%) had no cytotoxic effect on barley and showed low genotoxicity in both test systems as the injuries were enhanced to a lesser extent compared to the controls. Lymphocytes were more susceptible than H. vulgare. Under the conditions of combined treatment, it was found that the two hydrosols possessed good anti-cytotoxic and anti-genotoxic potential against MNNG. Both rose products exerted genoprotective potential to a similar extent, decreasing the frequencies of aberrations in chromosomes and micronuclei to a significant degree in both types of cells when non-toxic concentrations of hydrosols were applied before MNNG. This was performed both with and without any inter-treatment time. The observed cytoprotective/genoprotective potential suggests that these hydrosols are promising for further application in phytotherapy and medicine.
Collapse
Affiliation(s)
- Svetla Gateva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Gabriele Jovtchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Tsveta Angelova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Tsvetelina Gerasimova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria; (S.G.); (G.J.); (T.A.); (T.G.)
| | - Ana Dobreva
- Institute for Roses and Aromatic Plants, Agricultural Academy, 49 Osvobojdenie Blvd., 6100 Kazanlak, Bulgaria;
| | - Milka Mileva
- Institute of Microbiology, Bulgarian Academy of Sciences, 26 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria
| |
Collapse
|
4
|
Almiman B. Glimpse into phytopathogenic fungal species in Al Baha Province, Saudi Arabia; identification from molecular and morphological characteristics. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2023. [DOI: 10.1080/16583655.2022.2164458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Bandar Almiman
- Department of Biology, Faculty of Science, Al Baha University, Alaqiq, Al Baha, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Thotathil V, Sidiq N, Fakhroo A, Sreerama L. Phytochemical Analysis of Anastatica hierochuntica and Aerva javanica Grown in Qatar: Their Biological Activities and Identification of Some Active Ingredients. Molecules 2023; 28:molecules28083364. [PMID: 37110597 PMCID: PMC10145884 DOI: 10.3390/molecules28083364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Plant-derived compounds and their extracts are known to exhibit chemo preventive (antimicrobial, antioxidant and other) activities. The levels of such chemo preventive compounds vary depending on environmental factors, including the regions where they grow. Described in this study are: (i) a phytochemical analysis of the two plants grown in the desert environment of Qatar, viz., Anastatica hierochuntica and Aerva javanica; (ii) the antibacterial, antifungal and antioxidant activities of various solvent extracts of these plants; (iii) a report on the isolation of several pure compounds from these plants. The phytochemical screening indicated the presence of glycosides, tannins, flavonoids, terpenoids, saponins, phenol and anthraquinones in various extracts of each of the plants. Antibacterial and antioxidant activities were studied using agar diffusion and DPPH methods, respectively. The extracts of Anastatica hierochuntica as well as Aerva javanica inhibit the growth of both gram-positive and gram-negative bacterial species. Various extracts of the two plants also exhibited higher or similar antioxidant activities as those of the standard antioxidants, α-tocopherol and ascorbic acid. The extracts of these plants were further purified by HPLC and characterized by IR and NMR techniques. This process has led to identification of β-sitosterol, campesterol and methyl-9-(4-(3,4-dihydroxy-1'-methyl-5'-oxocyclohexyl)-2-hydroxycyclohexyl)nonanoate from Anastatica hierochuntica, and lupenone, betulinic acid, lupeol acetate and persinoside A and B from Aerva javanica. The results reported herein suggests that Anastatica hierochuntica and Aerva javanica are potent sources of phytomedicines.
Collapse
Affiliation(s)
- Vandana Thotathil
- Department of Chemistry and Earth Sciences, Chemistry Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Naheed Sidiq
- Department of Chemistry and Earth Sciences, Chemistry Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Ameena Fakhroo
- Department of Chemistry and Earth Sciences, Chemistry Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Lakshmaiah Sreerama
- Department of Chemistry and Earth Sciences, Chemistry Program, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
6
|
Das S, Rahaman A, Nath R, Das Talukdar A, Nath D, Bhattacharjee S, Mandal DP, Choudhury MD, Das D, Das G, Patra JK. Effect of acetone fraction of Ottelia alismoides on the G2/M cell cycle arrest and apoptosis in the human carcinoma cell lines. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115729. [PMID: 36162544 DOI: 10.1016/j.jep.2022.115729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The North-eastern parts of India have immense therapeutic floras, Ottelia alismoides is an aquatic plant that has been in use for a long time in traditional medicine for treating diseases like cancer, tuberculosis, diabetes, febrifuge, hemorrhoids, and rubefacient. In lung and skin carcinoma cells with a high rate of proliferation and metastasis including drug resistance and non-specific target activity, generates important challenges towards their treatment strategy. Thus, finding novel therapeutic targets to treat lung and skin cancer progression is essential to enhance the patients' survival with treatment. AIM OF THE STUDY The purpose of this study was to evaluate the apoptotic potential of acetone extract of O. alismoides (L.) Pers. (OA-AC) and to identify the compounds responsible for this effect, HRLC-MS-QTOF analysis of the extract has been undertaken along with in-silico molecular docking analysis of the identified compounds. MATERIALS AND METHODS A549 and A431 cells were treated with acetone extract of O. alismoides (OA-AC) at 24 h and 48 h exposure and cell cycle phase distribution was evaluated and also apoptosis induction activity was evaluated by OA-EtBr staining and Mitochondrial outer membrane potential assay. Western blotting was performed for the evaluation of apoptotic protein expression. At last, the HR-LCMS of OA-AC was analyzed to identify the compounds responsible for the apoptotic activity of the extract. RESULTS The cell cycle phase distribution analysis in A549 and A431 cells at 24hrs exposure with 10 μg/mL and 25 μg/mL of OA-AC showed a potent arrest or blockage at the G2/M phase of the cell cycle with reduced expression of cyclin B and p-Cdc2. At 48 h exposure, apoptosis was observed in these cancer cells with elevated expression of Bax, p21 and cleaved caspase 3 and reduced expression of the Bcl2. CONCLUSION AO-EtBr staining of these cancer cells reveals that the death induced by OA-AC was apoptotic in nature with depolarization of mitochondrial membrane due to loss or damage of the mitochondrial membrane. The HRLC-MS-QTOF analysis of OA-AC depicted 14 major isolable compounds and molecular docking analysis displayed 4 compounds that might act as an inhibitor of cyclin B for G2/M phase arrest that leads to apoptotic induction in the cells.
Collapse
Affiliation(s)
- Subrata Das
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Ashikur Rahaman
- Department of Zoology, West Bengal State University, Kolkata, 700126, India
| | - Rajat Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India.
| | - Deepa Nath
- Department of Botany, Gurucharan College, Silchar, 788007, India
| | | | - Deba Prasad Mandal
- Department of Zoology, West Bengal State University, Kolkata, 700126, India
| | | | - Dipika Das
- Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, India
| | - Gitishree Das
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si, 10326, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Integrative Life Sciences, Dongguk University-Seoul, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
7
|
Sajid A, Manzoor Q, Sajid A, Nazir A, Mumtaz MA, Fatima N, Alshawwa SZ, Iqbal M, Younas U. Downregulation of NF-κB activation pathways using essential oil derived from Citrus pseudolimon: Anticancer and anti-inflammatory potential. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2022.102599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Alghamdi K, Alehaideb Z, Kumar A, Al-Eidi H, Alghamdi SS, Suliman R, Ali R, Almourfi F, Alghamdi SM, Boudjelal M, Matou-Nasri S. Stimulatory effects of Lycium shawii on human melanocyte proliferation, migration, and melanogenesis: In vitro and in silico studies. Front Pharmacol 2023; 14:1169812. [PMID: 37197407 PMCID: PMC10184183 DOI: 10.3389/fphar.2023.1169812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/03/2023] [Indexed: 05/19/2023] Open
Abstract
There is no first-line treatment for vitiligo, a skin disease characterized by a lack of melanin produced by the melanocytes, resulting in an urgent demand for new therapeutic drugs capable of stimulating melanocyte functions, including melanogenesis. In this study, traditional medicinal plant extracts were tested for cultured human melanocyte proliferation, migration, and melanogenesis using MTT, scratch wound-healing assays, transmission electron microscopy, immunofluorescence staining, and Western blot technology. Of the methanolic extracts, Lycium shawii L. (L. shawii) extract increased melanocyte proliferation at low concentrations and modulated melanocyte migration. At the lowest tested concentration (i.e., 7.8 μg/mL), the L. shawii methanolic extract promoted melanosome formation, maturation, and enhanced melanin production, which was associated with the upregulation of microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 melanogenesis-related proteins, and melanogenesis-related proteins. After the chemical analysis and L. shawii extract-derived metabolite identification, the in silico studies revealed the molecular interactions between Metabolite 5, identified as apigenin (4,5,6-trihydroxyflavone), and the copper active site of tyrosinase, predicting enhanced tyrosinase activity and subsequent melanin formation. In conclusion, L. shawii methanolic extract stimulates melanocyte functions, including melanin production, and its derivative Metabolite 5 enhances tyrosinase activity, suggesting further investigation of the L. shawii extract-derived Metabolite 5 as a potential natural drug for vitiligo treatment.
Collapse
Affiliation(s)
- Khalid Alghamdi
- Department of Dermatology (DOD), College of Medicine (COM), King Saud University (KSU), Riyadh, Saudi Arabia
- Vitiligo Research Chair, DOD, COM, KSU, Riyadh, Saudi Arabia
| | - Zeyad Alehaideb
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Ashok Kumar
- Department of Dermatology (DOD), College of Medicine (COM), King Saud University (KSU), Riyadh, Saudi Arabia
- Vitiligo Research Chair, DOD, COM, KSU, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
| | - Sahar S. Alghamdi
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Pharmaceutical Sciences, College of Pharmacy, KSAU-HS, KAIMRC, MNGHA, Riyadh, Saudi Arabia
| | - Rasha Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi, United Arab Emirates
| | - Rizwan Ali
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Feras Almourfi
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | | | - Mohamed Boudjelal
- Department of Core Medical Research Facility and Platform, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs (MNGHA), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
- Blood and Cancer Research Department, KAIMRC, KSAU-HS, MNGHA, Riyadh, Saudi Arabia
- *Correspondence: Sabine Matou-Nasri,
| |
Collapse
|
9
|
El-Seedi HR, Kotb SM, Musharraf SG, Shehata AA, Guo Z, Alsharif SM, Saeed A, Hamdi OAA, Tahir HE, Alnefaie R, Verpoorte R, Khalifa SAM. Saudi Arabian Plants: A Powerful Weapon against a Plethora of Diseases. PLANTS (BASEL, SWITZERLAND) 2022; 11:3436. [PMID: 36559548 PMCID: PMC9783889 DOI: 10.3390/plants11243436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The kingdom of Saudi Arabia (SA) ranks fifth in Asia in terms of area. It features broad biodiversity, including interesting flora, and was the historical origin of Islam. It is endowed with a large variety of plants, including many herbs, shrubs, and trees. Many of these plants have a long history of use in traditional medicine. The aim of this review is to evaluate the present knowledge on the plants growing in SA regarding their pharmacological and biological activities and the identification of their bioactive compounds to determine which plants could be of interest for further studies. A systematic summary of the plants' history, distribution, various pharmacological activities, bioactive compounds, and clinical trials are presented in this paper to facilitate future exploration of their therapeutic potential. The literature was obtained from several scientific search engines, including Sci-Finder, PubMed, Web of Science, Google Scholar, Scopus, MDPI, Wiley publications, and Springer Link. Plant names and their synonyms were validated by 'The Plant List' on 1 October 2021. SA is home to approximately 2247 plant species, including native and introduced plants that belong to 142 families and 837 genera. It shares the flora of three continents, with many unique features due to its extreme climate and geographical and geological conditions. As plants remain the leading supplier of new therapeutic agents to treat various ailments, Saudi Arabian plants may play a significant role in the fight against cancer, inflammation, and antibiotic-resistant bacteria. To date, 102 active compounds have been identified in plants from different sites in SA. Plants from the western and southwestern regions have been evaluated for various biological activities, including antioxidant, anti-cancer, antimicrobial, antimalarial, anti-inflammatory, anti-glycation, and cytotoxic activities. The aerial parts of the plants, especially the leaves, have yielded most of the bioactive compounds. Most bioactivity tests involve in vitro assessments for the inhibition of the growth of tumour cell lines, and several compounds with in vitro antitumour activity have been reported. More in-depth studies to evaluate the mode of action of the compounds are necessary to pave the way for clinical trials. Ecological and taxonomical studies are needed to evaluate the flora of SA, and a plan for the conservation of wild plants should be implemented, including the management of the protection of endemic plants.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Biomedical Centre, Uppsala University, P.O. Box 591, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Safaa M. Kotb
- Department of Chemistry & Microbiology, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Syed G. Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sultan M. Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Omer A. A. Hamdi
- Department of Chemistry, Faculty of Science, University of Khartoum, Khartoum 11115, Sudan
| | | | - Rasha Alnefaie
- Department of Biology, Faculity of Science, Al-Baha University, Albaha 65779, Saudi Arabia
| | - Rob Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, P.O. Box 9505, 2300RA Leiden, The Netherlands
| | - Shaden A. M. Khalifa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE 106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Khaled SS, Soliman HA, Abdel-Gabbar M, Ahmed NA, Attia KAHA, Mahran HA, El-Nahass ES, Ahmed OM. The Preventive Effects of Naringin and Naringenin against Paclitaxel-Induced Nephrotoxicity and Cardiotoxicity in Male Wistar Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8739815. [PMID: 36212979 PMCID: PMC9546692 DOI: 10.1155/2022/8739815] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/14/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
This study assessed the preventive properties of naringin and naringenin on paclitaxel-induced nephrotoxicity and cardiotoxicity in adult male Wistar rats. Intraperitoneal injection of paclitaxel 2 mg/kg body weight, two days/week on the 2nd and 5th days of each week, with or without oral administration of naringin and/or naringenin 10 mg/kg body weight every other day, was continued for six weeks. Treatment of rats with naringin and/or naringenin significantly reversed elevated serum creatinine, urea, and uric acid levels caused by paclitaxel, reflecting improved kidney function. Similarly, heart dysfunction induced by paclitaxel was alleviated after treatment with naringin and/or naringenin, as evidenced by significant decreases in elevated CK-MB and LDH activities. After drug administration, histopathological findings and lesion scores in the kidneys and heart were markedly decreased by naringin and/or naringenin. Moreover, the treatments reversed renal and cardiac lipid peroxidation and the negative impacts on antioxidant defenses via raising GSH, SOD, and GPx. The preventive effects of naringin and naringenin were associated with suppressing oxidative stress and reestablishing antioxidant defenses. A combination of naringin and naringenin was the most efficacious in rescuing organ function and structure.
Collapse
Affiliation(s)
- Shimaa S. Khaled
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohammed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Kandil Abdel Hai Ali Attia
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Hesham A. Mahran
- Health Informatics Department, College of Public Health & Tropical Medicine, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Hygiene, Zoonosis and Epidemiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
11
|
Hassane AMA, Hussien SM, Abouelela ME, Taha TM, Awad MF, Mohamed H, Hassan MM, Hassan MHA, Abo-Dahab NF, El-Shanawany ARA. In Vitro and In Silico Antioxidant Efficiency of Bio-Potent Secondary Metabolites From Different Taxa of Black Seed-Producing Plants and Their Derived Mycoendophytes. Front Bioeng Biotechnol 2022; 10:930161. [PMID: 35928959 PMCID: PMC9344008 DOI: 10.3389/fbioe.2022.930161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/06/2022] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is involved in the pathophysiology of multiple health complications, and it has become a major focus in targeted research fields. As known, black seeds are rich sources of bio-active compounds and widely used to promote human health due to their excellent medicinal and pharmaceutical properties. The present study investigated the antioxidant potency of various black seeds from plants and their derived mycoendophytes, and determined the total phenolic and flavonoid contents in different extracts, followed by characterization of major constituents by HPLC analysis. Finally, in silico docking determined their binding affinities to target myeloperoxidase enzymes. Ten dominant mycoendophytes were isolated from different black seed plants. Three isolates were then selected based on high antiradical potency and further identified by ITS ribosomal gene sequencing. Those isolated were Aspergillus niger TU 62, Chaetomium madrasense AUMC14830, and Rhizopus oryzae AUMC14823. Nigella sativa seeds and their corresponding endophyte A. niger had the highest content of phenolics in their n-butanol extracts (28.50 and 24.43 mg/g), flavonoids (15.02 and 11.45 mg/g), and antioxidant activities (90.48 and 81.48%), respectively, followed by Dodonaea viscosa and Portulaca oleracea along with their mycoendophytic R. oryzae and C. madrasense. Significant positive correlations were found between total phenolics, flavonoids, and the antioxidant activities of different tested extracts. The n-butanol extracts of both black seeds and their derived mycoendophytes showed reasonable IC50 values (0.81–1.44 mg/ml) compared to the control with significant correlations among their phytochemical contents. Overall, seventeen standard phenolics and flavonoids were used, and the compounds were detected in different degrees of existence and concentration in the examined extracts through HPLC analysis. Moreover, the investigation of the molecular simulation results of detected compounds against the myeloperoxidase enzyme revealed that, as a targeted antioxidant, rutin possessed a high affinity (−15.3184 kcal/mol) as an inhibitor. Taken together, the black seeds and their derived mycoendophytes are promising bio-prospects for the broad industrial sector of antioxidants with several valuable potential pharmaceutical and nutritional applications.
Collapse
Affiliation(s)
- Abdallah M. A. Hassane
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- *Correspondence: Abdallah M. A. Hassane, ; Mohamed E. Abouelela,
| | - Saleh M. Hussien
- Food Science and Technology Department, Faculty of Agriculture, Al-Azhar University, Assiut, Egypt
| | - Mohamed E. Abouelela
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
- *Correspondence: Abdallah M. A. Hassane, ; Mohamed E. Abouelela,
| | - Taher M. Taha
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- Department of Biology, College of Science and Arts, Al Bahah University, Al-Mandaq, Saudi Arabia
| | - Mohamed F. Awad
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
| | - Hassan Mohamed
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Mohammad M. Hassan
- Department of Biology, College of Science, Taif University, Taif, Saudi Arabia
- Department of Genetics, Faculty of Agriculture, Menoufiya University, Sheben Al Kom, Egypt
| | - Mohammad H. A. Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Asyut, Egypt
| | - Nageh F. Abo-Dahab
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | | |
Collapse
|
12
|
Nawaz A, Arif A, Jamal A, Shahid MN, Nomani I, Bahwerth FS. Medicinal plants show remarkable antiproliferative potential in human cancer cell lines. Biosci Biotechnol Biochem 2022; 86:362-367. [PMID: 34982821 DOI: 10.1093/bbb/zbab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/22/2021] [Indexed: 11/13/2022]
Abstract
Molecules isolated and identified from plant origin are used to manufacture most chemotherapeutic drugs for cancer treatment. We assumed that these plant extracts contain prolific bioactive compounds with potent antiproliferative activities and could be effective against different human cancer cells. Ethanolic extracts were prepared from Chelidonium majus, Myrica cerifera, Fumaria indica, Nigella sativa, and Silybum marianum, and the antiproliferative assay was performed in HepG2 and HeLa human cancer cell lines. All plants extract exhibited antiproliferative potential against studied cancer cell lines in the dose and time-dependent manner. Chelidonium majus and Silybum marianum have shown promising results against HepG2 and HeLa cells, respectively, followed by Myrica cerifera, Fumaria indica, and Nigella sativa. Results indicated that utilization of whole plant extract as anticancer compounds could be of great value in generating novel chemotherapeutic drugs.
Collapse
Affiliation(s)
- Aisha Nawaz
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Amina Arif
- Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | - Adil Jamal
- Sciences and Research, College of Nursing, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
| | - Muhammad Naveed Shahid
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ibtesam Nomani
- College of Nursing, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
| | - Fayez Saeed Bahwerth
- Central Laboratory and Blood Bank, King Faisal Hospital, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Ali A, Nisar M, Shah SWA, Khalil AAK, Zahoor M, Nazir N, Shah SA, Nasr FA, Noman OM, Mothana RA, Ahmad S, Farooqi HMU. Anatomical Characterization, HPLC Analysis, and Biological Activities of Ilex dipyrena. PLANTS (BASEL, SWITZERLAND) 2022; 11:617. [PMID: 35270086 PMCID: PMC8912459 DOI: 10.3390/plants11050617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/13/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022]
Abstract
Ilex dipyrena Wall (Aquifoliaceae), is a traditional medicinal plant abundantly found in India and Pakistan. In the current research work, initially, the anatomical characteristics were recorded through microscopic examination of selected plant parts, such as leaf, petiole, and midrib. Then, the quantitative phytochemical screening was performed using standard tests reported in literature. The whole-plant powdered sample was then soaked in methanol to obtain crude extract, which was then fractionated into solvents of different polarities to obtain ethyl acetate, chloroform, butanol, hexane, and aqueous extracts. The phytochemical composition of the crude ethyl acetate and chloroform extracts (being the most active fractions) was then confirmed through HPLC analyses, where the possible phytochemical present were predicted through comparison of retention time of a given compound peak with the available standards. The extracts were also evaluated for their in vitro antioxidant and ani-lipoxygenase potentials using standard methods. The microscopic examination revealed the presence of anomocytic type stomata on the abaxial side of the leaf as well as unicellular trichrome and calcium oxalate druses crystals in the midrib and petiole, with a single, centered U-shaped collateral arterial bundle, which was directed toward the adaxial and the phloem toward the abaxial sides of the selected plant parts, respectively. Almost all tested representative groups of phytochemicals and essential minerals were detected in the selected plant, whereas five possible phytochemicals were confirmed in crude and chloroform extract and seven in ethyl acetate fraction. As antioxidant, chloroform fraction was more potent, which exhibited an IC50 value of 64.99, 69.15, and 268.52 µg/mL, determined through DPPH, ABTS, and FRAP assays. Ethyl acetate extract was also equally potent against the tested free radicals. Chloroform and ethyl acetate extracts were also potent against lipoxygenase, with IC50 value of 75.99 and 106.11 µg/mL, respectively. Based on the results of biological studies, Ilex dipyrena was found to good inhibitor of free radicals and lipoxygenase that could be further investigated to isolate compounds of medicinal importance.
Collapse
Affiliation(s)
- Amjad Ali
- Department of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Mohammad Nisar
- Department of Botany, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan;
| | - Atif Ali Khan Khalil
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Punjab, Pakistan; (A.A.K.K.); (S.A.S.)
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.Z.); (N.N.)
| | - Nausheen Nazir
- Department of Biochemistry, University of Malakand, Dir (Lower), Chakdara 18800, Khyber Pakhtunkhwa, Pakistan; (M.Z.); (N.N.)
| | - Sayed Afzal Shah
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Punjab, Pakistan; (A.A.K.K.); (S.A.S.)
| | - Fahd A. Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.N.); (O.M.N.); (R.A.M.)
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.N.); (O.M.N.); (R.A.M.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.A.N.); (O.M.N.); (R.A.M.)
| | - Sajjad Ahmad
- Department of Pharmacy, Sarhad University of Information Technology, Peshawar 25000, Khyber Pakhtunkhwa, Pakistan;
| | | |
Collapse
|
14
|
Antibacterial Activity of Some Medicinal Plants in Al Baha Region, Saudi Arabia, Against Carcinogenic Bacteria Related to Gastrointestinal Cancers. J Gastrointest Cancer 2022; 54:51-55. [PMID: 34988907 DOI: 10.1007/s12029-021-00793-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Gastrointestinal cancers are the most dangerous cancers all over the world. The gut microbiota dysbiosis increases the risk of GI cancers and induces the host's susceptibility to carcinogenic bacteria. Antibiotic resistance is rising in these bacteria. Thus, discovering new safe and effective antibacterial agents is a worldwide concern. This study evaluates the antibacterial activity of six wild medicinal plants from the Al Bahah region in Saudi Arabia. METHODS Arial parts of Cissus quadrangularis, Aloe castellorum, Psiadia punctulata, Aloe pseudorubroviolacea, Barbeya oleoides, Teucrium yemense were collected and dried for extraction with ethanol. The minimum inhibitory concentrations (MIC) of these ethanolic extracts against carcinogenic bacteria Bacteroides fragilis, Clostridium ssp., Cutibacterium acnes, Escherichia coli, Fusobacterium nucleatum, Helicobacter pylori, Mycoplasma spp., Neisseria gonorrhoeae, Porphyromonas gingivalis, Salmonella enterica, and Treponema pallidum were evaluated to determine its antibacterial activity. RESULTS All extracts showed antibacterial activity with MIC lower than 1 mg/ml. Psiadia punctulata showed higher antibacterial activity, while the Aloe species showed the lowest antibacterial activity. CONCLUSION The studied plants' extracts showed high effectiveness as antibacterial activity against the carcinogenic bacteria related to gastrointestinal cancers due to their high content of pharmaceutical components. These plants could be explored further for the development of new antibacterial products against these carcinogenic bacteria.
Collapse
|
15
|
Synthesis of gold nanoparticles using Sambucus wightiana extract and investigation of its antimicrobial, anti-inflammatory, antioxidant and analgesic activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103343] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
16
|
Hassanisaadi M, Bonjar GHS, Rahdar A, Pandey S, Hosseinipour A, Abdolshahi R. Environmentally Safe Biosynthesis of Gold Nanoparticles Using Plant Water Extracts. NANOMATERIALS 2021; 11:nano11082033. [PMID: 34443864 PMCID: PMC8400837 DOI: 10.3390/nano11082033] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/18/2022]
Abstract
Due to their simplicity of synthesis, stability, and functionalization, low toxicity, and ease of detection, gold nanoparticles (AuNPs) are a natural choice for biomedical applications. AuNPs’ unique optoelectronic features have subsequently been investigated and used in high-tech applications such as organic photovoltaics, sensory probes, therapeutic agents, the administration of drugs in biological and medical applications, electronic devices, catalysis, etc. Researchers have demonstrated the biosynthesis of AuNPs using plants. The present study evaluates 109 plant species used in the traditional medicine of Middle East countries as new sources of AuNPs in a wide variety of laboratory environments. In this study, dried samples of bark, bulb, flower, fruit, gum, leaf, petiole, rhizome, root, seed, stamen, and above-ground parts were evaluated in water extracts. About 117 plant parts were screened from 109 species in 54 plant families, with 102 extracts demonstrating a bioreduction of Au3+ to Au0, revealing 37 new plant species in this regard. The color change of biosynthesized AuNPs to gray, violet, or red was confirmed by UV-Visible spectroscopy, TEM, FSEM, DLS, and EDAX of six plants. In this study, AuNPs of various sizes were measured from 27 to 107 nm. This study also includes an evaluation of the potency of traditional East Asian medicinal plants used in this biosynthesis of AuNPs. An environmentally safe procedure such as this could act as a foundation for cosmetic industries whose quality assessment systems give a high priority to non-chemically synthesized products. It is crucial that future optimizations are adequately documented to scale up the described process.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Gholam Hosein Shahidi Bonjar
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98615-538, Iran;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
- Correspondence: (G.H.S.B.); or (S.P.)
| | - Akbar Hosseinipour
- Department of Plant Protection, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran; (M.H.); (A.H.)
| | - Roohollah Abdolshahi
- Department of Agronomy and Plant Breeding, Shahid Bahonar University of Kerman, Kerman 7618411764, Iran;
| |
Collapse
|