1
|
Heidarian Y, Tourigny JP, Fasteen TD, Mahmoudzadeh NH, Hurlburt AJ, Nemkov T, Reisz JA, D’Alessandro A, Tennessen JM. Metabolomic analysis of Drosophila melanogaster larvae lacking pyruvate kinase. G3 (BETHESDA, MD.) 2023; 14:jkad228. [PMID: 37792629 PMCID: PMC10755183 DOI: 10.1093/g3journal/jkad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/02/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
Pyruvate kinase (Pyk) is a rate-limiting enzyme that catalyzes the final metabolic reaction in glycolysis. The importance of this enzyme, however, extends far beyond ATP production, as Pyk is also known to regulate tissue growth, cell proliferation, and development. Studies of this enzyme in Drosophila melanogaster are complicated by the fact that the fly genome encodes 6 Pyk paralogs whose functions remain poorly defined. To address this issue, we used sequence distance and phylogenetic approaches to demonstrate that the gene Pyk encodes the enzyme most similar to the mammalian Pyk orthologs, while the other 5 Drosophila Pyk paralogs have significantly diverged from the canonical enzyme. Consistent with this observation, metabolomic studies of 2 different Pyk mutant strains revealed that larvae lacking Pyk exhibit a severe block in glycolysis, with a buildup of glycolytic intermediates upstream of pyruvate. However, our analysis also unexpectedly reveals that pyruvate levels are unchanged in Pyk mutants, indicating that larval metabolism maintains pyruvate pool size despite severe metabolic limitations. Consistent with our metabolomic findings, a complementary RNA-seq analysis revealed that genes involved in lipid metabolism and protease activity are elevated in Pyk mutants, again indicating that loss of this glycolytic enzyme induces compensatory changes in other aspects of metabolism. Overall, our study provides both insight into how Drosophila larval metabolism adapts to disruption of glycolytic metabolism as well as immediate clinical relevance, considering that Pyk deficiency is the most common congenital enzymatic defect in humans.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Azzuolo A, Yang Y, Berghuis A, Fodil N, Gros P. Biphosphoglycerate Mutase: A Novel Therapeutic Target for Malaria? Transfus Med Rev 2023; 37:150748. [PMID: 37827586 DOI: 10.1016/j.tmrv.2023.150748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 10/14/2023]
Abstract
Biphosphoglycerate mutase (BPGM) is a tri-functional enzyme expressed exclusively in erythroid cells and tissues that is responsible for the production of 2,3-biphosphoglycerate (2,3-BPG) through the Rapoport-Luebering shunt. The 2,3-BPG is required for efficient glycolysis and ATP production under anaerobic conditions, but is also a critical allosteric regulator of hemoglobin (Hb), acting to regulate oxygen release in peripheral tissues. In humans, BPGM deficiency is very rare, and is associated with reduced levels of erythrocytic 2,3-BPG and ATP, left shifted Hb-O2 dissociation curve, low P50, elevated Hb and constitutive erythrocytosis. BPGM deficiency in mice recapitulates the erythroid defects seen in human patients. A recent report has shown that BPGM deficiency in mice affords striking protection against both severe malaria anemia and cerebral malaria. These findings are reminiscent of studies of another erythrocyte specific glycolytic enzyme, Pyruvate Kinase (PKLR), which mutational inactivation protects humans and mice against malaria through impairment of glycolysis and ATP production in erythrocytes. BPGM, and PKLR join glucose-6-phosphate dehydrogenase (G6PD) and other erythrocyte variants as modulating response to malaria. Recent studies reviewed suggest glycolysis in general, and BPGM in particular, as a novel pharmacological target for therapeutic intervention in malaria.
Collapse
Affiliation(s)
- Alessia Azzuolo
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Yunxiang Yang
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Albert Berghuis
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Nassima Fodil
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Department of Biochemistry, Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada; Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Heidarian Y, Tourigny JP, Fasteen TD, Mahmoudzadeh NH, Hurlburt AJ, Nemkov T, Reisz JA, D'Alessandro A, Tennessen JM. Metabolomic analysis of Drosophila melanogaster larvae lacking Pyruvate kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543743. [PMID: 37333180 PMCID: PMC10274742 DOI: 10.1101/2023.06.05.543743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Pyruvate kinase (Pyk) is a rate-limiting enzyme that catalyzes the final metabolic reaction in glycolysis. The importance of this enzyme, however, extends far beyond ATP production, as Pyk is also known to regulate tissue growth, cell proliferation, and development. Studies of this enzyme in Drosophila melanogaster , however, are complicated by the fact that the fly genome encodes six Pyk paralogs whose functions remain poorly defined. To address this issue, we used sequence distance and phylogenetic approaches to demonstrate that the gene Pyk encodes the enzyme most similar to the mammalian Pyk orthologs, while the other five Drosophila Pyk paralogs have significantly diverged from the canonical enzyme. Consistent with this observation, metabolomic studies of two different Pyk mutant backgrounds revealed that larvae lacking Pyk exhibit a severe block in glycolysis, with a buildup of glycolytic intermediates upstream of pyruvate. However, our analysis also unexpectedly reveals that steady state pyruvate levels are unchanged in Pyk mutants, indicating that larval metabolism maintains pyruvate pool size despite severe metabolic limitations. Consistent with our metabolomic findings, a complementary RNA-seq analysis revealed that genes involved in lipid metabolism and peptidase activity are elevated in Pyk mutants, again indicating that loss of this glycolytic enzyme induces compensatory changes in other aspects of metabolism. Overall, our study provides both insight into how Drosophila larval metabolism adapts to disruption of glycolytic metabolism as well as immediate clinical relevance, considering that Pyk deficiency is the most common congenital enzymatic defect in humans.
Collapse
Affiliation(s)
- Yasaman Heidarian
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason P Tourigny
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tess D Fasteen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
4
|
Sanchez-Baltasar R, Garcia-Torralba A, Nieto-Romero V, Page A, Molinos-Vicente A, López-Manzaneda S, Ojeda-Pérez I, Ramirez A, Navarro M, Segovia JC, García-Bravo M. Efficient and Fast Generation of Relevant Disease Mouse Models by In Vitro and In Vivo Gene Editing of Zygotes. CRISPR J 2022; 5:422-434. [PMID: 35686982 PMCID: PMC9233508 DOI: 10.1089/crispr.2022.0013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Knockout mice for human disease-causing genes provide valuable models in which new therapeutic approaches can be tested. Electroporation of genome editing tools into zygotes, in vitro or within oviducts, allows for the generation of targeted mutations in a shorter time. We have generated mouse models deficient in genes involved in metabolic rare diseases (Primary Hyperoxaluria Type 1 Pyruvate Kinase Deficiency) or in a tumor suppressor gene (Rasa1). Pairs of guide RNAs were designed to generate controlled deletions that led to the absence of protein. In vitro or in vivo ribonucleoprotein (RNP) electroporation rendered more than 90% and 30% edited newborn animals, respectively. Mice lines with edited alleles were established and disease hallmarks have been verified in the three models that showed a high consistency of results and validating RNP electroporation into zygotes as an efficient technique for disease modeling without the need to outsource to external facilities.
Collapse
Affiliation(s)
- Raquel Sanchez-Baltasar
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
| | - Aida Garcia-Torralba
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Virginia Nieto-Romero
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Angustias Page
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Cáncer (CIEMAT/CIBERONC), Madrid, Spain
| | - Andrea Molinos-Vicente
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Sergio López-Manzaneda
- Epithelial Biomedicine Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Department of Biomedical Engineering, Carlos III University (UC3M), Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) U714, Madrid, Spain
| | - Isabel Ojeda-Pérez
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - Angel Ramirez
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Cáncer (CIEMAT/CIBERONC), Madrid, Spain
| | - Manuel Navarro
- Instituto de Investigación Sanitaria Hospital 12 de octubre (imas12), Madrid, Spain
- Molecular and Translational Oncology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Cáncer (CIEMAT/CIBERONC), Madrid, Spain
| | - José Carlos Segovia
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| | - María García-Bravo
- Cell Technology Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIEMAT/CIBERER), Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
5
|
Huang HM, McMorran BJ, Foote SJ, Burgio G. Host genetics in malaria: lessons from mouse studies. Mamm Genome 2018; 29:507-522. [PMID: 29594458 DOI: 10.1007/s00335-018-9744-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 03/22/2018] [Indexed: 01/09/2023]
Abstract
Malaria remains a deadly parasitic disease caused by Plasmodium, claiming almost half a million lives every year. While parasite genetics and biology are often the major targets in many studies, it is becoming more evident that host genetics plays a crucial role in the outcome of the infection. Similarly, Plasmodium infections in mice also rely heavily on the genetic background of the mice, and often correlate with observations in human studies, due to their high genetic homology with humans. As such, murine models of malaria are a useful tool for understanding host responses during Plasmodium infections, as well as dissecting host-parasite interactions through various genetic manipulation techniques. Reverse genetic approach such as quantitative trait loci studies and random mutagenesis screens have been employed to discover novel host genes that affect malaria susceptibility in mouse models, while other targeted studies utilize mouse models to validate observation from human studies. Herein, we review the findings from the past and present studies on murine models of hepatic and erythrocytic stages of malaria and speculate on how the current mouse models benefit from the recent development in CRISPR/Cas9 gene editing technology.
Collapse
Affiliation(s)
- Hong Ming Huang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Brendan J McMorran
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Simon J Foote
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia.
| |
Collapse
|
6
|
Zhang J, Lu Y. Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets. Angew Chem Int Ed Engl 2018; 57:9702-9706. [PMID: 29893502 PMCID: PMC6261302 DOI: 10.1002/anie.201804292] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/30/2018] [Indexed: 12/19/2022]
Abstract
It is recognized that biocomputing can provide intelligent solutions to complex biosensing projects. However, it remains challenging to transform biomolecular logic gates into convenient, portable, resettable and quantitative sensing systems for point-of-care (POC) diagnostics in a low-resource setting. To overcome these limitations, the first design of biocomputing on personal glucose meters (PGMs) is reported, which utilizes glucose and the reduced form of nicotinamide adenine dinucleotide as signal outputs, DNAzymes and protein enzymes as building blocks, and demonstrates a general platform for installing logic-gate responses (YES, NOT, INHIBIT, NOR, NAND, and OR) to a variety of biological species, such as cations (Na+ ), anions (citrate), organic metabolites (adenosine diphosphate and adenosine triphosphate) and enzymes (pyruvate kinase, alkaline phosphatase, and alcohol dehydrogenases). A concatenated logical gate platform that is resettable is also demonstrated. The system is highly modular and can be generally applied to POC diagnostics of many diseases, such as hyponatremia, hypernatremia, and hemolytic anemia. In addition to broadening the clinical applications of the PGM, the method reported opens a new avenue in biomolecular logic gates for the development of intelligent POC devices for on-site applications.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA),
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana IL 61801 (USA),
| |
Collapse
|
7
|
Zhang J, Lu Y. Biocomputing for Portable, Resettable, and Quantitative Point-of-Care Diagnostics: Making the Glucose Meter a Logic-Gate Responsive Device for Measuring Many Clinically Relevant Targets. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| | - Yi Lu
- Department of Chemistry, Beckman Institute for Advanced Science and Technology; University of Illinois at Urbana-Champaign; Urbana IL 61801 USA
| |
Collapse
|
8
|
Cumnock K, Gupta AS, Lissner M, Chevee V, Davis NM, Schneider DS. Host Energy Source Is Important for Disease Tolerance to Malaria. Curr Biol 2018; 28:1635-1642.e3. [PMID: 29754902 DOI: 10.1016/j.cub.2018.04.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/26/2018] [Accepted: 04/03/2018] [Indexed: 12/22/2022]
Abstract
Pathologic infections are accompanied by a collection of short-term behavioral perturbations collectively termed sickness behaviors [1, 2]. These include changes in body temperature, reduced eating and drinking, and lethargy and mimic behaviors of animals in torpor and hibernation [1, 3-6]. Sickness behaviors are important, pathogen-specific components of the host response to infection [1, 3, 7-9]. In particular, host anorexia has been shown to be beneficial or detrimental depending on the infection [7, 8]. While these studies have illuminated the effects of anorexia on infection, they consider this behavior in isolation from other behaviors and from its effects on host metabolism and energy. Here, we explored the temporal dynamics of multiple sickness behaviors and their effect on host energy and metabolism throughout infection. We used the Plasmodium chabaudi AJ murine model of malaria as it causes severe pathology from which most animals recover. We found that infected animals did become anorexic, skewing their metabolism toward fatty acid oxidation and ketosis. Metabolism of fats requires oxygen for the production of ATP. In this model, animals also suffer severe anemia, limiting their ability to carry oxygen concurrent with their switch toward fatty acid metabolism. We reasoned that the combination of anorexia and anemia would increase pressure on glycolysis as a critical energy pathway because it does not require oxygen. Treating infected mice when anorexic with the glycolytic inhibitor 2-deoxyglucose (2DG) reduced survival; treating animals with glucose improved survival. Peak parasite loads were unchanged, demonstrating changes in disease tolerance. Parasite clearance was reduced with 2DG treatment, suggesting altered resistance.
Collapse
Affiliation(s)
- Katherine Cumnock
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Avni S Gupta
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Michelle Lissner
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Victoria Chevee
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - David S Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
9
|
Laroque A, Min-Oo G, Tam M, Ponka P, Stevenson MM, Gros P. The mouse Char10 locus regulates severity of pyruvate kinase deficiency and susceptibility to malaria. PLoS One 2017; 12:e0177818. [PMID: 28542307 PMCID: PMC5436716 DOI: 10.1371/journal.pone.0177818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/03/2017] [Indexed: 11/18/2022] Open
Abstract
Pyruvate kinase (PKLR) deficiency protects mice and humans against blood-stage malaria. Although mouse strain AcB62 carries a malaria-protective PklrI90N genetic mutation, it is phenotypically susceptible to blood stage malaria induced by infection with Plasmodium chabaudi AS, suggesting a genetic modifier of the PklrI90N protective effect. Linkage analysis in a F2 cross between AcB62 (PklrI90N) and another PK deficient strain CBA/Pk (PklrG338D) maps this modifier (designated Char10) to chromosome 9 (LOD = 10.8, 95% Bayesian CI = 50.7–75Mb). To study the mechanistic basis of the Char10 effect, we generated an incipient congenic line (Char10C) that harbors the Char10 chromosome 9 segment from AcB62 fixed on the genetic background of CBA/Pk. The Char10 effect is shown to be highly penetrant as the Char10C line recapitulates the AcB62 phenotype, displaying high parasitemia following P. chabaudi infection, compared to CBA/Pk. Char10C mice also display a reduction in anemia phenotypes associated with the PklrG338D mutation including decreased splenomegaly, decreased circulating reticulocytes, increased density of mature erythrocytes, increased hematocrit, as well as decreased iron overload in kidney and liver and decreased serum iron. Erythroid lineage analyses indicate that the number of total TER119+ cells as well as the numbers of the different CD71+/CD44+ erythroblast sub-populations were all found to be lower in Char10C spleen compared to CBA/Pk. Char10C mice also displayed lower number of CFU-E per spleen compared to CBA/Pk. Taken together, these results indicate that the Char10 locus modulates the severity of pyruvate kinase deficiency by regulating erythroid responses in the presence of PK-deficiency associated haemolytic anemia.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Anemia, Hemolytic, Congenital Nonspherocytic/metabolism
- Anemia, Hemolytic, Congenital Nonspherocytic/physiopathology
- Animals
- Chromosomes, Mammalian/genetics
- Erythrocytes/metabolism
- Erythrocytes/pathology
- Erythropoiesis/genetics
- Genetic Loci/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Iron/metabolism
- Malaria/genetics
- Mice
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Kinase/metabolism
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/metabolism
- Pyruvate Metabolism, Inborn Errors/physiopathology
Collapse
Affiliation(s)
- Aurélie Laroque
- Biochemistry Department, McGill University, Montreal, Quebec, Canada
| | - Gundula Min-Oo
- Biochemistry Department, McGill University, Montreal, Quebec, Canada
| | - Mifong Tam
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Prem Ponka
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Physiology Department, McGill University, Montreal, Quebec, Canada
| | - Mary M. Stevenson
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Philippe Gros
- Biochemistry Department, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
10
|
Garcia-Gomez M, Calabria A, Garcia-Bravo M, Benedicenti F, Kosinski P, López-Manzaneda S, Hill C, del Mar Mañu-Pereira M, Martín MA, Orman I, Vives-Corrons JLL, Kung C, Schambach A, Jin S, Bueren JA, Montini E, Navarro S, Segovia JC. Safe and Efficient Gene Therapy for Pyruvate Kinase Deficiency. Mol Ther 2016; 24:1187-1198. [PMID: 27138040 PMCID: PMC5088764 DOI: 10.1038/mt.2016.87] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 03/25/2016] [Indexed: 12/17/2022] Open
Abstract
Pyruvate kinase deficiency (PKD) is a monogenic metabolic disease caused by mutations in the PKLR gene that leads to hemolytic anemia of variable symptomatology and that can be fatal during the neonatal period. PKD recessive inheritance trait and its curative treatment by allogeneic bone marrow transplantation provide an ideal scenario for developing gene therapy approaches. Here, we provide a preclinical gene therapy for PKD based on a lentiviral vector harboring the hPGK eukaryotic promoter that drives the expression of the PKLR cDNA. This therapeutic vector was used to transduce mouse PKD hematopoietic stem cells (HSCs) that were subsequently transplanted into myeloablated PKD mice. Ectopic RPK expression normalized the erythroid compartment correcting the hematological phenotype and reverting organ pathology. Metabolomic studies demonstrated functional correction of the glycolytic pathway in RBCs derived from genetically corrected PKD HSCs, with no metabolic disturbances in leukocytes. The analysis of the lentiviral insertion sites in the genome of transplanted hematopoietic cells demonstrated no evidence of genotoxicity in any of the transplanted animals. Overall, our results underscore the therapeutic potential of the hPGK-coRPK lentiviral vector and provide high expectations toward the gene therapy of PKD and other erythroid metabolic genetic disorders.
Collapse
MESH Headings
- Anemia, Hemolytic, Congenital Nonspherocytic/genetics
- Anemia, Hemolytic, Congenital Nonspherocytic/metabolism
- Anemia, Hemolytic, Congenital Nonspherocytic/therapy
- Animals
- Blood Cells/metabolism
- Cell Differentiation
- Disease Models, Animal
- Erythrocytes/cytology
- Erythrocytes/metabolism
- Erythropoiesis
- Genetic Therapy/adverse effects
- Genetic Therapy/methods
- Genetic Vectors/genetics
- Glycolysis
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/metabolism
- Humans
- Lentivirus/genetics
- Metabolic Networks and Pathways
- Metabolome
- Metabolomics
- Mice
- Mice, Transgenic
- Mutation
- Phenotype
- Pyruvate Kinase/deficiency
- Pyruvate Kinase/genetics
- Pyruvate Kinase/metabolism
- Pyruvate Metabolism, Inborn Errors/genetics
- Pyruvate Metabolism, Inborn Errors/metabolism
- Pyruvate Metabolism, Inborn Errors/therapy
- Transduction, Genetic
Collapse
Affiliation(s)
- Maria Garcia-Gomez
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Andrea Calabria
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Maria Garcia-Bravo
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Fabrizio Benedicenti
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | | | - Sergio López-Manzaneda
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | | | - María del Mar Mañu-Pereira
- Red Cell Pathology Laboratory. Hospital Clínic of Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Miguel A Martín
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Israel Orman
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Joan-LLuis Vives-Corrons
- Red Cell Pathology Laboratory. Hospital Clínic of Barcelona – Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | - Axel Schambach
- Institute of Experimental Hematology at Hannover Medical Hospital, Hannover, Germany
| | | | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy (HSR-TIGET), San Raffaele Scientific Institute, Milan, Italy
| | - Susana Navarro
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jose C Segovia
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) - Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Advanced Therapies Mixed Unit. Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| |
Collapse
|
11
|
Laroque A, Min-Oo G, Tam M, Radovanovic I, Stevenson MM, Gros P. Genetic control of susceptibility to infection with Plasmodium chabaudi chabaudi AS in inbred mouse strains. Genes Immun 2011; 13:155-63. [PMID: 21975430 PMCID: PMC4912355 DOI: 10.1038/gene.2011.67] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To identify genetic effects modulating blood stage replication of the malarial parasite, we phenotyped a group of 25 inbred mouse strains for susceptibility to Plasmodium chabaudi chabaudi AS infection (peak parasitemia, survival). A broad spectrum of responses was observed, with strains such as C57BL/6J being the most resistant (low parasitemia, 100% survival), and strains such as NZW/LacJ and C3HeB/FeJ being extremely susceptible (very high parasitemia and uniform lethality). A number of strains showed intermediate phenotypes and gender specific effects, suggestive of rich genetic diversity in response to malaria in inbred strains. An F2 progeny were generated from SM/J (susceptible) and C57BL/6J (resistant) parental strains, and was phenotyped for susceptibility to P. chabaudi chabaudi AS. A whole genome scan in these animals identified the Char1 locus (LOD=7.40) on chromosome 9 as a key regulator of parasite density and pointed to a conserved 0.4Mb haplotype at Char1 that segregates with susceptibility/resistance to infection. In addition, a second locus was detected in [SM/J x C57BL/6J] F2 mice on the X chromosome (LOD=4.26), which was given the temporary designation Char11. These studies identify a conserved role of Char1 in regulating response to malaria in inbred mouse strains, and provide a prioritized 0.4Mb interval for the search of positional candidates.
Collapse
Affiliation(s)
- A Laroque
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Min-Oo G, Gros P. Genetic analysis in mice identifies cysteamine as a novel partner for artemisinin in the treatment of malaria. Mamm Genome 2011; 22:486-94. [DOI: 10.1007/s00335-011-9316-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/21/2011] [Indexed: 11/29/2022]
|
13
|
Longley R, Smith C, Fortin A, Berghout J, McMorran B, Burgio G, Foote S, Gros P. Host resistance to malaria: using mouse models to explore the host response. Mamm Genome 2010; 22:32-42. [DOI: 10.1007/s00335-010-9302-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/03/2010] [Indexed: 11/24/2022]
|
14
|
Min-Oo G, Willemetz A, Tam M, Canonne-Hergaux F, Stevenson MM, Gros P. Mapping of Char10, a novel malaria susceptibility locus on mouse chromosome 9. Genes Immun 2009; 11:113-23. [PMID: 19865104 DOI: 10.1038/gene.2009.78] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Resistance to blood-stage malaria in AcB55 and AcB61 is caused by a loss of function mutation in pyruvate kinase (Pklr(I90N)). Likewise, pyruvate kinase (PK) deficiency in humans is protective against Plasmodium replication in vitro. We identified a third AcB strain, AcB62 that also carries the Pklr(I90N) mutation. However, AcB62 mice were susceptible to P.chabaudi infection and showed high levels of parasite replication (54-62% peak parasitemia). AcB62 mice showed the hallmarks of PK deficiency-associated anemia similar to AcB55/61 with reticulocytosis, splenic red pulp expansion, tissue iron overload, and increased expression of iron metabolism proteins. This suggests that malaria susceptibility in AcB62 is not because of absence of PK deficiency-associated pathophysiology. To map novel genetic factors affecting malaria susceptibility in AcB62, we generated an informative F2 population using AcB62 (Pklr(I90N)) and CBA-Pk(slc) (Pklr(G338D)) as progenitors and identified a novel locus on chromosome 9 (Char10; LOD=7.24) that controls peak parasitemia. A weaker linkage to the Pklr region of chromosome 3 (LOD=3.7) was also detected, a finding that may reflect the segregation of the two defective Pklr alleles. AcB62 alleles at both loci are associated with higher peak parasitemia. These results identify Char10 as a novel locus modulating severity of malaria in the context of PK deficiency.
Collapse
Affiliation(s)
- G Min-Oo
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Oka H, Tabara A, Fujisawa K, Jinnai M, Nakajima R, Arai S, Ishihara C, Tsuji M. Babesia rodhaini: the protective effect of pyruvate kinase deficiency in mice. Exp Parasitol 2008; 120:290-4. [PMID: 18789933 DOI: 10.1016/j.exppara.2008.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Revised: 08/10/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Despite the evidence suggesting that mouse pyruvate kinase (PK) deficiency provides protection against malaria in rodents, there has been no investigation of a parallel protective effect against babesiosis caused by Babesia rodhaini. Here, we examined whether a PK-deficient co-isogenic mouse strain (CBA-Pk-1(slc)) was protected against B. rodhaini infection. We demonstrated that deficiency in pyruvate kinase correlated with a significant protective effect, with survival rates of 50%, 58% and 56% in groups inoculated with 10, 10(3) and 10(5) parasitized erythrocytes, respectively. In contrast, control CBA (CBA-Pk-1(+)) mice exhibited 100% lethality, regardless of the infectious dose. In addition, CBA-Pk-1(slc) mice showed decreased levels of parasitemia when compared to CBA-Pk-1(+) mice, in groups given 10, 10(3) or 10(5) parasitized erythrocytes. These results indicate that similar to PK deficiency in rodents, PK deficiency in mice affects the in vivo growth of B. rodhaini and protects the mice from lethal babesiosis.
Collapse
Affiliation(s)
- Hideki Oka
- School of Veterinary Medicine, Rakuno-Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Gonçalves LA, Almeida P, Mota MM, Penha-Gonçalves C. Malaria liver stage susceptibility locus identified on mouse chromosome 17 by congenic mapping. PLoS One 2008; 3:e1874. [PMID: 18365019 PMCID: PMC2267218 DOI: 10.1371/journal.pone.0001874] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/18/2008] [Indexed: 01/27/2023] Open
Abstract
Host genetic variants are known to confer resistance to Plasmodium blood stage infection and to control malaria severity both in humans and mice. This work describes the genetic mapping of a locus for resistance to liver stage parasite in the mouse. First, we show that decreased susceptibility to the liver stage of Plasmodium berghei in the BALB/c mouse strain is attributable to intra-hepatic factors and impacts on the initial phase of blood stage infection. We used QTL mapping techniques to identify a locus controlling this susceptibility phenotype (LOD score 4.2) on mouse chromosome 17 (belr1 locus). Furthermore, analysis of congenic mouse strains delimited the belr1 locus boundaries distally to the H2 region. Quantification of parasites in the liver of infected congenic mice strongly suggested that the belr1 locus represents a genetic factor controlling the expansion of P. berghei in the hepatic tissue. The mapping of belr1 locus raises the hypothesis that host gene variation is able to control the progression of Plasmodium liver stage infection and opens the possibility that the human genomic region orthologue to belr1 may contain genes that confer resistance to the human malaria liver stage.
Collapse
Affiliation(s)
| | | | - Maria Manuel Mota
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Unidade de Malária, Instituto de Medicina Molecular, Universidade de Lisboa, Lisboa, Portugal
| | | |
Collapse
|
18
|
Abstract
Forward genetics is an experimental approach in which gene mapping and positional cloning are used to elucidate the molecular mechanisms underlying phenotypic differences between two individuals for a given trait. This strategy has been highly successful for the study of inbred mouse strains that show differences in innate susceptibility to bacterial, parasitic, fungal, and viral infections. Over the past 20 years, these studies have led to the identification of a number of cell populations and critical biochemical pathways and proteins that are essential for the early detection of and response to invading pathogens. Strikingly, the macrophage is the point of convergence for many of these genetic studies. This has led to the identification of diverse pathways involved in extracellular and intracellular pathogen recognition, modification of the properties and content of phagosomes, transcriptional response, and signal transduction for activation of adaptive immune mechanisms. In models of viral infections, elegant genetic studies highlighted the pivotal role of natural killer cells in the detection and destruction of infected cells.
Collapse
Affiliation(s)
- S M Vidal
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada H3G 1Y6
| | | | | | | |
Collapse
|
19
|
Marquis JF, Gros P. Genetic analysis of resistance to infections in mice: A/J meets C57BL/6J. Curr Top Microbiol Immunol 2008; 321:27-57. [PMID: 18727486 DOI: 10.1007/978-3-540-75203-5_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Susceptibility to infectious diseases has long been known to have a genetic component in human populations. This genetic effect is often complex and difficult to study as it is further modified by environmental factors including the disease-causing pathogen itself. The laboratory mouse has proved a useful alternative to implement a genetic approach to study host defenses against infections. Our laboratory has used genetic analysis and positional cloning to characterize single and multi-gene effects regulating inter-strain differences in the susceptibility of A/J and C57BL/6J mice to infection with several bacterial and parasitic pathogens. This has led to the identification of several proteins including Nrampl (Slc11a1), Birc1e, Icsbp, C5a, and others that play critical roles in the antimicrobial defenses of macrophages against intracellular pathogens. The use of AcB/BcA recombinant congenic strains has further facilitated the characterization of single gene effects in complex traits such as susceptibility to malaria. The genetic identification of erythrocyte pyruvate kinase (Pklr) and myeloid pantetheinase enzymes (Vnn1/3) as key regulators of blood-stage parasitemia has suggested that cellular redox potential may be a key biochemical determinant of Plasmodium parasite replication. Expanding these types of studies to additional inbred strains and to emerging stocks of mutagenized mice will undoubtedly continue to unravel the molecular basis of host defense against infections.
Collapse
Affiliation(s)
- J-F Marquis
- Department of Biochemistry, McGill University, McIntyre Medical Building, Montreal, QC H3G 1Y6, Canada
| | | |
Collapse
|
20
|
Roy MF, Riendeau N, Bédard C, Hélie P, Min-Oo G, Turcotte K, Gros P, Canonne-Hergaux F, Malo D. Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. J Exp Med 2007; 204:2949-61. [PMID: 17998386 PMCID: PMC2118530 DOI: 10.1084/jem.20062606] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Accepted: 10/16/2007] [Indexed: 12/26/2022] Open
Abstract
The mouse response to acute Salmonella typhimurium infection is complex, and it is under the influence of several genes, as well as environmental factors. In a previous study, we identified two novel Salmonella susceptibility loci, Ity4 and Ity5, in a (AcB61 x 129S6)F2 cross. The peak logarithm of odds score associated with Ity4 maps to the region of the liver and red blood cell (RBC)-specific pyruvate kinase (Pklr) gene, which was previously shown to be mutated in AcB61. During Plasmodium chabaudi infection, the Pklr mutation protects the mice against this parasite, as indicated by improved survival and lower peak parasitemia. Given that RBC defects have previously been associated with resistance to malaria and susceptibility to Salmonella, we hypothesized that Pklr is the gene underlying Ity4 and that it confers susceptibility to acute S. typhimurium infection in mice. Using a fine mapping approach combined with complementation studies, comparative studies, and functional analysis, we show that Pklr is the gene underlying Ity4 and that it confers susceptibility to acute S. typhimurium infection in mice through its effect on the RBC turnover and iron metabolism.
Collapse
Affiliation(s)
- Marie-France Roy
- Department of Human Genetics, McGill University Health Center, Montréal, Québec, H3G 1A4, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|