1
|
Silva FCO, Malaisamy A, Cahú TB, de Araújo MIF, Soares PAG, Vieira AT, Dos Santos Correia MT. Polysaccharides from exudate gums of plants and interactions with the intestinal microbiota: A review of vegetal biopolymers and prediction of their prebiotic potential. Int J Biol Macromol 2024; 254:127715. [PMID: 37918599 DOI: 10.1016/j.ijbiomac.2023.127715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023]
Abstract
Polysaccharides in plant-exuded gums are complex biopolymers consisting of a wide range of structural variability (linkages, monosaccharide composition, substituents, conformation, chain length and branching). The structural features of polysaccharides confer the ability to be exploited in different industrial sectors and applications involving biological systems. Moreover, these characteristics are attributed to a direct relationship in the process of polysaccharide enzymatic degradation by the fermentative action in the gut microbiota, through intrinsic interactions connecting bacterial metabolism and the production of various metabolites that are associated with regulatory effects on the host homeostasis system. Molecular docking analysis between bacterial target proteins and arabinogalactan-type polysaccharide obtained from gum arabic allowed the identification of intermolecular interactions provided bacterial enzymatic mechanism for the degradation of several arabinogalactan monosaccharide chains, as a model for the study and prediction of potential fermentable polysaccharide. This review discusses the main structural characteristics of polysaccharides from exudate gums of plants and their interactions with the intestinal microbiota.
Collapse
Affiliation(s)
- Francisca Crislândia Oliveira Silva
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Arunkumar Malaisamy
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India
| | - Thiago Barbosa Cahú
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro (UFRJ), University City, CEP 21941-913 Rio de Janeiro, RJ, Brazil
| | - Maria Isabela Ferreira de Araújo
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Paulo Antônio Galindo Soares
- Department of Biochemistry, Biotechnology Laboratory (LaBioTec), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil
| | - Angélica Thomaz Vieira
- Department of Biochemistry and Immunology, Laboratory of Microbiota and Immunomodulation (LMI), Federal University of Minas Gerais (UFMG), Antonio Carlos, 6627 - Pampulha, CEP 30.161-970 Belo Horizonte, MG, Brazil
| | - Maria Tereza Dos Santos Correia
- Department of Biochemistry, Glycoprotein Laboratory (BIOPROT), Federal University of Pernambuco (UFPE), Av. Prof. Moraes Rego, 1235 - University City, CEP 50.670-901 Recife, PE, Brazil.
| |
Collapse
|
2
|
Venkateshaiah A, Havlíček K, Timmins RL, Röhrl M, Wacławek S, Nguyen NHA, Černík M, Padil VVT, Agarwal S. Alkenyl succinic anhydride modified tree-gum kondagogu: A bio-based material with potential for food packaging. Carbohydr Polym 2021; 266:118126. [PMID: 34044942 DOI: 10.1016/j.carbpol.2021.118126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/09/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
Tree gums are a class of abundantly available carbohydrate polymers that have not been explored thoroughly in film fabrication for food packaging. Films obtained from pristine tree gums are often brittle, hygroscopic, and lack mechanical strength. This study focuses on the chemical modification of gum kondagogu using long-chain alkenyl groups of dodecenyl succinic anhydride (DDSA), an esterifying agent that introduces a 12-carbon hydrophobic chain to the kondagogu structure. The esterification reaction was confirmed by 1H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The effect of nano-cellulose as an additive on various film properties was investigated. The developed films were characterized for their mechanical, morphological, optical, barrier, antibacterial, and biodegradable properties. The inclusion of long-chain carbon groups acted as internal plasticizers and resulted in an amorphous structure with better film-forming ability, improved hydrophobicity, and higher elongation at break values. The modified films exhibited antibacterial properties and excellent biodegradability under aerobic conditions.
Collapse
Affiliation(s)
- Abhilash Venkateshaiah
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Karel Havlíček
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Renee L Timmins
- Inorganic Chemistry I, University of Bayreuth, Universittsstraße 30, 95447 Bayreuth, Germany
| | - Maximilian Röhrl
- Inorganic Chemistry I, University of Bayreuth, Universittsstraße 30, 95447 Bayreuth, Germany
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Nhung H A Nguyen
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Seema Agarwal
- Macromolecular Chemistry II, University of Bayreuth, Universittsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
3
|
Ramakrishnan RK, Wacławek S, Černík M, Padil VVT. Biomacromolecule assembly based on gum kondagogu-sodium alginate composites and their expediency in flexible packaging films. Int J Biol Macromol 2021; 177:526-534. [PMID: 33636265 DOI: 10.1016/j.ijbiomac.2021.02.156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
The assembly of bio-based macromolecules of gum kondagogu/sodium alginate (KO/SA) was fabricated using glycerol as a plasticiser and their optimum blending ratio was identified based on their physical and chemical, structural, mechanical, barrier, and morphological properties. The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) analysis show that both biomacromolecules are well organised due to the hydrogen bond interaction between molecular chains involving the hydroxyl, carbonyl, and acetyl groups. Structural identification was performed by recording X-ray diffraction (XRD) spectra. Field emission scanning electron microscopy (FESEM) was used to identify the distinction between the surface of the films of biopolymers, and their conjugates, where the addition of SA increased the surface homogeneity and smoothness. The water contact angle of the blend films reached up to 81°, although the value for pure biomacromolecule films was very low. The blend films also exhibited high tensile strength (up to 24 MPa) compared to the pure biopolymer films. Investigation of film-forming ability, mechanical strength, permeability, transparency, and biodegradability of the developed KO/SA bio-macromolecular association may be established as green and sustainable food packaging films.
Collapse
Affiliation(s)
- Rohith K Ramakrishnan
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Vinod V T Padil
- Institute for Nanomaterials, Advanced Technologies and Innovation (C×I), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| |
Collapse
|
4
|
Katukam V, Rupula K, Rao Beedu S. Synthesis and characterisation of novel biopolymer stabilised organic Pt-nanocomposite: assessment of its antioxidant and antitumour properties. IET Nanobiotechnol 2020; 14:889-898. [PMID: 33399123 PMCID: PMC8676258 DOI: 10.1049/iet-nbt.2020.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Green synthesis of organic Pt-nanocomposite was accomplished using carboplatin as a precursor and novel biopolymer - gum kondagogu (GK) as a reducing agent. The synthesised GK stabilised organic Pt-nanocomposite (GKCPt NC) was characterised by different analytical techniques such as ultraviolet-visible spectroscopy, nanoparticle analyser, scanning electron microscopy and energy dispersive X-ray analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectrophotometer. The XRD pattern established the amorphous nature of GKCPt NC. TEM analysis revealed the homogeneous, monodisperse and spherical nature, with Pt metal size of 3.08 ± 0.62 nm. The binding energy at 71.2 and 74.6 eV show the presence of metallic platinum, Pt(0) confirmed by XPS studies. Further, in vitro radical scavenging and antitumour activity of GKCPt NC have been investigated. In comparison to GK and carboplatin, GKCPt NC showed superior 1, 1-diphenyl-2-picrylhydrazyle activity of 87.82%, whereas 2, 2-azinobis-(3-ethylbenzthinzoline-6-sulphonic acid) activity was 38.50%, respectively. In vitro studies of the antitumour property of GK, GKCPt NC and carboplatin were evaluated by potato disc tumour bioassay model. The efficacy of synthesised GKCPt NC concentration (IC50) on tumour inhibition was found to be 2.04-fold lower as compared to carboplatin. Overall, the synthesised GKCPt NC shows both antitumour and antioxidant properties when compared to the original drug - carboplatin and might have promising applications in cancer therapy.
Collapse
Affiliation(s)
- Vani Katukam
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana State, India
| | - Karuna Rupula
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana State, India
| | - Sashidhar Rao Beedu
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana State, India.
| |
Collapse
|
5
|
Padil VVT, Wacławek S, Černík M, Varma RS. Tree gum-based renewable materials: Sustainable applications in nanotechnology, biomedical and environmental fields. Biotechnol Adv 2018; 36:1984-2016. [PMID: 30165173 PMCID: PMC6209323 DOI: 10.1016/j.biotechadv.2018.08.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/22/2018] [Accepted: 08/24/2018] [Indexed: 12/22/2022]
Abstract
The prospective uses of tree gum polysaccharides and their nanostructures in various aspects of food, water, energy, biotechnology, environment and medicine industries, have garnered a great deal of attention recently. In addition to extensive applications of tree gums in food, there are substantial non-food applications of these commercial gums, which have gained widespread attention due to their availability, structural diversity and remarkable properties as 'green' bio-based renewable materials. Tree gums are obtainable as natural polysaccharides from various tree genera possessing exceptional properties, including their renewable, biocompatible, biodegradable, and non-toxic nature and their ability to undergo easy chemical modifications. This review focuses on non-food applications of several important commercially available gums (arabic, karaya, tragacanth, ghatti and kondagogu) for the greener synthesis and stabilization of metal/metal oxide NPs, production of electrospun fibers, environmental bioremediation, bio-catalysis, biosensors, coordination complexes of metal-hydrogels, and for antimicrobial and biomedical applications. Furthermore, polysaccharides acquired from botanical, seaweed, animal, and microbial origins are briefly compared with the characteristics of tree gum exudates.
Collapse
Affiliation(s)
- Vinod V T Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Stanisław Wacławek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec 1 461 17, Czech Republic.
| | - Rajender S Varma
- Water Resource Recovery Branch, Water Systems Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, MS 483, Cincinnati, Ohio 45268, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|