1
|
Dai F, Yuan Y, Hao J, Cheng X, Zhou X, Zhou L, Tian R, Zhao Y, Xiang T. PDCD2 as a prognostic biomarker in glioma correlates with malignant phenotype. Genes Dis 2024; 11:101106. [PMID: 39022129 PMCID: PMC11252777 DOI: 10.1016/j.gendis.2023.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/04/2023] [Indexed: 07/20/2024] Open
Abstract
Programmed cell death 2 (PDCD2) is related to cancer progression and chemotherapy sensitivity. The role of PDCD2 in solid cancers (excluding hematopoietic malignancies) and their diagnosis and prognosis remains unclear. The TCGA, CGGA, GEPIA, cBioPortal, and GTEx databases were analyzed for expression, prognostic value, and genetic modifications of PDCD2 in cancer patients. Functional enrichment analysis, CCK8, colony formation assay, transwell assay, and xenograft tumor model were undertaken to study the PDCD2's biological function in glioma (GBMLGG). The PDCD2 gene was associated with solid cancer progression. In the functional enrichment analysis results, PDCD2 was shown to participate in several important GBMLGG biological processes. GBMLGG cells may be inhibited in their proliferation, migration, invasion, and xenograft tumor growth by knocking down PDCD2. Our research can provide new insights into solid cancer prognostic biomarkers of PDCD2.
Collapse
Affiliation(s)
- Fengsheng Dai
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yixiao Yuan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jiaqi Hao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xing Cheng
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Rui Tian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yi Zhao
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
2
|
Rashed HA, Abdel-Bary A, Elmorsy EA. Therapeutic potential of oral alginate nanoparticles against experimental toxoplasmosis. Parasitol Res 2024; 123:293. [PMID: 39105851 PMCID: PMC11303569 DOI: 10.1007/s00436-024-08307-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Side effects and low efficacy of current anti-toxoplasmosis therapeutics against encysted bradyzoites necessitate research into alternative safe therapeutic options. The safety, immunostimulatory, and antimicrobial properties of alginate nanoparticle formulation (Alg-NP) highlight its potential as an oral therapy against acute toxoplasmosis. In the current study, Alg-NP was formulated and characterized and then assessed for its anti-Toxoplasma effects using parasitological, ultrastructural, immunological, and histopathological studies. Treatment with Alg-NP significantly prolonged mice survival and reduced the parasite burden in both peritoneal fluid and tissue impression smears. In addition, it altered parasite viability and caused severe tachyzoite deformities as evidenced by ultrastructural studies. Alg-NP induced high levels of serum IFN-γ in infected mice with significant amelioration in histopathological changes in both hepatic and splenic tissue sections. In conclusion, Alg-NP could be considered a promising therapeutic agent against acute murine toxoplasmosis, and owing to its safety, it could potentially be enlisted for human use.
Collapse
Affiliation(s)
- Hoda A Rashed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Amany Abdel-Bary
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman A Elmorsy
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Ji W, Byun WS, Lu W, Zhu X, Donovan KA, Dwyer BG, Che J, Yuan L, Abulaiti X, Corsello SM, Fischer ES, Zhang T, Gray NS. Proteomics-Based Discovery of First-in-Class Chemical Probes for Programmed Cell Death Protein 2 (PDCD2). Angew Chem Int Ed Engl 2023; 62:e202308292. [PMID: 37658265 PMCID: PMC10592021 DOI: 10.1002/anie.202308292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/03/2023]
Abstract
Chemical probes are essential tools for understanding biological systems and for credentialing potential biomedical targets. Programmed cell death 2 (PDCD2) is a member of the B-cell lymphoma 2 (Bcl-2) family of proteins, which are critical regulators of apoptosis. Here we report the discovery and characterization of 10 e, a first-in-class small molecule degrader of PDCD2. We discovered this PDCD2 degrader by serendipity using a chemical proteomics approach, in contrast to the conventional approach for making bivalent degraders starting from a known binding ligand targeting the protein of interest. Using 10 e as a pharmacological probe, we demonstrate that PDCD2 functions as a critical regulator of cell growth by modulating the progression of the cell cycle in T lymphoblasts. Our work provides a useful pharmacological probe for investigating PDCD2 function and highlights the use of chemical proteomics to discover selective small molecule degraders of unanticipated targets.
Collapse
Affiliation(s)
- Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Lingang Laboratory, Shanghai, 20031, China
| | - Xijun Zhu
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Brendan G Dwyer
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linjie Yuan
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Xianmixinuer Abulaiti
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Steven M Corsello
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Schmitd LB, Perez-Pacheco C, Bellile EL, Wu W, Casper K, Mierzwa M, Rozek LS, Wolf GT, Taylor JM, D'Silva NJ. Spatial and Transcriptomic Analysis of Perineural Invasion in Oral Cancer. Clin Cancer Res 2022; 28:3557-3572. [PMID: 35819260 PMCID: PMC9560986 DOI: 10.1158/1078-0432.ccr-21-4543] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/25/2022] [Accepted: 05/24/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Perineural invasion (PNI), a common occurrence in oral squamous cell carcinomas, is associated with poor survival. Consequently, these tumors are treated aggressively. However, diagnostic criteria of PNI vary and its role as an independent predictor of prognosis has not been established. To address these knowledge gaps, we investigated spatial and transcriptomic profiles of PNI-positive and PNI-negative nerves. EXPERIMENTAL DESIGN Tissue sections from 142 patients were stained with S100 and cytokeratin antibodies. Nerves were identified in two distinct areas: tumor bulk and margin. Nerve diameter and nerve-to-tumor distance were assessed; survival analyses were performed. Spatial transcriptomic analysis of nerves at varying distances from tumor was performed with NanoString GeoMx Digital Spatial Profiler Transcriptomic Atlas. RESULTS PNI is an independent predictor of poor prognosis among patients with metastasis-free lymph nodes. Patients with close nerve-tumor distance have poor outcomes even if diagnosed as PNI negative using current criteria. Patients with large nerve(s) in the tumor bulk survive poorly, suggesting that even PNI-negative nerves facilitate tumor progression. Diagnostic criteria were supported by spatial transcriptomic analyses of >18,000 genes; nerves in proximity to cancer exhibit stress and growth response changes that diminish with increasing nerve-tumor distance. These findings were validated in vitro and in human tissue. CONCLUSIONS This is the first study in human cancer with high-throughput gene expression analysis in nerves with striking correlations between transcriptomic profile and clinical outcomes. Our work illuminates nerve-cancer interactions suggesting that cancer-induced injury modulates neuritogenesis, and supports reclassification of PNI based on nerve-tumor distance rather than current subjective criteria.
Collapse
Affiliation(s)
- Ligia B. Schmitd
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Cindy Perez-Pacheco
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
| | - Emily L. Bellile
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Weisheng Wu
- Bioinformatics Core, University of Michigan, Ann Arbor, Michigan
| | - Keith Casper
- Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michelle Mierzwa
- Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Laura S. Rozek
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Gregory T. Wolf
- Otolaryngology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeremy M.G. Taylor
- Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
- Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Nisha J. D'Silva
- Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan
- Pathology, University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Cui M, Liu D, Xiong W, Wang Y, Mi J. ERRFI1 induces apoptosis of hepatocellular carcinoma cells in response to tryptophan deficiency. Cell Death Discov 2021; 7:274. [PMID: 34608122 PMCID: PMC8490388 DOI: 10.1038/s41420-021-00666-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Tryptophan metabolism is an essential regulator of tumor immune evasion. However, the effect of tryptophan metabolism on cancer cells remains largely unknown. Here, we find that tumor cells have distinct responses to tryptophan deficiency in terms of cell growth, no matter hepatocellular carcinoma (HCC) cells, lung cancer cells, or breast cancer cells. Further study shows that ERRFI1 is upregulated in sensitive HCC cells, but not in resistant HCC cells, in response to tryptophan deficiency, and ERRFI1 expression level positively correlates with HCC patient overall survival. ERRFI1 knockdown recovers tryptophan deficiency-suppressed cell growth of sensitive HCC cells. In contrast, ERRFI1 overexpression sensitizes resistant HCC cells to tryptophan deficiency. Moreover, ERRFI1 induces apoptosis by binding PDCD2 in HCC cells, PDCD2 knockdown decreases the ERRFI1-induced apoptosis in HCC cells. Thus, we conclude that ERRFI1-induced apoptosis increases the sensitivity of HCC cells to tryptophan deficiency and ERRFI1 interacts with PDCD2 to induce apoptosis in HCC cells.
Collapse
Affiliation(s)
- Mingqing Cui
- Basic Medical Institute; Hongqiao International Institute of Medicine, Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Liu
- Basic Medical Institute; Hongqiao International Institute of Medicine, Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wujun Xiong
- Department of Gastroenterlogy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
| | - Yugang Wang
- Department of gastroenterology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jun Mi
- Basic Medical Institute; Hongqiao International Institute of Medicine, Tongren Hospital; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Zhao Y, Tang X, Lv M, Liu Q, Li J, Zhang B, Li L, Zhang X, Zhao Y. The molecular response mechanisms of a diatom Thalassiosira pseudonana to the toxicity of BDE-47 based on whole transcriptome analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105669. [PMID: 33142158 DOI: 10.1016/j.aquatox.2020.105669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are ubiquitously distributed persistent organic pollutants (POPs) in marine environments. Phytoplankton are the entrance of PBDEs entering to biotic environments from abiotic environments, while the responding mechanisms of phytoplankton to PBDEs have not been full established. Therefore, we chose the model diatom Thalassiosira pseudonana in this study, by integrating whole transcriptome analysis with physiological-biochemical data, to reveal the molecular responding mechanisms of T. pseudonana to the toxicity of BDE-47. Our results indicated the changes of genes expressions correlated to the physiological-biochemical changes, and there were multiple molecular mechanisms of T. pseudonana responding to the toxicity of BDE-47: Gene expressions evidence explained the suppression of light reaction and proved the occurrence of cellular oxidative stress; In the meanwhile, up-regulations of genes in pathways involving carbon metabolisms happened, including the Calvin cycle, glycolysis, TCA cycle, fatty acid synthesis, and triacylglycerol synthesis; Lastly, DNA damage was found and three outcome including DNA repair, cell cycle arrest and programmed cell death (PCD) happened, which could finally inhibit the cell division and population growth of T. pseudonana. This study presented the most complete molecular responding mechanisms of phytoplankton cells to PBDEs, and provided valuable information of various PBDEs-sensitive genes with multiple functions for further research involving organic pollutants and phytoplankton.
Collapse
Affiliation(s)
- Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Mengchen Lv
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Jun Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Bihan Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Luying Li
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China
| | - Xinxin Zhang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
7
|
Wu Y, Chen W, Zhang Y, Liu A, Yang C, Wang H, Zhu T, Fan Y, Yang B. Potent Therapy and Transcriptional Profile of Combined Erythropoietin-Derived Peptide Cyclic Helix B Surface Peptide and Caspase-3 siRNA against Kidney Ischemia/Reperfusion Injury in Mice. J Pharmacol Exp Ther 2020; 375:92-103. [PMID: 32759272 DOI: 10.1124/jpet.120.000092] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Cause-specific treatment and timely diagnosis are still not available for acute kidney injury (AKI) apart from supportive therapy and serum creatinine measurement. A novel erythropoietin-derived cyclic helix B surface peptide (CHBP) protects kidneys against AKI with different causes, but the underlying mechanism is not fully defined. Herein, we investigated the transcriptional profile of renoprotection induced by CHBP and its potential synergistic effects with siRNA targeting caspase-3, an executing enzyme of apoptosis and inflammation (CASP3siRNA), on ischemia/reperfusion (IR)-induced AKI. Utilizing a mouse model with 30-minute renal bilateral ischemia and 48-hour reperfusion, the renoprotection of CHBP or CASP3siRNA was demonstrated in renal function and structure, active caspase-3 and HMGB1 expression. Combined treatment of CHBP and CASP3siRNA further preserved kidney structure and reduced active caspase-3 and HMGB1. Furthermore, differentially expressed genes (DEGs) were identified with fold change >1.414 and P < 0.05. In IR kidneys, 281 DEGs induced by CHBP were mainly involved in promoting cell division and improving cellular function and metabolism (upregulated signal transducer and activator of transcription 5B and solute carrier family 22 member 7). The additional administration of CASP3siRNA caused 504 and 418 DEGs in IR + CHBP kidneys with or without negative control small-interfering RNA, with 37 genes in common. These DEGs were associated with modulated apoptosis and inflammation (upregulated BCL6, SLPI, and SERPINA3M) as well as immunity, injury, and microvascular homeostasis (upregulated complement factor H and GREM1 and downregulated ANGPTL2). This proof-of-effect study indicated the potent renoprotection of CASP3siRNA upon CHBP at the early stage of IR-induced AKI. Underlying genes, BCL6, SLPI, SERPINA3M, GREM1, and ANGPTL2, might be potential new biomarkers for clinical applications. SIGNIFICANCE STATEMENT: It is imperative to explore new strategies of cause-specific treatment and timely diagnosis for acute kidney injury (AKI). CHBP and CASP3siRNA synergistically protected kidney structure after 48-hour ischemia/reperfusion-induced AKI with reduced injury mediators CASP3 and high mobility group box 1. CHBP upregulated cell division-, function-, and metabolism-related genes, whereas CASP3siRNA further regulated immune response- and tissue homeostasis-associated genes. Combined CHBP and CASP3siRNA might be a potent and specific treatment for AKI, and certain dysregulated genes secretory leukocyte peptidase inhibitor and SERPINA3M could facilitate timely diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Weiwei Chen
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yufang Zhang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Aifen Liu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Cheng Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Hui Wang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Tongyu Zhu
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Yaping Fan
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| | - Bin Yang
- Renal Group, Basic Medical Research Centre, Nantong University, Nantong, China (Y.W., Y.Z., A.L.); Leicester-Nantong Joint Institute of Kidney Science, Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China (W.C., H.W., Y.F., B.Y.); Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China (C.Y., T.Z.); Shanghai Key Laboratory of Organ Transplantation, Shanghai, China (C.Y., T.Z.); and Renal Group, Department of Cardiovascular Sciences, University of Leicester, University Hospitals of Leicester, Leicester, United Kingdom (Y.W., B.Y.)
| |
Collapse
|
8
|
Santra T, Herrero A, Rodriguez J, von Kriegsheim A, Iglesias-Martinez LF, Schwarzl T, Higgins D, Aye TT, Heck AJR, Calvo F, Agudo-Ibáñez L, Crespo P, Matallanas D, Kolch W. An Integrated Global Analysis of Compartmentalized HRAS Signaling. Cell Rep 2020; 26:3100-3115.e7. [PMID: 30865897 DOI: 10.1016/j.celrep.2019.02.038] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/16/2018] [Accepted: 02/11/2019] [Indexed: 12/27/2022] Open
Abstract
Modern omics technologies allow us to obtain global information on different types of biological networks. However, integrating these different types of analyses into a coherent framework for a comprehensive biological interpretation remains challenging. Here, we present a conceptual framework that integrates protein interaction, phosphoproteomics, and transcriptomics data. Applying this method to analyze HRAS signaling from different subcellular compartments shows that spatially defined networks contribute specific functions to HRAS signaling. Changes in HRAS protein interactions at different sites lead to different kinase activation patterns that differentially regulate gene transcription. HRAS-mediated signaling is the strongest from the cell membrane, but it regulates the largest number of genes from the endoplasmic reticulum. The integrated networks provide a topologically and functionally resolved view of HRAS signaling. They reveal distinct HRAS functions including the control of cell migration from the endoplasmic reticulum and TP53-dependent cell survival when signaling from the Golgi apparatus.
Collapse
Affiliation(s)
- Tapesh Santra
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Ana Herrero
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Javier Rodriguez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Des Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Ireland
| | - Thin-Thin Aye
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
| | - Lorena Agudo-Ibáñez
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain
| | - Piero Crespo
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Cantabria, Santander 39011, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland; Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Ireland; School of Medicine and Medical Science, University College Dublin, Belfield, Ireland.
| |
Collapse
|
9
|
Guan X, Lu J, Sun F, Li Q, Pang Y. The Molecular Evolution and Functional Divergence of Lamprey Programmed Cell Death Genes. Front Immunol 2019; 10:1382. [PMID: 31281315 PMCID: PMC6596451 DOI: 10.3389/fimmu.2019.01382] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
The programmed cell death (PDCD) family plays a significant role in the regulation of cell survival and apoptotic cell death. However, the evolution, distribution and role of the PDCD family in lampreys have not been revealed. Thus, we identified the PDCD gene family in the lamprey genome and classified the genes into five subfamilies based on orthologs of the genes, conserved synteny, functional domains, phylogenetic tree, and conserved motifs. The distribution of the lamprey PDCD family and the immune response of the PDCD family in lampreys stimulated by different pathogens were also demonstrated. In addition, we investigated the molecular function of lamprey PDCD2, PDCD5, and PDCD10. Our studies showed that the recombinant lamprey PDCD5 protein and transfection of the L-PDCD5 gene induced cell apoptosis, upregulated the expression of the associated X protein (BAX) and TP53 and downregulated the expression of B cell lymphoma 2 (BCL-2) independent of Caspase 3. In contrast, lamprey PDCD10 suppressed apoptosis in response to cis-diaminedichloro-platinum (II) stimuli. Our phylogenetic and functional data not only provide a better understanding of the evolution of lamprey PDCD genes but also reveal the conservation of PDCD genes in apoptosis. Overall, our results provide a novel perspective on lamprey immune regulation mediated by the PDCD family.
Collapse
Affiliation(s)
- Xin Guan
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Feng Sun
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
10
|
Knockdown of BCL6 Inhibited Malignant Phenotype and Enhanced Sensitivity of Glioblastoma Cells to TMZ through AKT Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6953506. [PMID: 30420967 PMCID: PMC6211201 DOI: 10.1155/2018/6953506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/18/2018] [Accepted: 10/01/2018] [Indexed: 11/18/2022]
Abstract
Background BCL6 was a critical prooncogene of human B-cell lymphomas which promoted tumor progress and contributed to malignant behavior in several kinds of cancers. This study was to detect the expression of BCL6 and its biological effect on glioma. Methods RT-PCR and Western blot were used to detect the expression of BCL6 mRNA and protein in tissues and glioblastoma cell lines. The expression of BCL6 was knockdown in two glioblastoma cell lines (U87 and U251) using BCL6 shRNA. The CCK8, colony-formation, flow cytometry, Transwell, and wound-healing assays were used to evaluate the malignant phenotypic change of glioblastoma cells. Results The expression of BCL6 was higher in glioma tissues and glioblastoma cell lines than normal tissues. Knockdown of BCL6 expression reduced the proliferation, migration, and invasion of glioblastoma cells. Moreover, knockdown of BCL6 changed expression of proteins related to malignant behaviors of glioblastoma cells. The suppression of BCL6 could increase chemosensitivity of U87 and U251 to temozolomide. Downregulation of BCL6 levels suppressed the expression of BCL2, cyclin D1, MMP2, and MMP9 proteins as well as two classic signaling pathway proteins p-AKT and p-ERK. Simultaneously, BAX and p21 protein levels were upregulated along with knockdown of BCL6. Conclusions Our results indicated that BCL6 may be a tumor oncogene involved in the progression of glioma via affecting AKT and MAPK signaling pathways.
Collapse
|
11
|
Ran MX, Li Y, Zhang Y, Liang K, Ren YN, Zhang M, Zhou GB, Zhou YM, Wu K, Wang CD, Huang Y, Luo B, Qazi IH, Zhang HM, Zeng CJ. Transcriptome Sequencing Reveals the Differentially Expressed lncRNAs and mRNAs Involved in Cryoinjuries in Frozen-Thawed Giant Panda ( Ailuropoda melanoleuca) Sperm. Int J Mol Sci 2018; 19:ijms19103066. [PMID: 30297640 PMCID: PMC6212861 DOI: 10.3390/ijms19103066] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.
Collapse
Affiliation(s)
- Ming-Xia Ran
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Kai Liang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Nan Ren
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Min Zhou
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Cheng-Dong Wang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Bo Luo
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Department of Veterinary Anatomy & Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - He-Min Zhang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
12
|
Shi Y, Kuai Y, Lei L, Weng Y, Berberich-Siebelt F, Zhang X, Wang J, Zhou Y, Jiang X, Ren G, Pan H, Mao Z, Zhou R. The feedback loop of LITAF and BCL6 is involved in regulating apoptosis in B cell non-Hodgkin's-lymphoma. Oncotarget 2018; 7:77444-77456. [PMID: 27764808 PMCID: PMC5363597 DOI: 10.18632/oncotarget.12680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 09/02/2016] [Indexed: 11/25/2022] Open
Abstract
Dysregulation of the apoptotic pathway is widely recognized as a key step in lymphomagenesis. Notably, LITAF was initially identified as a p53-inducible gene, subsequently implicated as a tumor suppressor. Our previous study also showed LITAF to be methylated in 89.5% B-NHL samples. Conversely, deregulated expression of BCL6 is a pathogenic event in many lymphomas. Interestingly, our study found an oppositional expression of LITAF and BCL6 in B-NHL. In addition, LITAF was recently identified as a novel target gene of BCL6. Therefore, we sought to explore the feedback loop between LITAF and BCL6 in B-NHL. Here, our data for the first time show that LITAF can repress expression of BCL6 by binding to Region A (-87 to +65) containing a putative LITAF-binding motif (CTCCC) within the BCL6 promoter. Furthermore, the regulation of BCL6 targets ( PRDM1 or c-Myc) by LITAF may be associated with B-cell differentiation. Results also demonstrate that ectopic expression of LITAF induces cell apoptosis, activated by releasing cytochrome c, cleaving PARP and caspase 3 in B-NHL cells whereas knockdown of LITAF robustly protected cells from apoptosis. Interestingly, BCL6, in turn, could reverse cell apoptosis mediated by LITAF. Collectively, our findings provide a novel apoptotic regulatory pathway in which LITAF, as a transcription factor, inhibits the expression of BCL6, which leads to activation of the intrinsic mitochondrial pathway and tumor apoptosis. Our study is expected to provide a possible biomarker as well as a target for clinical therapies to promote tumor cell apoptosis.
Collapse
Affiliation(s)
- Yaoyao Shi
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue Kuai
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Lizhen Lei
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanyuan Weng
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | - Jinjie Wang
- Department of Pathology, Hangzhou First People's Hospital, Hangzhou, China
| | - Yuan Zhou
- Postgraduate School in Medical School of Ningbo University, Ningbo, China
| | - Xin Jiang
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoping Ren
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | - Zhengrong Mao
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ren Zhou
- Department of Pathology and Pathophysiology, Institute of Pathology and Forensic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Serbanovic-Canic J, de Luca A, Warboys C, Ferreira PF, Luong LA, Hsiao S, Gauci I, Mahmoud M, Feng S, Souilhol C, Bowden N, Ashton JP, Walczak H, Firmin D, Krams R, Mason JC, Haskard DO, Sherwin S, Ridger V, Chico TJA, Evans PC. Zebrafish Model for Functional Screening of Flow-Responsive Genes. Arterioscler Thromb Vasc Biol 2016; 37:130-143. [PMID: 27834691 PMCID: PMC5172514 DOI: 10.1161/atvbaha.116.308502] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/23/2016] [Indexed: 12/22/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Atherosclerosis is initiated at branches and bends of arteries exposed to disturbed blood flow that generates low shear stress. This mechanical environment promotes lesions by inducing endothelial cell (EC) apoptosis and dysfunction via mechanisms that are incompletely understood. Although transcriptome-based studies have identified multiple shear-responsive genes, most of them have an unknown function. To address this, we investigated whether zebrafish embryos can be used for functional screening of mechanosensitive genes that regulate EC apoptosis in mammalian arteries. Approach and Results— First, we demonstrated that flow regulates EC apoptosis in developing zebrafish vasculature. Specifically, suppression of blood flow in zebrafish embryos (by targeting cardiac troponin) enhanced that rate of EC apoptosis (≈10%) compared with controls exposed to flow (≈1%). A panel of candidate regulators of apoptosis were identified by transcriptome profiling of ECs from high and low shear stress regions of the porcine aorta. Genes that displayed the greatest differential expression and possessed 1 to 2 zebrafish orthologues were screened for the regulation of apoptosis in zebrafish vasculature exposed to flow or no-flow conditions using a knockdown approach. A phenotypic change was observed in 4 genes; p53-related protein (PERP) and programmed cell death 2–like protein functioned as positive regulators of apoptosis, whereas angiopoietin-like 4 and cadherin 13 were negative regulators. The regulation of perp, cdh13, angptl4, and pdcd2l by shear stress and the effects of perp and cdh13 on EC apoptosis were confirmed by studies of cultured EC exposed to flow. Conclusions— We conclude that a zebrafish model of flow manipulation coupled to gene knockdown can be used for functional screening of mechanosensitive genes in vascular ECs, thus providing potential therapeutic targets to prevent or treat endothelial injury at atheroprone sites.
Collapse
Affiliation(s)
- Jovana Serbanovic-Canic
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Amalia de Luca
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Christina Warboys
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Pedro F Ferreira
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Le A Luong
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Sarah Hsiao
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Ismael Gauci
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Marwa Mahmoud
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Shuang Feng
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Celine Souilhol
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Neil Bowden
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - John-Paul Ashton
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Henning Walczak
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - David Firmin
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Rob Krams
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Justin C Mason
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Dorian O Haskard
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Spencer Sherwin
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Victoria Ridger
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Timothy J A Chico
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom
| | - Paul C Evans
- From the Department of Infection, Immunity and Cardiovascular Disease (J.S.-C., L.A.L., S.H., I.G., M.M., S.F., C.S., N.B., J.-P.A., V.R., T.J.A.C., P.C.E.), INSIGNEO Institute for In Silico Medicine (J.S.-C., V.R., T.J.A.C., P.C.E.), and the Bateson Centre (J.S.-C., J.-P.A., T.J.A.C., P.C.E.), University of Sheffield, United Kingdom; and Departments of Cardiovascular Science (A.d.L., C.W., J.C.M., D.O.H.), Imaging (P.F.F., D.F.), Bioengineering (R.K.), and Aeronautics (S.S.) Imperial College London, United Kingdom; and Cancer Institute, Faculty of Medical Sciences (H.W.), University College London, United Kingdom.
| |
Collapse
|
14
|
The Relationship between RUVBL1 (Pontin, TIP49, NMP238) and BCL6 in Benign and Malignant Human Lymphoid Tissues. Biochem Biophys Rep 2016; 6:1-8. [PMID: 27066592 PMCID: PMC4822715 DOI: 10.1016/j.bbrep.2016.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human BCL6 gene, which is involved in the pathogenesis of certain human lymphomas, encodes a transcriptional repressor that is needed for germinal center B cell development and T follicular helper cell differentiation. Our goal was to identify BCL6 target genes using a cell system in which BCL6 repressive effects are inhibited followed by subtractive hybridization, and we detected the RUVBL1 (Pontin, TIP49) gene as a potential target of BCL6 repression. Here we show that the BCL6 protein significantly represses RUVBL1 transcription (6.8-fold). Knockdown of endogenous BCL6 in a human B cell lymphoma line leads to significant upregulation of RUVBL1, and there is an inverse expression pattern between the BCL6 and RUVBL1 proteins in certain human lymphomas. RUVBL1 is part of the AAA+ superfamily and participates in multiple processes, including gene transcription regulation, chromatin remodeling, and DNA repair, which, if dysregulated, may promote lymphoma development. A further understanding of the relationship between RUVBL1 and BCL6 should improve our understanding of the pathogenesis of human lymphomas. BCL6, a transcriptional repressor, is deregulated in human lymphomas. The RUVBL1 (Pontin, TIP49) gene is a target of BCL6 repression. Regulation of RUVBL1 by BCL6 may be important in lymphomagenesis.
Collapse
|
15
|
Wang W, Song XW, Bu XM, Zhang N, Zhao CH. PDCD2 and NCoR1 as putative tumor suppressors in gastric gastrointestinal stromal tumors. Cell Oncol (Dordr) 2015; 39:129-37. [PMID: 26589942 DOI: 10.1007/s13402-015-0258-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors in the gastrointestinal tract. Previously, PDCD2 (programmed cell death protein 2) has been identified as a putative tumor suppressor in gastric cancer. As yet, however, no reports on PDCD2 expression and its physical interactor NCoR1 (nuclear receptor co-repressor), and their effects in GIST have been reported. METHODS The expression of PDCD2 and NCoR1 was assessed in 43 primary gastric GIST and normal gastric tissue samples using Western blotting and quantitative real-time PCR. Next, associations between PDCD2 and NCoR1 expression and various clinicopathological features, including survival, were determined. To assess the effects of PDCD2 and NCoR1 expression in vitro, two GIST-derived cell lines (GIST-T1 and GIST882) were (co-)transfected with the expression vectors pEGFP-N1-PDCD2 and pcDNA3.1-NCoR1, after which the cells were subjected to CCK-8, PI staining and Annexin V-FITC/PI double staining assays, respectively. Finally, the mechanisms of action of PDCD2 and NCoR1 in GIST-derived cells were determined using immunoprecipitation and Western blotting assays. RESULTS We found that the PDCD2 and NCoR1 protein levels were lower in gastric GIST tissues than in normal gastric tissues. The PDCD2 and NCoR1 expression levels were found to be significantly associated with the survival of the patients. Through exogenous expression analyses, we found that PDCD2 and NCoR1 can decrease proliferation, and increase apoptosis and G1 cell cycle arrest, in GIST-derived cells. Furthermore, we found that PDCD2 and NCoR1 can activate Smad2 and Smad3. CONCLUSIONS Our data indicate that both PDCD2 and NCoR1 may act as tumor suppressors in GIST cells through the Smad signaling pathway.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xiao-Wen Song
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Xian-Min Bu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Ning Zhang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China
| | - Cheng-Hai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, 110122, People's Republic of China.
| |
Collapse
|
16
|
Mutlu P, Ural AU, Gündüz U. Different types of cell cycle- and apoptosis-related gene expressions alter in corticosteroid-, vincristine-, and melphalan-resistant u-266 multiple myeloma cell lines. Turk J Haematol 2015; 31:231-8. [PMID: 25330516 PMCID: PMC4287023 DOI: 10.4274/tjh.2013.0231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: Deregulation of the cell cycle and apoptosis mechanisms in normal cells causes many problems, including cancer. In this study, a genome-wide expression analysis of cell cycle- and apoptosis-related genes in corticosteroid-, vincristine-, and melphalan-resistant U-266 multiple myeloma cell lines was conducted. Materials and Methods: Resistant U-266 sublines were induced by application of each drug by stepwise dose increments. Resistance gained by the cells was confirmed with XTT cytotoxicity assay and microarray analyses were carried out. Among the cell cycle- and apoptosis-related gene expressions, alterations of more than 2-fold were considered significant. Results: Cyclin E2 was drastically overexpressed in the vincristine-resistant subline and a general upregulation was observed for various cyclin-dependent kinases. Some of the cyclin-dependent kinase inhibitor encoding genes were downregulated in resistant sublines in general. Tumor necrosis factor receptor genes were generally downregulated in corticosteroid- and melphalan-resistant U-266 sublines. Different types of effector caspases were downregulated in all resistant sublines. Ceramide metabolism genes seemed to be changed in favor of survival, especially in the melphalan-resistant subline. Conclusion: This report shows that different types of chemotherapeutic drugs alter different apoptotic and cell cycle-related gene expressions and, as a result, may cause drug-resistant phenotypes in U-266 multiple myeloma cell lines. Among those gene expressions, the most drastic increase in cyclin E2 could be important for the survival of vincristine-resistant U-266 cell lines, whereas alteration of ceramide metabolism genes could be important in melphalan resistance.
Collapse
Affiliation(s)
- Pelin Mutlu
- Middle East Technical University, Department of Biological Sciences, Ankara, Turkey. E-ma-il:
| | | | | |
Collapse
|
17
|
Eissa MM, Barakat AMA, Amer EI, Younis LK. Could miltefosine be used as a therapy for toxoplasmosis? Exp Parasitol 2015; 157:12-22. [PMID: 26112396 DOI: 10.1016/j.exppara.2015.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 06/05/2015] [Accepted: 06/14/2015] [Indexed: 02/08/2023]
Abstract
Toxoplasmosis is a zoonotic protozoal disease affecting more than a billion people worldwide. The shortfalls of the current treatment options necessitate the development of non-toxic and well-tolerated, efficient alternatives especially against the cyst form. The current study was undertaken to investigate, for the first time, the potential potency of miltefosine against Toxoplasma gondii infection in acute and chronic experimental toxoplasmosis. Results showed that there is no evidence of anti-parasitic activity of miltefosine against T. gondii tachyzoites in acute experimental toxoplasmosis. However, anti-parasitic activity of miltefosine against T. gondii cyst stage in chronic experimental toxoplasmosis could not be excluded as demonstrated by significant reduction in brain cyst burden. Moreover, considerable morphological changes in the cysts were revealed by light and electron microscopy study and also by amelioration of pathological changes in the brain. Future studies should focus on enhancement of anti-toxoplasma activity of miltefosine against chronic toxoplasmosis using formulation based nanotechnology. To the best of our knowledge, this is the first study highlighting efficacy of miltefosine against chronic toxoplasmosis, thus, increasing the list of diseases that can be targeted by this drug.
Collapse
Affiliation(s)
- Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Eglal I Amer
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt.
| | - Layla K Younis
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
18
|
Wang J, Ye L, Jin M, Wang X. Global analyses of Chromosome 17 and 18 genes of lung telocytes compared with mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells, and lymphocytes. Biol Direct 2015; 10:9. [PMID: 25888380 PMCID: PMC4355521 DOI: 10.1186/s13062-015-0042-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/10/2015] [Indexed: 12/15/2022] Open
Abstract
Background Telocytes (TCs) is an interstitial cell with extremely long and thin telopodes (Tps) with thin segments (podomers) and dilations (podoms) to interact with neighboring cells. TCs have been found in different organs, while there is still a lack of TCs-specific biomarkers to distinguish TCs from the other cells. Results We compared gene expression profiles of murine pulmonary TCs on days 5 (TC5) and days 10 (TC10) with mesenchymal stem cells (MSCs), fibroblasts (Fbs), alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T-BL), and CD8+ T cells from lungs (T-LL). The chromosome 17 and 18 genes were extracted for further analysis. The TCs-specific genes and functional networks were identified and analyzed by bioinformatics tools. 16 and 10 of TCs-specific genes were up-regulated and 68 and 22 were down-regulated in chromosome 17 and 18, as compared with other cells respectively. Of them, Mapk14 and Trem2 were up-regulated to indicate the biological function of TCs in immune regulation, and up-regulated MCFD2 and down-regulated E4F1 and PDCD2 had an association with tissue homeostasis for TCs. Over-expressed Dpysl3 may promote TCs self-proliferation and cell-cell network forming. Conclusions The differential gene expression in chromosomes 17 and 18 clearly revealed that TCs were the distinctive type of interstitial cells. Our data also indicates that TCs may play a dual role in immune surveillance and immune homoeostasis to keep from immune disorder in acute and chronic pulmonary diseases. TCs also participated in proliferation, differentiation and regeneration. Reviewers This article was reviewed by Qing Kay Li and Dragos Cretoiu. Electronic supplementary material The online version of this article (doi:10.1186/s13062-015-0042-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Biomedical Research Center, Fudan University Medical School, Shanghai, China.
| | - Ling Ye
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Biomedical Research Center, Fudan University Medical School, Shanghai, China.
| | - Meiling Jin
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Biomedical Research Center, Fudan University Medical School, Shanghai, China.
| | - Xiangdong Wang
- Department of Pulmonary Medicine, Zhongshan Hospital, Shanghai Institute of Clinical Bioinformatics, Fudan University Center for Clinical Bioinformatics, Biomedical Research Center, Fudan University Medical School, Shanghai, China.
| |
Collapse
|
19
|
The ITM2B (BRI2) gene is a target of BCL6 repression: Implications for lymphomas and neurodegenerative diseases. Biochim Biophys Acta Mol Basis Dis 2014; 1852:742-8. [PMID: 25557390 DOI: 10.1016/j.bbadis.2014.12.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 12/21/2014] [Accepted: 12/25/2014] [Indexed: 11/20/2022]
Abstract
The human BCL6 gene encodes a transcriptional repressor that is crucial for germinal center B cell development and T follicular helper cell differentiation. It is involved in the pathogenesis of certain human lymphomas. In an effort to identify targets of BCL6 repression, we used a previously described cell system in which BCL6 repressive effects are inhibited, followed by subtractive hybridization, and identified the integral membrane 2B gene (ITM2B, formerly BRI2) as a potential target. Here we show that BCL6 can bind to its preferential consensus binding site within the first intron of ITM2B and represses its transcription. Knockdown of endogenous BCL6 in a human B cell lymphoma line increases ITM2B expression. Further, there is an inverse relationship between the expression levels of BCL6 and ITM2B proteins in 16 human B- and T-cell lymphomas studied by immunohistochemistry. Both the BCL6 and ITM2B proteins are expressed ubiquitously. Similar to some other targets of BCL6, a short form of the ITM2B protein generated by alternative splicing induces apoptosis in hematopoietic cell lines. Molecular alterations in the ITM2B gene are associated with two neurodegenerative diseases, Familial British and Familial Danish dementia. ITM2B dysfunction also may be relevant for the development of Alzheimer's disease. Our data confirm ITM2B as a target of BCL6 repression in lymphoma. A further understanding of the genes that function as regulators of the ITM2B protein may provide insights for the development of new molecular tools not only for targeted lymphoma therapy but also for the treatment of these dementias.
Collapse
|
20
|
Burroughs AM, Aravind L. Analysis of two domains with novel RNA-processing activities throws light on the complex evolution of ribosomal RNA biogenesis. Front Genet 2014; 5:424. [PMID: 25566315 PMCID: PMC4275035 DOI: 10.3389/fgene.2014.00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 11/19/2014] [Indexed: 11/13/2022] Open
Abstract
Ribosomal biogenesis has been extensively investigated, especially to identify the elusive nucleases and cofactors involved in the complex rRNA processing events in eukaryotes. Large-scale screens in yeast identified two biochemically uncharacterized proteins, TSR3 and TSR4, as being key players required for rRNA maturation. Using multiple computational approaches we identify the conserved domains comprising these proteins and establish sequence and structural features providing novel insights regarding their roles. TSR3 is unified with the DTW domain into a novel superfamily of predicted enzymatic domains, with the balance of the available evidence pointing toward an RNase role with the archaeo-eukaryotic TSR3 proteins processing rRNA and the bacterial versions potentially processing tRNA. TSR4, its other eukaryotic homologs PDCD2/rp-8, PDCD2L, Zfrp8, and trus, the predominantly bacterial DUF1963 proteins, and other uncharacterized proteins are unified into a new domain superfamily, which arose from an ancient duplication event of a strand-swapped, dimer-forming all-beta unit. We identify conserved features mediating protein-protein interactions (PPIs) and propose a potential chaperone-like function. While contextual evidence supports a conserved role in ribosome biogenesis for the eukaryotic TSR4-related proteins, there is no evidence for such a role for the bacterial versions. Whereas TSR3-related proteins can be traced to the last universal common ancestor (LUCA) with a well-supported archaeo-eukaryotic branch, TSR4-related proteins of eukaryotes are derived from within the bacterial radiation of this superfamily, with archaea entirely lacking them. This provides evidence for “systems admixture,” which followed the early endosymbiotic event, playing a key role in the emergence of the uniquely eukaryotic ribosome biogenesis process.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health Bethesda, MD, USA
| |
Collapse
|
21
|
Zhang J, Wei W, Jin HC, Ying RC, Zhu AK, Zhang FJ. Programmed cell death 2 protein induces gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis in a p53-dependent manner. Oncol Rep 2014; 33:103-10. [PMID: 25334010 DOI: 10.3892/or.2014.3551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/02/2014] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death 2 (PDCD2) is a highly conserved nuclear protein, and aberrant PDCD2 expression alters cell apoptosis. The present study aimed to investigate PDCD2 expression in gastric cancer. Tissue specimens from 34 gastric cancer patients were collected for analysis of PDCD2 expression using immunohistochemistry, western blotting and qRT-PCR. Gastric cancer cell lines (a p53-mutated MKN28 line and a wild-type p53 MKN45 line) were used to assess the effects of PDCD2 overexpression. p53-/- nude mice were used to investigate the effect of PDCD2 on ultraviolet B (UVB)-induced skin carcinogenesis. The data showed that PDCD2 expression was reduced in gastric cancer tissue specimens, and loss of PDCD2 expression was associated with the poor survival of patients. PDCD2 expression induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis. The antitumor effects of PDCD2 expression were dependent on p53 expression in gastric cancer cells. Moreover, PDCD2 expression inhibited activity of the ATM/Chk1/2/p53 signaling pathway. In addition, PDCD2 expression suppressed UVB-induced skin carcinogenesis in p53+/+ nude mice, but not in p53-/- mice. The data from the present study demonstrated that loss of PDCD2 expression could contribute to gastric cancer development and progression and that PDCD2-induced gastric cancer cell growth arrest at the early S phase of the cell cycle and apoptosis are p53-dependent.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Gastroenterological Surgery, Hangzhou First People's Hospital, School of Clinical Medicine, Nanjing Medical University, Hangzhou 310006, P.R. China
| | - Wei Wei
- Department of Gastroenterological Surgery, Hangzhou First People's Hospital, School of Clinical Medicine, Nanjing Medical University, Hangzhou 310006, P.R. China
| | - Hui-Cheng Jin
- Department of Gastroenterological Surgery, Hangzhou First People's Hospital, School of Clinical Medicine, Nanjing Medical University, Hangzhou 310006, P.R. China
| | - Rong-Chao Ying
- Department of Gastroenterological Surgery, Hangzhou First People's Hospital, School of Clinical Medicine, Nanjing Medical University, Hangzhou 310006, P.R. China
| | - A-Kao Zhu
- Department of Gastroenterological Surgery, Hangzhou First People's Hospital, School of Clinical Medicine, Nanjing Medical University, Hangzhou 310006, P.R. China
| | - Fang-Jie Zhang
- Department of Gastroenterological Surgery, Hangzhou First People's Hospital, School of Clinical Medicine, Nanjing Medical University, Hangzhou 310006, P.R. China
| |
Collapse
|
22
|
Translocation of the proto-oncogene Bcl-6 in human glioblastoma multiforme. Cancer Lett 2014; 353:41-51. [DOI: 10.1016/j.canlet.2014.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/26/2014] [Accepted: 06/29/2014] [Indexed: 01/13/2023]
|
23
|
Granier CJ, Wang W, Tsang T, Steward R, Sabaawy HE, Bhaumik M, Rabson AB. Conditional inactivation of PDCD2 induces p53 activation and cell cycle arrest. Biol Open 2014; 3:821-31. [PMID: 25150276 PMCID: PMC4163659 DOI: 10.1242/bio.20148326] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PDCD2 (programmed cell death domain 2) is a highly conserved, zinc finger MYND domain-containing protein essential for normal development in the fly, zebrafish and mouse. The molecular functions and cellular activities of PDCD2 remain unclear. In order to better understand the functions of PDCD2 in mammalian development, we have examined PDCD2 activity in mouse blastocyst embryos, as well as in mouse embryonic stem cells (ESCs) and embryonic fibroblasts (MEFs). We have studied mice bearing a targeted PDCD2 locus functioning as a null allele through a splicing gene trap, or as a conditional knockout, by deletion of exon2 containing the MYND domain. Tamoxifen-induced knockout of PDCD2 in MEFs, as well as in ESCs, leads to defects in progression from the G1 to the S phase of cell cycle, associated with increased levels of p53 protein and p53 target genes. G1 prolongation in ESCs was not associated with induction of differentiation. Loss of entry into S phase of the cell cycle and marked induction of nuclear p53 were also observed in PDCD2 knockout blastocysts. These results demonstrate a unique role for PDCD2 in regulating the cell cycle and p53 activation during early embryonic development of the mouse.
Collapse
Affiliation(s)
- Celine J Granier
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Wei Wang
- Sequencing and Microarray Core Facility, Lewis-Sigler Institute for Integrative Genetics, Princeton University, Princeton, NJ 08854, USA
| | - Tiffany Tsang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ruth Steward
- Waksman Institute and Department of Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Hatem E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Mantu Bhaumik
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| | - Arnold B Rabson
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08903, USA
| |
Collapse
|
24
|
Du Y, Wang D, Luo L, Guo J. miR-129-1-3p promote BGC-823 cell proliferation by targeting PDCD2. Anat Rec (Hoboken) 2014; 297:2273-9. [PMID: 25111461 DOI: 10.1002/ar.23003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 06/26/2014] [Indexed: 01/13/2023]
Abstract
MicroRNAs (miRNAs) are the class of small noncoding RNAs, and play an important role in the regulation of gene expression at the posttranscriptional level. In this study, we explored the effect of miR-129-1-3p on the growth and cell cycle of human gastric cancer cell line BGC-823. The miR-129-1-3p mimics or inhibitors were transfected into the BGC-823 cell line, and the cell cycle and cell growth was measured by flow cytometry and real-time cell analyzer, respectively. The possible targets of miR-129-1-3p were analyzed by quantitative real time-PCR (QRT-PCR), Western blotting and Luciferase reporter assay. The results showed that miR-129-1-3p could promote the growth and cell cycle of BGC-823 cells. Although protein expression of programmed cell death 2 (PDCD2) was not changed with miR-129-1-3p, QRT-PCR showed that expression of PDCD2 mRNA was negatively related to the miR-129-1-3p. Luciferase reporter assay revealed that PDCD2 is one of the targets of miR-129-1-3p. Our results indicated that miR-129-1-3p might promote proliferation of BGC-823 cells by targeting PDCD2.
Collapse
Affiliation(s)
- Yantao Du
- Zhejiang Provincial Key Laboratory of Pathophysiology, Medical School of Ningbo University, Zhejiang, China; Ningbo Institute of Medical Sciences, Medical School of Ningbo University, Ningbo, Zhejiang, China
| | | | | | | |
Collapse
|
25
|
Ni Nyoman AD, Lüder CGK. Apoptosis-like cell death pathways in the unicellular parasite Toxoplasma gondii following treatment with apoptosis inducers and chemotherapeutic agents: a proof-of-concept study. Apoptosis 2013; 18:664-80. [PMID: 23468121 PMCID: PMC3634991 DOI: 10.1007/s10495-013-0832-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ancient pathways of an apoptosis-like cell death have been identified in unicellular eukaryotes including protozoan parasites. Here, we examined programmed cell death in the apicomplexan Toxoplasma gondii which is a common intracellular pathogen of humans and warm-blooded animals. Treatment of extracellular T. gondii with various pro-apoptotic stimuli significantly induced DNA strand breaks as revealed by TUNEL and flow cytometry. Using staurosporine or miltefosine as pro-apoptotic stimuli, parasites also presented a reduced cell size, i.e. pyknosis and externalized phosphatidylserine while the plasma membrane remained intact. Importantly, staurosporine also induced DNA strand breaks in intracellular T. gondii. Data mining of the Toxoplasma genome resource identified 17 putative cell death-associated genes encoding proteases, a nuclease and several apoptosis regulators. Staurosporine-treated parasites but not controls strongly up-regulated several of these genes in a time-dependent fashion with a putative PDCD2 protein being more than 100-fold up-regulated. However, the mitochondrial membrane potential (ΔΨm) remained intact and caspase-like activity increased only slightly during staurosporine-triggered cell death. As compared to staurosporine, the transcriptional response of parasites to miltefosine was more restricted but PDCD2 was again strongly induced. Furthermore, T. gondii lost their ΔΨm and rapidly presented strong caspase-like activity during miltefosine treatment. Consequently, protease inhibitors abrogated miltefosine-induced but not staurosporine-induced Toxoplasma cell death. Finally, toxoplasmacidal drugs triggered DNA strand breaks in extracellular T. gondii. Interestingly, clindamycin also induced markers of an apoptosis-like cell death in intracellular parasites. Together, the data indicate that T. gondii possesses ancient apoptosis-like cell death machinery which can be triggered by chemotherapeutic agents.
Collapse
Affiliation(s)
- Ayu Dewi Ni Nyoman
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, Kreuzbergring 57, 37075, Göttingen, Germany
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Udayana University, Sudirman Denpasar, 80232 Bali, Indonesia
| | - Carsten G. K. Lüder
- Institute for Medical Microbiology, University Medical Center, Georg-August-University, Kreuzbergring 57, 37075, Göttingen, Germany
| |
Collapse
|
26
|
Kokorina NA, Granier CJ, Zakharkin SO, Davis S, Rabson AB, Sabaawy HE. PDCD2 knockdown inhibits erythroid but not megakaryocytic lineage differentiation of human hematopoietic stem/progenitor cells. Exp Hematol 2012; 40:1028-1042.e3. [PMID: 22922207 PMCID: PMC5218995 DOI: 10.1016/j.exphem.2012.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 07/19/2012] [Accepted: 08/01/2012] [Indexed: 11/27/2022]
Abstract
Programmed cell death-2 (PDCD2) protein is enriched in embryonic, hematopoietic, and neural stem cells, however, its function in stem/progenitor cell differentiation is unclear. We investigated the effects of PDCD2 knockdown on the development and differentiation of hematopoietic progenitor cells (HPC). CD34(+) cells derived from normal human bone marrow and K562 leukemic cells were effectively transduced with short-hairpin RNA to knockdown PDCD2. Colony-forming assays were used to investigate the effects of PDCD2 loss on HPC clonogenic potential and on 12-O-tetradecanoyl-phorbol-13-acetate-and arabinofuranosylcytosine-induced terminal differentiation. In CD34(+) clonogenic progenitors, PDCD2 knockdown decreased the total number of colony-forming units, increased the number of colony-forming units-granulocyte-erythroid-macrophage-megakaryocyte and burst-forming unit-erythroid primitive colonies, and decreased the number of burst-forming unit-erythroid mature colonies. Similar results were observed in K562 cells, suggesting that PDCD2 is important for HPC differentiation and/or survival, and for erythroid lineage commitment. Furthermore, 12-O-tetradecanoyl-phorbol-13-acetate-induced megakaryocytic differentiation and proliferation of K562 cells was not affected by PDCD2 knockdown. In contrast, arabinofuranosylcytosine-induced erythroid differentiation of K562 cells was significantly reduced with PDCD2 knockdown, with no effect on cell proliferation. The effects of PDCD2 knockdown were attributed to a cell cycle arrest at G(0)/G(1), along with increased messenger RNA expression of early progenitor factors c-MYB and GATA-2, and decreased expression of erythroid factors GATA-1, EpoR, and γ-globin. We conclude that PDCD2 loss of function(s) impedes erythroid differentiation by inducing cell cycle arrest and increasing expression of early hematopoietic progenitor factors. These findings suggest that PDCD2 has a novel regulatory role in human hematopoiesis and is essential for erythroid development.
Collapse
Affiliation(s)
| | | | | | - Stephani Davis
- The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Arnold B. Rabson
- Child Health Institute of New Jersey, New Brunswick, NJ, USA
- Department of Pediatrics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Molecular Genetics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Microbiology and Immunology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| | - Hatem E. Sabaawy
- The Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
- Department of Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
27
|
van Krieken JH. New developments in the pathology of malignant lymphoma: a review of the literature published from April 2010–July 2010. J Hematop 2010. [DOI: 10.1007/s12308-010-0069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|