1
|
Uslu-Biçak İ, Nalçaci M, Sözer S. Targeting PAR1 activation in JAK2V617F-driven philadelphia-negative myeloproliferative neoplasms: Unraveling its role in thrombosis and disease progression. Neoplasia 2025; 63:101153. [PMID: 40088673 PMCID: PMC11951995 DOI: 10.1016/j.neo.2025.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs) are clonal disorders marked by high morbidity and mortality, driven by uncontrolled myeloid proliferation from hematopoietic stem/progenitor cells (HSCs) and associated with a significant risk of thrombosis. This study explored the relationship between JAK2V617F and protease-activated receptor 1 (PAR1) by examining PAR1 expression and activation across various hematopoietic stem/progenitor cell (HSPC) subgroups, assessing their contribution to the hypercoagulable state in Ph-MPNs. We investigated the effects of thrombin, a PAR1 antagonist (vorapaxar), and a JAK2 inhibitor (ruxolitinib) on Ph-MPN cells. Mononuclear cells (MNCs) were isolated from Ph-MPN patients (n = 18), cord blood (CB) samples (n = 5) and healthy volunteers (n = 11). Specific subpopulations were sorted and analyzed for PAR1 expression and JAK2V617F status using qRT-PCR. PAR1 expression changes, along with other PAR pathway-related genes, were assessed post-treatment. Our results revealed that most PAR1+ cells (∼95 %) co-expressed CD34+, with a smaller JAK2V617F+ PAR1+ population lacking CD34. PAR1 expression was significantly higher in Ph-MPN MNCs compared to CB (p = 0.0005), particularly in EMP, HSC/EPC, and EPC subsets. Thrombin treatment reduced surface PAR1 expression, while PAR1 antagonist treatment further decrease the expression level. Combined PAR1 antagonist and ruxolitinib treatment significantly downregulated PAR1 expression (p < 0.0001), and several PAR-pathway-related genes were notably downregulated after treatment. This study highlights that elevated PAR1 expression in primitive hematopoietic subpopulations is linked to disease progression and thrombosis in Ph-MPNs, suggesting PAR1 as a potential therapeutic target. Combining PAR1 antagonists with JAK2 inhibitors shows promise in reducing PAR1 expression and mitigating thrombotic events in Ph-MPN patients.
Collapse
Affiliation(s)
- İldeniz Uslu-Biçak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Institute of Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Meliha Nalçaci
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Zhang H, Kafeiti N, Masarik K, Lee S, Yang X, Zheng H, Zhan H. Decoding Endothelial MPL and JAK2V617F Mutation: Insight Into Cardiovascular Dysfunction in Myeloproliferative Neoplasms. Arterioscler Thromb Vasc Biol 2024; 44:1960-1974. [PMID: 38989576 PMCID: PMC11335084 DOI: 10.1161/atvbaha.124.321008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential face a significantly elevated risk of cardiovascular diseases. Endothelial cells carrying the JAK2V617F mutation have been detected in many patients with MPN. In this study, we investigated the molecular basis for the high incidence of cardiovascular complications in patients with MPN. METHODS We investigated the impact of endothelial JAK2V617F mutation on cardiovascular disease development using both transgenic murine models and MPN patient-derived induced pluripotent stem cell lines. RESULTS Our investigations revealed that JAK2V617F mutant endothelial cells promote cardiovascular diseases under stress, which is associated with endothelial-to-mesenchymal transition and endothelial dysfunction. Importantly, we discovered that inhibiting the endothelial TPO (thrombopoietin) receptor MPL (myeloproliferative leukemia virus oncogene) suppressed JAK2V617F-induced endothelial-to-mesenchymal transition and prevented cardiovascular dysfunction caused by mutant endothelial cells. Notably, the endothelial MPL receptor is not essential for the normal physiological regulation of blood cell counts and cardiac function. CONCLUSIONS JAK2V617F mutant endothelial cells play a critical role in the development of cardiovascular diseases in JAK2V617F-positive MPNs, and endothelial MPL could be a promising therapeutic target for preventing or ameliorating cardiovascular complications in these patients.
Collapse
Affiliation(s)
- Haotian Zhang
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- The Graduate Program in Molecular and Cellular Biology (H. Zhang), Stony Brook University, NY
| | - Nicholas Kafeiti
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
| | - Kyla Masarik
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
| | - Sandy Lee
- Department of Molecular and Cellular Pharmacology (S.L.), Stony Brook University, NY
| | - Xiaoxi Yang
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- Division of Rheumatology, Peking Union Medical College Hospital, Beijing, China (X.Y.)
| | - Haoyi Zheng
- Cardiac Imaging, The Heart Center, Saint Francis Hospital, Roslyn, NY (H. Zheng)
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, NY (H. Zhang, N.K., K.M., X.Y., H. Zhan)
- Medical Service, Northport VA Medical Center, NY (H. Zhan)
| |
Collapse
|
3
|
Zhang H, Kafeiti N, Lee S, Masarik K, Zheng H, Zhan H. Unlocking the Role of Endothelial MPL Receptor and JAK2V617F Mutation: Insights into Cardiovascular Dysfunction in MPNs and CHIP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548716. [PMID: 37503259 PMCID: PMC10370015 DOI: 10.1101/2023.07.12.548716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential (CHIP) are at a significantly higher risk of cardiovascular diseases (CVDs). Endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in many MPN patients. Here, we investigated the impact of endothelial JAK2V617F mutation on CVD development using both transgenic murine models and human induced pluripotent stem cell lines. Our findings revealed that JAK2V617F mutant ECs promote CVDs by impairing endothelial function and undergoing endothelial-to-mesenchymal transition (EndMT). Importantly, we found that inhibiting the endothelial thrombopoietin receptor MPL suppressed JAK2V617F-induced EndMT and prevented cardiovascular dysfunction caused by mutant ECs. These findings propose that targeting the endothelial MPL receptor could be a promising therapeutic approach to manage CVD complications in patients with JAK2V617F-positive MPNs and CHIP. Further investigations into the impact of other CHIP-associated mutations on endothelial dysfunction are needed to improve risk stratification for individuals with CHIP.
Collapse
Affiliation(s)
- Haotian Zhang
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
- The Graduate Program in Molecular & Cellular Biology, Stony Brook University, Stony Brook, NY
| | - Nicholas Kafeiti
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
| | - Sandy Lee
- Department of Molecular and Cellular Pharmacology, Stony Brook University
| | - Kyla Masarik
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
| | - Haoyi Zheng
- Cardiac Imaging, The Heart Center, Saint Francis Hospital, Roslyn, NY
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY
- Medical Service, Northport VA Medical Center, Northport, NY
| |
Collapse
|
4
|
Clinical insights into the origins of thrombosis in myeloproliferative neoplasms. Blood 2021; 137:1145-1153. [PMID: 33237986 DOI: 10.1182/blood.2020008043] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), polycythemia vera, essential thrombocythemia, and primary myelofibrosis, are hematopoietic stem cell disorders that are defined by activating mutations in signal transduction pathways and are characterized clinically by the overproduction of platelets, red blood cells, and neutrophils, significant burden of disease-specific symptoms, and high rates of vascular events. The focus of this review is to critically reevaluate the clinical burden of thrombosis in MPNs, to review the clinical associations among clonal hematopoiesis, JAK2V617F burden, inflammation, and thrombosis, and to provide insights into novel primary and secondary thrombosis-prevention strategies.
Collapse
|
5
|
Mazzeo C, Quan M, Wong H, Castiglione M, Kaushansky K, Zhan H. JAK2V617F mutant endothelial cells promote neoplastic hematopoiesis in a mixed vascular microenvironment. Blood Cells Mol Dis 2021; 90:102585. [PMID: 34139651 DOI: 10.1016/j.bcmd.2021.102585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
The chronic myeloproliferative neoplasms (MPNs) are clonal stem cell disorders. The hematopoietic stem/progenitor cell (HSPC) compartment in patients with MPNs is heterogeneous with the presence of both wild-type and JAK2V617F mutant cells. Mechanisms responsible for mutant stem cell expansion in MPNs are not fully understood. Vascular endothelial cells (ECs) are an essential component of the hematopoietic microenvironment. ECs carrying the JAK2V617F mutation can be detected in patients with MPNs. Utilizing an ex vivo EC-HSPC co-culture system with mixed wild-type and JAK2V617F mutant ECs, we show that even small numbers of JAK2V617F mutant ECs can promote the expansion of JAK2V617F mutant HSPCs in preference to wild-type HSPCs during irradiation or cytotoxic chemotherapy, the two treatments commonly used in the conditioning regimen for stem cell transplantation, the only curative treatment for patients with MPNs. Mechanistically, we found that both cell-cell interactions and secreted factors are important for JAK2V617F mutant EC-mediated neoplastic hematopoiesis. Further understanding of how the JAK2V617F mutation alters vascular niche function will help identify new strategies to not only control neoplastic cell expansion but also prevent disease relapse in patients with MPNs.
Collapse
Affiliation(s)
| | - Moqing Quan
- Massachusetts General Hospital, Boston, MA, USA
| | - Helen Wong
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY, USA
| | | | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook School of Medicine, Stony Brook, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA; Medical Service, Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
6
|
Tremblay D, Kosiorek HE, Dueck AC, Hoffman R. Evaluation of Therapeutic Strategies to Reduce the Number of Thrombotic Events in Patients With Polycythemia Vera and Essential Thrombocythemia. Front Oncol 2021; 10:636675. [PMID: 33665170 PMCID: PMC7921696 DOI: 10.3389/fonc.2020.636675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombosis is the largest contributor to morbidity and mortality in patients with polycythemia vera (PV) and essential thrombocythemia (ET). Our understanding of the risk factors and pathophysiology of thrombosis in PV and ET patients is developing, including recent insights into the role of aberrant platelet-neutrophil interactions, JAK2 mutated endothelial cells and the pro-thrombotic inflammatory milieu. To date, few available therapies have demonstrated the ability to reduce the thrombotic burden in patients with these diseases. Although numerous therapeutic agents have been investigated in both PV and ET patients, few studies are designed to assess their impact on thrombotic events. In this review, we first describe the burden of thrombosis in patients with these myeloproliferative neoplasms (MPNs) and briefly explore their pathophysiologic mechanisms. We then critically assess and summarize the evidence behind currently available therapies with attention toward thrombotic endpoints. Finally, we describe a path forward for clinical research in MPNs that involves surrogate endpoint validation, biomarker development, and clinical trial design strategies in order to accurately assess reduction of thrombotic events when evaluating novel therapies.
Collapse
Affiliation(s)
- Douglas Tremblay
- Hematology/Oncology Section, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Heidi E. Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Amylou C. Dueck
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Ronald Hoffman
- Hematology/Oncology Section, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
7
|
Zhan H, Kaushansky K. The Hematopoietic Microenvironment in Myeloproliferative Neoplasms: The Interplay Between Nature (Stem Cells) and Nurture (the Niche). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:135-145. [PMID: 33119879 DOI: 10.1007/978-3-030-49270-0_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hematopoietic stem cells (HSCs) rely on instructive cues from the marrow microenvironment for their maintenance and function. Accumulating evidence indicates that the survival and proliferation of hematopoietic neoplasms are dependent not only on cell-intrinsic, genetic mutations, and other molecular alterations present within neoplastic stem cells, but also on the ability of the surrounding microenvironmental cells to nurture and promote the malignancy. It is anticipated that a better understanding of the molecular and cellular events responsible for these microenvironmental features of neoplastic hematopoiesis will lead to improved treatment for patients. This review will focus on the myeloproliferative neoplasms (MPNs), polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF), in which an acquired signaling kinase mutation (JAK2V617F) plays a central, pathogenetic role in 50-100% of patients with these disorders. Evidence is presented that the development of an MPN requires both an abnormal, mutation-bearing (i.e., neoplastic) HSC and an abnormal, mutation-bearing microenvironment.
Collapse
Affiliation(s)
- Huichun Zhan
- Division of Hematology-Oncology, Department of Medicine, Stony Brook School of Medicine, Stony Brook, NY, USA. .,Northport VA Medical Center, Northport, NY, USA.
| | | |
Collapse
|
8
|
Testa U, Pelosi E, Castelli G. Endothelial Progenitors in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1263:85-115. [PMID: 32588325 DOI: 10.1007/978-3-030-44518-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tumor vascularization refers to the formation of new blood vessels within a tumor and is considered one of the hallmarks of cancer. Tumor vessels supply the tumor with oxygen and nutrients, required to sustain tumor growth and progression, and provide a gateway for tumor metastasis through the blood or lymphatic vasculature. Blood vessels display an angiocrine capacity of supporting the survival and proliferation of tumor cells through the production of growth factors and cytokines. Although tumor vasculature plays an essential role in sustaining tumor growth, it represents at the same time an essential way to deliver drugs and immune cells to the tumor. However, tumor vasculature exhibits many morphological and functional abnormalities, thus resulting in the formation of hypoxic areas within tumors, believed to represent a mechanism to maintain tumor cells in an invasive state.Tumors are vascularized through a variety of modalities, mainly represented by angiogenesis, where VEGF and other members of the VEGF family play a key role. This has represented the basis for the development of anti-VEGF blocking agents and their use in cancer therapy: however, these agents failed to induce significant therapeutic effects.Much less is known about the cellular origin of vessel network in tumors. Various cell types may contribute to tumor vasculature in different tumors or in the same tumor, such as mature endothelial cells, endothelial progenitor cells (EPCs), or the same tumor cells through a process of transdifferentiation. Early studies have suggested a role for bone marrow-derived EPCs; these cells do not are true EPCs but myeloid progenitors differentiating into monocytic cells, exerting a proangiogenic effect through a paracrine mechanism. More recent studies have shown the existence of tissue-resident endothelial vascular progenitors (EVPs) present at the level of vessel endothelium and their possible involvement as cells of origin of tumor vasculature.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy.
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Koschmieder S, Chatain N. Role of inflammation in the biology of myeloproliferative neoplasms. Blood Rev 2020; 42:100711. [PMID: 32505517 DOI: 10.1016/j.blre.2020.100711] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/11/2019] [Accepted: 05/04/2020] [Indexed: 12/20/2022]
Abstract
What is the role of inflammation in Myeloproliferative Neoplasms? This is currently a topic of much debate. In this review, we will discuss experimental results and basic concepts of inflammatory processes in the pathogenesis of myeloproliferative neoplasms (MPN). So, which are the players involved? First, these are the clonal hematopoietic stem cells (HSC) and their normal stem cell counterparts in the bone marrow (BM), as well as their more mature progeny in the BM and the peripheral blood (PB), including neutrophils, macrophages, erythrocytes, and platelets, but also other cell lineages. Second, these cells produce a plethora of inflammatory cytokines, such as interleukin 6 (IL6), interleukin 8 (IL8), TNF-alpha (TNFa), interferon-alpha (IFNa), and others. Third, these cells and cytokines act in concert with non-hematopoietic cells, including endothelial cells and mesenchymal stromal cells (MSCs). The latter cells, in particular GLI1 positive or leptin receptor (LepR) positive stromal cells, may become activated by the hematopoietic clone to give rise to myofibroblasts, producing excessive fibrosis in the bone marrow (myelofibrosis). Ultimately, the inflammatory and fibrotic circuit involving these three key players may lead to progression of the disease, resulting in BM failure and transformation into acute leukemia, also termed blast crisis. Here, we review the role of these three effectors in the pathogenesis of MPN.
Collapse
Affiliation(s)
- Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaselogy, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaselogy, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
10
|
Bar-Natan M, Hoffman R. New insights into the causes of thrombotic events in patients with myeloproliferative neoplasms raise the possibility of novel therapeutic approaches. Haematologica 2019; 104:3-6. [PMID: 30598493 DOI: 10.3324/haematol.2018.205989] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Michal Bar-Natan
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
11
|
Barbui T, De Stefano V, Falanga A, Finazzi G, Martinelli I, Rodeghiero F, Vannucchi AM, Barosi G. Addressing and proposing solutions for unmet clinical needs in the management of myeloproliferative neoplasm-associated thrombosis: A consensus-based position paper. Blood Cancer J 2019; 9:61. [PMID: 31395856 PMCID: PMC6687826 DOI: 10.1038/s41408-019-0225-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/06/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
This article presents the results of a group discussion among an ad hoc constituted Panel of experts aimed at highlighting unmet clinical needs (UCNs) in the management of thrombotic risk and thrombotic events associated with Philadelphia-negative myeloproliferative neoplasms (Ph-neg MPNs). With the Delphi technique, the challenges in Ph-neg MPN-associated thrombosis were selected. The most clinically relevant UCNs resulted in: (1) providing evidence of the benefits and risks of direct oral anticoagulants, (2) providing evidence of the benefits and risks of cytoreduction in patients with splanchnic vein thrombosis without hypercythemia, (3) improving knowledge of the role of the mutated endothelium in the pathogenesis of thrombosis, (4) improving aspirin dosing regimens in essential thrombocythemia, (5) improving antithrombotic management of Ph-neg MPN-associated pregnancy, (6) providing evidence for the optimal duration of anticoagulation for prophylaxis of recurrent VTE, (7) improving knowledge of the association between somatic gene mutations and risk factors for thrombosis, and (8) improving the grading system of thrombosis risk in polycythemia vera. For each of these issues, proposals for advancement in research and clinical practice were addressed. Hopefully, this comprehensive overview will serve to inform the design and implementation of new studies in the field.
Collapse
Affiliation(s)
- Tiziano Barbui
- FROM Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy.
| | - Valerio De Stefano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy.,Istituto di Ematologia, Università Cattolica, Roma, Italy
| | - Anna Falanga
- Department of Immunohematology and Transfusion Medicine and the Haemostasis and Thrombosis Center, Papa Giovanni XXIII Hospital, Bergamo, Italy.,University of Milan Bicocca, Milan, Italy
| | - Guido Finazzi
- Hematology Division, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Ida Martinelli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, A. Bianchi Bonomi Hemophilia and Thrombosis Center, Milan, Italy
| | - Francesco Rodeghiero
- Hematology Project Foundation, affiliated to the Department of Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Alessandro M Vannucchi
- CRIMM-Center of Research and Innovation of Myeloproliferative Neoplasms, Azienda Ospedaliera Universitaria Careggi, Dept Experimental and Clinical medicine, and Denothe Center, University of Florence, Florence, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, IRCCS Policlinico S. Matteo Foundation, Pavia, Italy
| |
Collapse
|
12
|
Sozer S, Aptullahoglu E, Shivarov V, Yavuz AS. In situ detection of JAK2V617F within viable hematopoietic cells using gold nanoparticle technology. Int J Lab Hematol 2019; 41:e95-e98. [PMID: 30825256 DOI: 10.1111/ijlh.12991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/10/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Selcuk Sozer
- Department of Genetics, Aziz Sancar Research Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Erhan Aptullahoglu
- Department of Genetics, Aziz Sancar Research Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Velizar Shivarov
- Laboratory of Clinical Immunology, Sofiamed University Hospital, Sofia, Bulgaria
| | - Akif Selim Yavuz
- Istanbul Faculty of Medicine, Division of Hematology, Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
Guy A, Gourdou-Latyszenok V, Le Lay N, Peghaire C, Kilani B, Dias JV, Duplaa C, Renault MA, Denis C, Villeval JL, Boulaftali Y, Jandrot-Perrus M, Couffinhal T, James C. Vascular endothelial cell expression of JAK2 V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica 2018; 104:70-81. [PMID: 30171023 PMCID: PMC6312008 DOI: 10.3324/haematol.2018.195321] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/23/2018] [Indexed: 01/13/2023] Open
Abstract
Thrombosis is the main cause of morbidity and mortality in patients with JAK2V617F myeloproliferative neoplasms. Recent studies have reported the presence of JAK2V617F in endothelial cells of some patients with myeloproliferative neoplasms. We investigated the role of endothelial cells that express JAK2V617F in thrombus formation using an in vitro model of human endothelial cells overexpressing JAK2V617F and an in vivo model of mice with endothelial-specific JAK2V617F expression. Interestingly, these mice displayed a higher propensity for thrombus. When deciphering the mechanisms by which JAK2V617F-expressing endothelial cells promote thrombosis, we observed that they have a pro-adhesive phenotype associated with increased endothelial P-selectin exposure, secondary to degranulation of Weibel-Palade bodies. We demonstrated that P-selectin blockade was sufficient to reduce the increased propensity of thrombosis. Moreover, treatment with hydroxyurea also reduced thrombosis and decreased the pathological interaction between leukocytes and JAK2V617F-expressing endothelial cells through direct reduction of endothelial P-selectin expression. Taken together, our data provide evidence that JAK2V617F-expressing endothelial cells promote thrombosis through induction of endothelial P-selectin expression, which can be reversed by hydroxyurea. Our findings increase our understanding of thrombosis in patients with myeloproliferative neoplasms, at least those with JAK2V617F-positive endothelial cells, and highlight a new role for hydroxyurea. This novel finding provides the proof of concept that an acquired genetic mutation can affect the pro-thrombotic nature of endothelial cells, suggesting that other mutations in endothelial cells could be causal in thrombotic disorders of unknown cause, which account for 50% of recurrent venous thromboses.
Collapse
Affiliation(s)
- Alexandre Guy
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | | | | | - Claire Peghaire
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Badr Kilani
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | | | - Cécile Duplaa
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Marie-Ange Renault
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac
| | - Cécile Denis
- Inserm U1176, Hemostasis Inflammation Thrombosis, Le Kremlin-Bicêtre
| | | | | | | | - Thierry Couffinhal
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac.,CHU de Bordeaux, Service des Maladies Cardiaques et Vasculaires, Pessac
| | - Chloe James
- Univ. Bordeaux, Inserm, UMR1034, Biology of Cardiovascular Diseases, Pessac .,CHU de Bordeaux, Laboratoire d'Hématologie, Pessac, France
| |
Collapse
|
14
|
Lin CHS, Zhang Y, Kaushansky K, Zhan H. JAK2V617F-bearing vascular niche enhances malignant hematopoietic regeneration following radiation injury. Haematologica 2018; 103:1160-1168. [PMID: 29567773 PMCID: PMC6029534 DOI: 10.3324/haematol.2017.185736] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myeloproliferative neoplasms are clonal stem cell disorders characterized by hematopoietic stem/progenitor cell expansion. The acquired kinase mutation JAK2V617F plays a central role in these disorders. Abnormalities of the marrow microenvironment are beginning to be recognized as an important factor in the development of myeloproliferative neoplasms. Endothelial cells are an essential component of the hematopoietic vascular niche. Endothelial cells carrying the JAK2V617F mutation can be detected in patients with myeloproliferative neoplasms, suggesting that the mutant vascular niche is involved in the pathogenesis of these disorders. Here, using a transgenic mouse expressing JAK2V617F specifically in all hematopoietic cells (including hematopoietic stem/progenitor cells) and endothelial cells, we show that the JAK2V617F-mutant hematopoietic stem/progenitor cells are relatively protected by the JAK2V617F-bearing vascular niche from an otherwise lethal dose of irradiation during conditioning for stem cell transplantation. Gene expression analysis revealed that chemokine (C-X-C motif) ligand 12, epidermal growth factor, and pleiotrophin are up-regulated in irradiated JAK2V617F-bearing endothelial cells compared to wild-type cells. Our findings suggest that the mutant vascular niche may contribute to the high incidence of disease relapse in patients with myeloproliferative neoplasms following allogeneic stem cell transplantation, the only curative treatment for these disorders.
Collapse
Affiliation(s)
| | - Yu Zhang
- Biopharmaceutical R&D Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook School of Medicine, NY, USA
| | - Huichun Zhan
- Department of Medicine, Stony Brook School of Medicine, NY, USA .,Northport VA Medical Center, Northport, NY, USA
| |
Collapse
|
15
|
Zhan H, Lin CHS, Segal Y, Kaushansky K. The JAK2V617F-bearing vascular niche promotes clonal expansion in myeloproliferative neoplasms. Leukemia 2017; 32:462-469. [PMID: 28744010 PMCID: PMC5783797 DOI: 10.1038/leu.2017.233] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 06/15/2017] [Accepted: 07/10/2017] [Indexed: 12/17/2022]
Abstract
The acquired kinase mutation JAK2V617F plays a central role in myeloproliferative neoplasms (MPNs). However, the mechanisms responsible for the malignant hematopoietic stem/progenitor cell (HSPC) expansion seen in patients with MPNs are not fully understood, limiting the effectiveness of current treatment. Endothelial cells (ECs) are an essential component of the hematopoietic niche, and they have been shown to express the JAK2V617F mutation in patients with MPNs. We show that the JAK2V617F-bearing vascular niche promotes the expansion of the JAK2V617F HSPCs in preference to JAK2WT HSPCs, potentially contributing to poor donor cell engraftment and disease relapse following stem cell transplantation. The expression of Chemokine (C-X-C motif) ligand 12 (CXCL12) and stem cell factor (SCF) were upregulated in JAK2V617F-bearing ECs compared to wild-type ECs, potentially accounting for this observation. We further identify that the thrombopoietin (TPO)/MPL signaling pathway is critical for the altered vascular niche function. A better understanding of how the vascular niche contributes to HSPC expansion and MPN development is essential for the design of more effective therapeutic strategies for patients with MPNs.
Collapse
Affiliation(s)
- H Zhan
- Northport VA Medical Center, Northport, NY, USA.,Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - C H S Lin
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA
| | - Y Segal
- Northport VA Medical Center, Northport, NY, USA
| | - K Kaushansky
- Department of Medicine, Stony Brook Medicine, Stony Brook, NY, USA.,Office of the Sr. Vice President, Health Sciences, Stony Brook Medicine, Stony Brook, NY, USA
| |
Collapse
|
16
|
The spleen microenvironment influences disease transformation in a mouse model of KIT D816V-dependent myeloproliferative neoplasm. Sci Rep 2017; 7:41427. [PMID: 28128288 PMCID: PMC5269732 DOI: 10.1038/srep41427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/20/2016] [Indexed: 12/16/2022] Open
Abstract
Activating mutations leading to ligand-independent signaling of the stem cell factor receptor KIT are associated with several hematopoietic malignancies. One of the most common alterations is the D816V mutation. In this study, we characterized mice, which conditionally express the humanized KITD816V receptor in the adult hematopoietic system to determine the pathological consequences of unrestrained KIT signaling during blood cell development. We found that KITD816V mutant animals acquired a myeloproliferative neoplasm similar to polycythemia vera, marked by a massive increase in red blood cells and severe splenomegaly caused by excessive extramedullary erythropoiesis. Moreover, we found mobilization of stem cells from bone marrow to the spleen. Splenectomy prior to KITD816V induction prevented expansion of red blood cells, but rapidly lead to a state of aplastic anemia and bone marrow fibrosis, reminiscent of post polycythemic myeloid metaplasia, the spent phase of polycythemia vera. Our results show that the extramedullary hematopoietic niche microenvironment significantly influences disease outcome in KITD816V mutant mice, turning this model a valuable tool for studying the interplay between functionally abnormal hematopoietic cells and their microenvironment during development of polycythemia vera-like disease and myelofibrosis.
Collapse
|
17
|
Lin CHS, Kaushansky K, Zhan H. JAK2 V617F-mutant vascular niche contributes to JAK2 V617F clonal expansion in myeloproliferative neoplasms. Blood Cells Mol Dis 2016; 62:42-48. [PMID: 27865175 DOI: 10.1016/j.bcmd.2016.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/19/2016] [Accepted: 09/24/2016] [Indexed: 12/13/2022]
Abstract
The myeloproliferative neoplasms (MPNs) are characterized by hematopoietic stem/progenitor cell (HSPC) expansion and overproduction of blood cells. The acquired mutation JAK2V617F plays a central role in these disorders. Mechanisms responsible for MPN HSPC expansion is not fully understood, limiting the effectiveness of current treatments. Endothelial cells (ECs) carrying the JAK2V617F mutation can be detected in patients with MPNs, suggesting that ECs are involved in the pathogenesis of MPNs. Here we report that JAK2V617F-bearing primary murine ECs have increased cell proliferation and angiogenesis in vitro compared to JAK2WT ECs. While there was no difference between JAK2V617F and JAK2WT HSPC proliferation when co-cultured with JAK2WT EC, the JAK2V617F HSPC displayed a relative growth advantage over the JAK2WT HSPC when co-cultured on JAK2V617F EC. In addition, the thrombopoietin (TPO) receptor MPL is up regulated in JAK2V617F ECs and contributes to the maintenance/expansion of the JAK2V617F clone over JAK2WT clone in vitro. Considering that ECs are an essential component of the hematopoietic niche and most HSPCs reside in the perivascular niche, our studies suggest that the JAK2V617F-bearing ECs form an important component of the MPN vascular niche and contribute to mutant stem/progenitor cell expansion, likely through a critical role of the TPO/MPL signaling axis.
Collapse
Affiliation(s)
- Chi Hua Sarah Lin
- Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA
| | - Kenneth Kaushansky
- Office of the Sr. Vice President, Health Sciences, Stony Brook Medicine, NY, USA
| | - Huichun Zhan
- Department of Medicine, Division of Hematology-Oncology, Stony Brook University, Stony Brook, NY, USA; Northport VA Medical Center, Northport, NY, USA.
| |
Collapse
|
18
|
Triviai I, Stübig T, Niebuhr B, Hussein K, Tsiftsoglou A, Fehse B, Stocking C, Kröger N. CD133 marks a stem cell population that drives human primary myelofibrosis. Haematologica 2015; 100:768-79. [PMID: 25724578 DOI: 10.3324/haematol.2014.118463] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 02/26/2015] [Indexed: 01/01/2023] Open
Abstract
Primary myelofibrosis is a myeloproliferative neoplasm characterized by bone marrow fibrosis, megakaryocyte atypia, extramedullary hematopoiesis, and transformation to acute myeloid leukemia. To date the stem cell that undergoes the spatial and temporal chain of events during the development of this disease has not been identified. Here we describe a CD133(+) stem cell population that drives the pathogenesis of primary myelofibrosis. Patient-derived circulating CD133(+) but not CD34(+)CD133(-) cells, with a variable burden for JAK2 (V617F) mutation, had multipotent cloning capacity in vitro. CD133(+) cells engrafted for up to 10 months in immunocompromised mice and differentiated into JAK2-V617F(+) myeloid but not lymphoid progenitors. We observed the persistence of human, atypical JAK2-V617F(+) megakaryocytes, the initiation of a prefibrotic state, bone marrow/splenic fibrosis and transition to acute myeloid leukemia. Leukemic cells arose from a subset of CD133(+) cells harboring EZH2 (D265H) but lacking a secondary JAK2 (V617F) mutation, consistent with the hypothesis that deregulation of EZH2 activity drives clonal growth and increases the risk of acute myeloid leukemia. This is the first characterization of a patient-derived stem cell population that drives disease resembling both chronic and acute phases of primary myelofibrosis in mice. These results reveal the importance of the CD133 antigen in deciphering the neoplastic clone in primary myelofibrosis and indicate a new therapeutic target for myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Ioanna Triviai
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Greece
| | - Thomas Stübig
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Birte Niebuhr
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kais Hussein
- Institute of Pathology, Hannover Medical School, Germany
| | - Asterios Tsiftsoglou
- Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Greece
| | - Boris Fehse
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| | - Carol Stocking
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
19
|
Staerk J, Constantinescu SN. The JAK-STAT pathway and hematopoietic stem cells from the JAK2 V617F perspective. JAKSTAT 2014; 1:184-90. [PMID: 24058768 PMCID: PMC3670242 DOI: 10.4161/jkst.22071] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 07/25/2012] [Accepted: 09/04/2012] [Indexed: 12/30/2022] Open
Abstract
Janus kinases (JAKs) are non-receptor tyrosine kinases essential for activation of signaling mediated by cytokine receptors that lack catalytic activity, including receptors for erythropoietin, thrombopoietin, most interleukins and interferon. Upon hormone binding, JAKs phosphorylate tyrosine residues in the receptor cytoplasmic domains and in JAKs themselves leading to recruitment and activation of downstream signaling proteins such as signal transducer and activator of transcription (STAT). The JAK-STAT pathway is important for functional hematopoiesis and several activating mutations in JAK proteins have recently been described as underlying cause of blood disorders. One of the best studied examples is the JAK2 V617F mutant which is found in 95% of polycythemia vera patients and 50% of patients suffering from essential thrombocythemia and primary myelofibrosis. Much effort has been made to understand how the JAK2 V617F affects hematopoietic stem cell (HSC) renewal and lineage differentiation, since convincing evidence has been provided to support the notion that the mutation is acquired at the HSC level. We discuss several in vivo models that support contrary conclusions with respect to the advantage given to HSCs by JAK2 V617F. Moreover, we provide the current knowledge about STAT5 activation and its link to HSC expansion as well as amplification of the erythroid compartment. Evidence for both JAK2 V617F mutated HSCs exhibiting skewed differentiation potential and for amplification occurring after erythroid commitment has been provided, and we will discuss whether this evidence is relevant for the disease.
Collapse
Affiliation(s)
- Judith Staerk
- Stem Cell Group; Nordic EMBL Partnership; Centre for Molecular Medicine Norway (NCMM); University of Oslo; Oslo, Norway ; Department of Hematology; Oslo University Hospital; Oslo, Norway
| | | |
Collapse
|
20
|
JAK2V617F activates Lu/BCAM-mediated red cell adhesion in polycythemia vera through an EpoR-independent Rap1/Akt pathway. Blood 2013; 121:658-65. [DOI: 10.1182/blood-2012-07-440487] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Polycythemia vera (PV) is characterized by an increased RBC mass, spontaneous erythroid colony formation, and the JAK2V617F mutation. PV is associated with a high risk of mesenteric and cerebral thrombosis. PV RBC adhesion to endothelial laminin is increased and mediated by phosphorylated erythroid Lu/BCAM. In the present work, we investigated the mechanism responsible for Lu/BCAM phosphorylation in the presence of JAK2V617F using HEL and BaF3 cell lines as well as RBCs from patients with PV. High levels of Rap1-GTP were found in HEL and BaF3 cells expressing JAK2V617F compared with BaF3 cells with wild-type JAK2. This finding was associated with increased Akt activity, Lu/BCAM phosphorylation, and cell adhesion to laminin that were inhibited by the dominant-negative Rap1S17N or by the specific Rap1 inhibitor GGTI-298. Surprisingly, knocking-down EpoR in HEL cells did not alter Akt activity or cell adhesion to laminin. Our findings reveal a novel EpoR-independent Rap1/Akt signaling pathway that is activated by JAK2V617F in circulating PV RBCs and responsible for Lu/BCAM activation. This new characteristic of JAK2V617F could play a critical role in initiating abnormal interactions among circulating and endothelial cells in patients with PV.
Collapse
|
21
|
Shi Q, Cox LA, Hodara V, Wang XL, VandeBerg JL. Repertoire of endothelial progenitor cells mobilized by femoral artery ligation: a nonhuman primate study. J Cell Mol Med 2013; 16:2060-73. [PMID: 22128816 PMCID: PMC3433842 DOI: 10.1111/j.1582-4934.2011.01501.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To determine in the baboon model the identities and functional characteristics of endothelial progenitor cells (EPCs) mobilized in response to artery ligation, we collected peripheral blood mononuclear cells (PBMNCs) before and 3 days after a segment of femoral artery was removed. Our goal was to find EPC subpopulations with highly regenerative capacity. We identified 12 subpopulations of putative EPCs that were altered >1.75-fold; two subpopulations (CD146+/CD54-/CD45- at 6.63-fold, and CD146+/UEA-1-/CD45- at 12.21-fold) were dramatically elevated. To investigate the regenerative capacity of putative EPCs, we devised a new assay that maximally resembled their in vivo scenario, we purified CD34+ and CD146+ cells and co-cultured them with basal and mobilized PBMNCs; both cell types took up Dil-LDL, but purified CD146+ cells exhibited accelerated differentiation by increasing expression of CD31 and CD144, and by exhibiting more active cord-like structure formation by comparison to the CD34+ subpopulation in a co-culture with mobilized PBMNCs. We demonstrate that ischaemia due to vascular ligation mobilizes multiple types of cells with distinct roles. Baboon CD146+ cells exhibit higher reparative capacity than CD34+ cells, and thus are a potential source for therapeutic application.
Collapse
Affiliation(s)
- Qiang Shi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245-0549, USA.
| | | | | | | | | |
Collapse
|
22
|
Endothelial progenitor cells and thrombosis. Thromb Res 2012; 129:309-13. [DOI: 10.1016/j.thromres.2011.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/04/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022]
|
23
|
Alev C, Ii M, Asahara T. Endothelial progenitor cells: a novel tool for the therapy of ischemic diseases. Antioxid Redox Signal 2011; 15:949-65. [PMID: 21254837 DOI: 10.1089/ars.2010.3872] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Circulating endothelial progenitor cells (EPCs) are believed to home to sites of neovascularization, contributing to vascular regeneration either directly via incorporation into newly forming vascular structures or indirectly via the secretion of pro-angiogenic growth factors, thereby enhancing the overall vascular and hemodynamic recovery of ischemic tissues. The therapeutic application of EPCs has been shown to be effective in animal models of ischemia, and we as well as other groups involved in clinical trials have demonstrated that the use of EPCs was safe and feasible for the treatment of critical limb ischemia and cardiovascular diseases. However, many issues in the field of EPC biology, especially in regard to the proper and unambiguous molecular characterization of these cells, still remain unresolved, hampering not only basic research but also the effective therapeutic use and widespread application of these cells. Further, recent evidence suggests that several diseases and pathological conditions are correlated with a reduction in the number and biological activity of EPCs, making the development of novel strategies to overcome the current limitations and shortcomings of this promising but still limited therapeutic tool by refinement and improvement of EPC purification, expansion, and administration techniques, a rather pressing issue.
Collapse
Affiliation(s)
- Cantas Alev
- Group of Vascular Regeneration Research, Institute of Biomedical Research and Innovation/RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | |
Collapse
|
24
|
Endothelial progenitor cells are clonal and exhibit the JAK2V617F mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood 2011; 117:2700-7. [DOI: 10.1182/blood-2010-07-297598] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Abstract
In this study we investigated whether neoplastic transformation occurring in Philadelphia (Ph)–negative myeloproliferative neoplasms (MPNs) could involve also the endothelial cell compartment. We evaluated the level of endothelial colony-forming cells (E-CFCs) in 42 patients (15 with polycythemia vera, 12 with essential thrombocythemia, and 15 with primary myelofibrosis). All patients had 1 molecular abnormality (JAK2V617F or MPLW515K mutations, SOCS gene hypermethylation, clonal pattern of growth) detectable in their granulocytes. The growth of colonies was obtained in 22 patients and, among them, patients with primary myelofibrosis exhibited the highest level of E-CFCs. We found that E-CFCs exhibited no molecular abnormalities in12 patients, had SOCS gene hypermethylation, were polyclonal at human androgen receptor analysis in 5 patients, and resulted in JAK2V617F mutated and clonal in 5 additional patients, all experiencing thrombotic complications. On the whole, patients with altered E-CFCs required antiproliferative therapy more frequently than patients with normal E-CFCs. Moreover JAK2V617F-positive E-CFCs showed signal transducer and activator of transcription 5 and 3 phosphorylation rates higher than E-CFCs isolated from healthy persons and patients with MPN without molecular abnormalities. Finally, JAK2V617F-positive E-CFCs exhibited a high proficiency to adhere to normal mononuclear cells. This study highlights a novel mechanism underlying the thrombophilia observed in MPN.
Collapse
|