1
|
Liu Z, Ren J, Qiu C, Wang Y, Zhang T. Application of mesenchymal stem cells in liver fibrosis and regeneration. LIVER RESEARCH 2024; 8:246-258. [PMID: 39958916 PMCID: PMC11771278 DOI: 10.1016/j.livres.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 02/18/2025]
Abstract
Liver transplantation remains the most effective treatment for end-stage liver disease (ESLD), but it is fraught with challenges such as immunosuppression, high risk and cost, and donor shortage. In recent years, stem cell transplantation has emerged as a promising new strategy for ESLD treatment, with mesenchymal stem cells (MSCs) gaining significant attention because of their unique properties. MSCs can regulate signaling pathways, including hepatocyte growth factor/c-Met, Wnt/beta (β)-catenin, Notch, transforming growth factor-β1/Smad, interleukin-6/Janus kinase/signal transducer and activator of transcription 3, and phosphatidylinositol 3-kinase/PDK/Akt, thereby influencing the progression of liver fibrosis and regeneration. As a promising stem cell type, MSCs offer numerous advantages in liver disease treatment, including low immunogenicity; ease of acquisition; unlimited proliferative ability; pluripotent differentiation potential; immunomodulatory function; and anti-inflammatory, antifibrotic, and antiapoptotic biological characteristics. This review outlines the mechanisms by which MSCs reverse liver fibrosis and promote liver regeneration. MSCs are crucial in reversing liver fibrosis and repairing liver damage through the secretion of growth factors, regulation of signaling pathways, and modulation of immune responses. MSCs have shown good therapeutic effects in preclinical and clinical studies, providing new strategies for liver disease treatment. However, challenges still exist in the clinical application of MSCs, including low differentiation efficiency and limited sources. This review provides a reference for MSC application in liver disease treatment. With the continuous progress in MSC research, MSCs are expected to achieve breakthroughs in liver disease treatment, thereby improving patient treatment outcomes.
Collapse
Affiliation(s)
- Zhenyu Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Junkai Ren
- Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cheng Qiu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ying Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Tong Zhang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
2
|
Butt MF, Jalan R. Review article: Emerging and current management of acute-on-chronic liver failure. Aliment Pharmacol Ther 2023; 58:774-794. [PMID: 37589507 DOI: 10.1111/apt.17659] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/02/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Acute-on-chronic liver failure (ACLF) is a clinically and pathophysiologically distinct condition from acutely decompensated cirrhosis and is characterised by systemic inflammation, extrahepatic organ failure, and high short-term mortality. AIMS To provide a narrative review of the diagnostic criteria, prognosis, epidemiology, and general management principles of ACLF. Four specific interventions that are explored in detail are intravenous albumin, extracorporeal liver assist devices, granulocyte-colony stimulating factor, and liver transplantation. METHODS We searched PubMed and Cochrane databases for articles published up to July 2023. RESULTS Approximately 35% of hospital inpatients with decompensated cirrhosis have ACLF. There is significant heterogeneity in the criteria used to diagnose ACLF; different definitions identify different phenotypes with varying mortality. Criteria established by the European Association for the Study of the Liver were developed in prospective patient cohorts and are, to-date, the most well validated internationally. Systemic haemodynamic instability, renal dysfunction, coagulopathy, neurological dysfunction, and respiratory failure are key considerations when managing ACLF in the intensive care unit. Apart from liver transplantation, there are no accepted evidence-based treatments for ACLF, but several different approaches are under investigation. CONCLUSION The recognition of ACLF as a distinct entity from acutely decompensated cirrhosis has allowed for better patient stratification in clinical settings, facilitating earlier engagement with the intensive care unit and liver transplantation teams. Research priorities over the next decade should focus on exploring novel treatment strategies with a particular focus on which, when, and how patients with ACLF should be treated.
Collapse
Affiliation(s)
- Mohsin F Butt
- Centre for Neuroscience, Trauma and Surgery, Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- National Institute for Health Research, Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, University of Nottingham, Nottinghamshire, UK
| | - Rajiv Jalan
- Liver Failure Group, University College London Medical School, Royal Free Hospital Campus, London, UK
- European Association for the Study of the Liver-Chronic Liver Failure (EASL-CLIF) Consortium, Barcelona, Spain
| |
Collapse
|
3
|
Abubakr S, Hazem NM, Sherif RN, Elhawary AA, Botros KG. Correlation between SDF-1α, CD34 positive hematopoietic stem cells and CXCR4 expression with liver fibrosis in CCl4 rat model. BMC Gastroenterol 2023; 23:323. [PMID: 37730560 PMCID: PMC10512633 DOI: 10.1186/s12876-023-02932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND One of the most frequent disorders is liver fibrosis. An improved understanding of the different events during the process of liver fibrosis & its reversibility could be helpful in its staging and in finding potential therapeutic agents. AIM The goal of this research was to evaluate the relationship among CD34 + HPSCs, SDF-1α, and CXCR4 receptor expression with the percentage of the area of hepatic fibrosis. MATERIALS AND METHODS Thirty-six male Sprague-Dawley rats were separated into the control group, liver injury group & spontaneous reversion group. The liver injury was induced by using 2 ml/kg CCl4 twice a week. Flow cytometric examination of CD34 + cells in the blood & liver was performed. Bone marrow & liver samples were taken for evaluation of the SDF-1α mRNA by PCR. Liver specimens were stained for histopathological and CXCR4 immuno-expression evaluation. RESULTS In the liver injury group, the hepatic enzymes, fibrosis area percentage, CXCR4 receptor expression in the liver, CD34 + cells in the blood and bone marrow & the level SDF-1α in the liver and its concentration gradient were statistically significantly elevated with the progression of the liver fibrosis. On the contrary, SDF-1α in the bone marrow was statistically significantly reduced with the development of liver fibrosis. During the spontaneous reversion group, all the studied parameters apart from SDF-1α in the bone marrow were statistically substantially decreased compared with the liver injury group. We found a statistically substantial positive correlation between fibrosis area and all of the following: liver enzymes, CXCR4 receptor expression in the liver, CD34 + cells in the blood and liver, and SDF- 1α in the liver and its concentration gradient. In conclusion, in CCl4 rat model, the fibrosis area is significantly correlated with many parameters in the blood, bone marrow, and liver, which can be used during the process of follow-up during the therapeutic interventions.
Collapse
Affiliation(s)
- Sara Abubakr
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Noha M Hazem
- Medical Biochemistry and Molecular Biology Department, Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Algomhoria Street, Mansoura, 35516, Egypt.
- Pathological Sciences Department, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia.
| | - R N Sherif
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Adel Abdelmohdy Elhawary
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Kamal G Botros
- Human Anatomy & Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Hu XH, Chen L, Wu H, Tang YB, Zheng QM, Wei XY, Wei Q, Huang Q, Chen J, Xu X. Cell therapy in end-stage liver disease: replace and remodel. Stem Cell Res Ther 2023; 14:141. [PMID: 37231461 DOI: 10.1186/s13287-023-03370-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.
Collapse
Affiliation(s)
- Xin-Hao Hu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Lan Chen
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hao Wu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Yang-Bo Tang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Qiu-Min Zheng
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Xu-Yong Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiang Wei
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qi Huang
- Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jian Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Xiao Xu
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Chawla S, Das A. Preclinical-to-clinical innovations in stem cell therapies for liver regeneration. Curr Res Transl Med 2023; 71:103365. [PMID: 36427419 DOI: 10.1016/j.retram.2022.103365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 02/06/2023]
Abstract
Acute and chronic liver diseases are the major cause of high morbidity and mortality globally. Liver transplantation is a widely used therapeutic option for liver failure. However, the shortage of availability of liver donors has encouraged research on the alternative approach to liver regeneration. Cell-based regenerative medicine is the best alternative therapy to cater to this need. To date, advanced preclinical approaches have been undertaken on stem cell differentiation and their use in liver tissue engineering for generating efficacious and promising regenerative therapies. Advancements in the bioengineering of stem cells, and organoid generation are the way forward to efficient therapies against liver injury. This review summarizes the recent approaches for stem cell therapy-based liver regeneration and their proof of concepts for clinical application, bioengineering liver organoids to alleviate the liver failure caused due to chronic liver diseases.
Collapse
Affiliation(s)
- Shilpa Chawla
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
6
|
Engelmann C, Habtesion A, Hassan M, Kerbert AJ, Hammerich L, Novelli S, Fidaleo M, Philips A, Davies N, Ferreira-Gonzalez S, Forbes SJ, Berg T, Andreola F, Jalan R. Combination of G-CSF and a TLR4 inhibitor reduce inflammation and promote regeneration in a mouse model of ACLF. J Hepatol 2022; 77:1325-1338. [PMID: 35843375 DOI: 10.1016/j.jhep.2022.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 05/22/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Acute-on-chronic liver failure (ACLF) is characterised by high short-term mortality, systemic inflammation, and failure of hepatic regeneration. Its treatment is a major unmet medical need. This study was conducted to explore whether combining TAK-242, a Toll-like receptor-4 (TLR4) antagonist, with granulocyte-colony stimulating factor (G-CSF), could reduce inflammation whilst enhancing liver regeneration. METHODS Two mouse models of ACLF were investigated. Chronic liver injury was induced by carbon tetrachloride; lipopolysaccharide (LPS) or galactosamine (GalN) were then administered as extrahepatic or hepatic insults, respectively. G-CSF and/or TAK-242 were administered daily. Treatment durations were 24 hours and 5 days in the LPS model and 48 hours in the GalN model. RESULTS In a mouse model of LPS-induced ACLF, treatment with G-CSF was associated with significant mortality (66% after 48 hours vs. 0% without G-CSF). Addition of TAK-242 to G-CSF abrogated mortality (0%) and significantly reduced liver cell death, macrophage infiltration and inflammation. In the GalN model, both G-CSF and TAK-242, when used individually, reduced liver injury but their combination was significantly more effective. G-CSF treatment, with or without TAK-242, was associated with activation of the pro-regenerative and anti-apoptotic STAT3 pathway. LPS-driven ACLF was characterised by p21 overexpression, which is indicative of hepatic senescence and inhibition of hepatocyte regeneration. While TAK-242 treatment mitigated the effect on senescence, G-CSF, when co-administered with TAK-242, resulted in a significant increase in markers of hepatocyte regeneration. CONCLUSION The combination of TAK-242 and G-CSF inhibits inflammation, promotes hepatic regeneration and prevents mortality in models of ACLF; thus, this combination could be a potential treatment option for ACLF. LAY SUMMARY Acute-on-chronic liver failure is associated with severe liver inflammation and poor short-term survival. Therefore, effective treatments are urgently needed. Herein, we have shown, using mouse models, that the combination of granulocyte-colony stimulating factor (which can promote liver regeneration) and TAK-242 (which inhibits a receptor that plays a key role in inflammation) could be effective for the treatment of acute-on-chronic liver failure.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany; Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany; Berlin Institute of Health - Charité - Universitätsmedizin Berlin, Germany
| | - Abeba Habtesion
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Mohsin Hassan
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Annarein Jc Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Linda Hammerich
- Medical Department, Division of Hepatology and Gastroenterology, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Simone Novelli
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Marco Fidaleo
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; Department of Biology and Biotechnology "C. Darwin", University of Rome Sapienza, 00185 Rome, Italy
| | - Alexandra Philips
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Nathan Davies
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Sofia Ferreira-Gonzalez
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Stuart J Forbes
- MRC Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, United Kingdom
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Rajiv Jalan
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom; European Foundation of the Study of Chronic Liver Failure, Barcelona, Spain.
| |
Collapse
|
7
|
Virovic-Jukic L, Ljubas D, Stojsavljevic-Shapeski S, Ljubičić N, Filipec Kanizaj T, Mikolasevic I, Grgurevic I. Liver regeneration as treatment target for severe alcoholic hepatitis. World J Gastroenterol 2022; 28:4557-4573. [PMID: 36157937 PMCID: PMC9476880 DOI: 10.3748/wjg.v28.i32.4557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/30/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Severe alcoholic hepatitis (AH) is a distinct entity in the spectrum of alcohol-related liver disease, with limited treatment options and high mortality. Supportive medical care with corticosteroids in selected patients is the only currently available treatment option, often with poor outcomes. Based on the insights into the pathogenetic mechanisms of AH, which are mostly obtained from animal studies, several new treatment options are being explored. Studies have implicated impaired and deranged liver regeneration processes as one of the culprit mechanisms and a potential therapeutic target. Acknowledging evidence for the beneficial effects of granulocyte colony-stimulating factor (G-CSF) on liver regeneration and immunomodulation in animal models, several human studies investigated its role in the treatment of advanced alcohol-related liver disease and AH. Contrary to the previously published studies suggesting benefits of G-CSF in the outcomes of patients with severe AH, these effects were not confirmed by a recently published multicenter randomized trial, suggesting that other options should rather be pursued. Stem cell transplantation represents another option for improving liver regeneration, but evidence for its efficacy in patients with severe AH and advanced alcohol-related liver disease is still very scarce and unconvincing, with established lack of efficacy in patients with compensated cirrhosis. In this review, we summarize the current knowledge on the pathogenesis and experimental therapies targeting liver regeneration. The lack of high-quality studies and evidence is a major obstacle in further treatment development. New insights into the pathogenesis of not only liver injury, but also liver regeneration processes are mandatory for the development of new treatment options. A reliable experimental model of the pathogenesis of AH and processes involved in liver recovery is still missing, and data obtained from animal studies are essential for future research.
Collapse
Affiliation(s)
- Lucija Virovic-Jukic
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Dominik Ljubas
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Sanja Stojsavljevic-Shapeski
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
| | - Neven Ljubičić
- Department of Gastroenterology and Hepatology, Sisters of Charity University Hospital Center, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Internal Medicine, University of Zagreb School of Dental Medicine, Zagreb 10000, Croatia
| | - Tajana Filipec Kanizaj
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Gastroenterology, Merkur University Hospital, Zagreb 10000, Croatia
| | - Ivana Mikolasevic
- Department of Gastroenterology, Rijeka University Hospital Center, Rijeka 51000, Croatia
- Department of Internal Medicine, University of Rijeka School of Medicine, Rijeka 10000, Croatia
| | - Ivica Grgurevic
- Department of Internal Medicine, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Dubrava University Hospital, Zagreb 10000, Croatia
| |
Collapse
|
8
|
Liver Regeneration by Hematopoietic Stem Cells: Have We Reached the End of the Road? Cells 2022; 11:cells11152312. [PMID: 35954155 PMCID: PMC9367594 DOI: 10.3390/cells11152312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
The liver is the organ with the highest regenerative capacity in the human body. However, various insults, including viral infections, alcohol or drug abuse, and metabolic overload, may cause chronic inflammation and fibrosis, leading to irreversible liver dysfunction. Despite advances in surgery and pharmacological treatments, liver diseases remain a leading cause of death worldwide. To address the shortage of donor liver organs for orthotopic liver transplantation, cell therapy in liver disease has emerged as a promising regenerative treatment. Sources include primary hepatocytes or functional hepatocytes generated from the reprogramming of induced pluripotent stem cells (iPSC). Different types of stem cells have also been employed for transplantation to trigger regeneration, including hematopoietic stem cells (HSCs), mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs) as well as adult and fetal liver progenitor cells. HSCs, usually defined by the expression of CD34 and CD133, and MSCs, defined by the expression of CD105, CD73, and CD90, are attractive sources due to their autologous nature, ease of isolation and cryopreservation. The present review focuses on the use of bone marrow HSCs for liver regeneration, presenting evidence for an ongoing crosstalk between the hematopoietic and the hepatic system. This relationship commences during embryogenesis when the fetal liver emerges as the crossroads between the two systems converging the presence of different origins of cells (mesoderm and endoderm) in the same organ. Ample evidence indicates that the fetal liver supports the maturation and expansion of HSCs during development but also later on in life. Moreover, the fact that the adult liver remains one of the few sites for extramedullary hematopoiesis—albeit pathological—suggests that this relationship between the two systems is ongoing. Can, however, the hematopoietic system offer similar support to the liver? The majority of clinical studies using hematopoietic cell transplantation in patients with liver disease report favourable observations. The underlying mechanism—whether paracrine, fusion or transdifferentiation or a combination of the three—remains to be confirmed.
Collapse
|
9
|
Liu P, Mao Y, Xie Y, Wei J, Yao J. Stem cells for treatment of liver fibrosis/cirrhosis: clinical progress and therapeutic potential. Stem Cell Res Ther 2022; 13:356. [PMID: 35883127 PMCID: PMC9327386 DOI: 10.1186/s13287-022-03041-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cost-effective treatment strategies for liver fibrosis or cirrhosis are limited. Many clinical trials of stem cells for liver disease shown that stem cells might be a potential therapeutic approach. This review will summarize the published clinical trials of stem cells for the treatment of liver fibrosis/cirrhosis and provide the latest overview of various cell sources, cell doses, and delivery methods. We also describe the limitations and strengths of various stem cells in clinical applications. Furthermore, to clarify how stem cells play a therapeutic role in liver fibrosis, we discuss the molecular mechanisms of stem cells for treatment of liver fibrosis, including liver regeneration, immunoregulation, resistance to injury, myofibroblast repression, and extracellular matrix degradation. We provide a perspective for the prospects of future clinical implementation of stem cells.
Collapse
Affiliation(s)
- Pinyan Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yongcui Mao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ye Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayun Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jia Yao
- The First Clinical Medical College of Lanzhou University, Lanzhou, China. .,Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China.
| |
Collapse
|
10
|
Ullah A, Chen G, Yibang Z, Hussain A, Shafiq M, Raza F, Liu D, Wang K, Cao J, Qi X. A new approach based on CXCR4-targeted combination liposomes for the treatment of liver fibrosis. Biomater Sci 2022; 10:2650-2664. [PMID: 35420075 DOI: 10.1039/d2bm00242f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Liver fibrosis results from excessive extracellular matrix accumulation due to injury and leads to cirrhosis, cancer, and death. Herein, we propose a chemokine receptor 4 (CXCR4)-targeted combination (CTC) liposomal therapy to treat carbon tetrachloride (CCl4)-induced liver fibrosis in a mouse model. This study aims to combine small molecules such as pirfenidone and AMD3100 in a single nanoplatform to investigate their synergistic antifibrotic effects in a setting of CCl4-induced liver fibrosis. CTC liposomes (CTC lipo) were prepared using the thin-film hydration method. CTC lipo exhibited a spherical shape, and the particle size was recorded at the nanoscale which confirms its appropriateness for in vitro and in vivo applications. CTC lipo had good storage and serum stability. The entrapped drugs in CTC lipo showed reduced toxicity at higher concentrations. CTC lipo displayed CXCR4 mediated cell uptake and were internalized by caveolae-mediated endocytosis. CTC lipo showed CXCR4 targeting and stromal cell-derived factor 1α (SDF1-α)/CXCR4 axis blocking activity. CTC lipo reduced the elevated serum aspartate aminotransferase (AST), alanine transaminase (ALT), and hydroxyproline (HYP) levels. The histological studies showed improved liver architecture and reduced collagen deposition after treatment. Transforming growth factor β (TGFβ), alpha-smooth muscle actin (α-SMA), and collagen I were elevated by CCl4 in comparison with the Sham. Upon CTC liposomal treatment, the quantitative score for the elevated fibrotic proteins such as TGFβ, α-SMA, and collagen I was normalized. CTC lipo displayed significant downregulation of the upregulated TGFβ, α-SMA, collagen I, and P-p38 expressions at the molecular level. The CXCR4 targeted liposomes showed prolonged biodistribution at 24 h. Our findings indicated that CTC lipo might be an alternative antifibrotic therapy that may offer new access to research and development. In a nutshell, the present study suggests that systemic administration of CTC lipo has efficient antifibrotic potential and deserves to be investigated for further clinical applications.
Collapse
Affiliation(s)
- Aftab Ullah
- College of Pharmaceutical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Zhang Yibang
- College of Pharmaceutical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Institute of Engineering Medicine, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Muhammad Shafiq
- Department of Pharmacy, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, Shanghai, China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong 226001, China
| | - Jin Cao
- College of Pharmaceutical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xueyong Qi
- College of Pharmaceutical Science, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
11
|
Venkitaraman A, De A, Verma N, Kumari S, Leishangthem B, Sharma RR, Kalra N, Grover S, Singh V. Multiple cycles of granulocyte colony-stimulating factor in decompensated cirrhosis: a double-blind RCT. Hepatol Int 2022; 16:1127-1136. [PMID: 35322373 PMCID: PMC8942063 DOI: 10.1007/s12072-022-10314-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Liver transplant, the definitive treatment of decompensated cirrhosis (DC), is constrained by donor shortage and long-term complications. Granulocyte colony-stimulating factor (G-CSF) has been explored as an alternative option in open-label studies. This double-blind, randomized, placebo-controlled trial was designed to elucidate the efficacy of G-CSF in DC. METHODS Seventy patients were randomized to either G-CSF plus standard medical therapy (group A, n = 35) or placebo plus standard medical therapy (group B, n = 35). Primary outcome was 12-month overall survival in patients who received at least one cycle of intervention. Secondary outcomes were mobilization of CD34+ cells at day 6, improvement in Child-Turcotte-Pugh (CTP), and model for end-stage liver disease (MELD), liver stiffness measurement, quality of life, nutrition, hepatic decompensation, infection, hospitalization, and acute kidney injury. RESULTS Survival in group A was higher than that in Group B although the difference was not statistically significant (87.9% vs 66.7%; p = 0.053). CD34+ cells at day 6 were significantly higher in group A as compared to baseline (p < 0.001). Ascites control (p = 0.03) and CTP score improvement (p = 0.02) were better in group A at 12-months. Encephalopathy episodes (p = 0.005), infections (p = 0.005) were fewer in group A than group B at 12 months. Other secondary outcomes did not improve post-therapy. There were no treatment-related discontinuations or severe adverse events. CONCLUSIONS G-CSF therapy is safe. The improvement in survival at 12 months is not statistically significant. Better control of ascites, improvement of CTP score, fewer encephalopathy episodes and decreased rate of infections were observed with G-CSF therapy (NCT03911037). Trials Registration NCT03911037.
Collapse
Affiliation(s)
- Aswath Venkitaraman
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nipun Verma
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunita Kumari
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Bidyalaxmi Leishangthem
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ratti Ram Sharma
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Naveen Kalra
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sandeep Grover
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
12
|
Ramos IPR, Dias ML, Nunes De Moraes AC, Meireles Ferreira FG, Souza SAL, Gutfilen B, Barboza T, Ferreira Pimentel C, Paz Batista CM, Kasai-Brunswick TH, Fortes FDSDA, De Andrade CBV, Goldenberg RCDS. Granulocyte Colony-Stimulating Factor Treatment Before Radiotherapy Protects Against Radiation-Induced Liver Disease in Mice. Front Pharmacol 2021; 12:725084. [PMID: 34867327 PMCID: PMC8634713 DOI: 10.3389/fphar.2021.725084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022] Open
Abstract
Radiation-induced liver disease (RILD) remains a major problem resulting from radiotherapy. In this scenario, immunotherapy with granulocyte colony-stimulating factor (G-CSF) arises as an attractive approach that might improve the injured liver. Here, we investigated G-CSF administration’s impact before and after liver irradiation exposure using an association of alcohol consumption and local irradiation to induce liver disease model in C57BL/6 mice. Male and female mice were submitted to a previous alcohol-induced liver injury protocol with water containing 5% alcohol for 90 days. Then, the animals were treated with G-CSF (100 μg/kg/d) for 3 days before or after liver irradiation (18 Gy). At days 7, 30, and 60 post-radiation, non-invasive liver images were acquired by ultrasonography, magnetic resonance, and computed tomography. Biochemical and histological evaluations were performed to verify whether G-CSF could prevent liver tissue damage or reverse the acute liver injury. Our data showed that the treatment with G-CSF before irradiation effectively improved morphofunctional parameters caused by RILD, restoring histological arrangement, promoting liver regeneration, preserving normal organelles distribution, and glycogen granules. The amount of OV-6 and F4/80-positive cells increased, and α-SMA positive cells’ presence was normalized. Additionally, prior G-CSF administration preserved serum biochemical parameters and increased the survival rates (100%). On the other hand, after irradiation, the treatment showed a slight improvement in survival rates (79%) and did not ameliorate RILD. Overall, our data suggest that G-CSF administration before radiation might be an immunotherapeutic alternative to radiotherapy planning to avoid RILD.
Collapse
Affiliation(s)
- Isalira Peroba Rezende Ramos
- Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Marlon Lemos Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | | | | | - Sergio Augusto Lopes Souza
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Gutfilen
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Barboza
- Departamento de Radiologia, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cibele Ferreira Pimentel
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Laboratório de Terapia e Fisiologia Celular e Molecular-LTFCM, Centro Universitário Estadual da Zona Oeste-UEZO, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biomedicina Translacional-BIOTRANS (UEZO-UNIGRANRIO-InMETRO), Duque de Caxias, Brazil
| | - Cintia Marina Paz Batista
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Tais Hanae Kasai-Brunswick
- Centro Nacional de Biologia Estrutural e Bioimagem-CENABIO, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fabio Da Silva De Azevedo Fortes
- Laboratório de Terapia e Fisiologia Celular e Molecular-LTFCM, Centro Universitário Estadual da Zona Oeste-UEZO, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Biomedicina Translacional-BIOTRANS (UEZO-UNIGRANRIO-InMETRO), Duque de Caxias, Brazil
| | - Cherley Borba Vieira De Andrade
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Departmento de Histologia e Embriologia, Universidade do Estado do Rio de Janeiro, UERJ, Rio de Janeiro, Brazil
| | - Regina Coeli Dos Santos Goldenberg
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-REGENERA, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Bioinformatic Evidence Reveals that Cell Cycle Correlated Genes Drive the Communication between Tumor Cells and the Tumor Microenvironment and Impact the Outcomes of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4092635. [PMID: 34746301 PMCID: PMC8564189 DOI: 10.1155/2021/4092635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/04/2021] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive cancer type with poor prognosis; thus, there is especially necessary and urgent to screen potential prognostic biomarkers for early diagnosis and novel therapeutic targets. In this study, we downloaded target data sets from the GEO database, and obtained codifferentially expressed genes using the limma R package and identified key genes through the protein–protein interaction network and molecular modules, and performed GO and KEGG pathway analyses for key genes via the clusterProfiler package and further determined their correlations with clinicopathological features using the Oncomine database. Survival analysis was completed in the GEPIA and the Kaplan–Meier plotter database. Finally, correlations between key genes, cell types infiltrated in the tumor microenvironment (TME), and hypoxic signatures were explored based on the TIMER database. From the results, 11 key genes related to the cell cycle were determined, and high levels of these key genes' expression were focused on advanced and higher grade status HCC patients, as well as in samples of TP53 mutation and vascular invasion. Besides, the 11 key genes were significantly associated with poor prognosis of HCC and also were positively related to the infiltration level of MDSCs in the TME and the HIF1A and VEGFA of hypoxic signatures, but a negative correlation was found with endothelial cells (ECs) and hematopoietic stem cells. The result determined that 11 key genes (RRM2, NDC80, ECT2, CCNB1, ASPM, CDK1, PRC1, KIF20A, DTL, TOP2A, and PBK) could play a vital role in the pathogenesis of HCC, drive the communication between tumor cells and the TME, and act as probably promising diagnostic, therapeutic, and prognostic biomarkers in HCC patients.
Collapse
|
14
|
Rathi S, Hussaini T, Yoshida EM. Granulocyte colony stimulating factor: A potential therapeutic rescue in severe alcoholic hepatitis and decompensated cirrhosis. Ann Hepatol 2021; 20:100211. [PMID: 32533952 DOI: 10.1016/j.aohep.2020.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cirrhosis accounts for over 2 million deaths annually worldwide. A subset of these patients - those with alcoholic hepatitis and decompensated cirrhosis, have abysmal short-term survival. Liver transplant is the only intervention of proven survival benefit; however organ availability is a major limitation. It is thus imperative to assess potential benefit of experimental therapies as a bridge to transplant. Stem cell therapies have shown some promise in patients with end-stage liver disease. Of these, bone-marrow derived hematopoietic stem cells have generated the most interest. Animal as well as human data suggest biological plausibility of stem cell translocation from bone marrow to liver, giving credence to cytokine therapies based on bone marrow stimulation. Granulocyte colony stimulating factor has been the most frequently used cytokine for this purpose. This intervention has shown encouraging results in terms of safety as well as survival benefits in small clinical trials. The evidence, however, is sparse and heterogeneous. In this review we describe the biological plausibility, mechanisms of action, and clinical evidence of the use of cytokine based stem cell therapy in patients with end-stage liver disease.
Collapse
Affiliation(s)
- Sahaj Rathi
- Division of Gastroenterology, University of British Columbia and Vancouver General Hospital, Canada
| | - Trana Hussaini
- Division of Gastroenterology, University of British Columbia and Vancouver General Hospital, Canada
| | - Eric M Yoshida
- Division of Gastroenterology, University of British Columbia and Vancouver General Hospital, Canada.
| |
Collapse
|
15
|
Ali S, Haque N, Azhar Z, Saeinasab M, Sefat F. Regenerative Medicine of Liver: Promises, Advances and Challenges. Biomimetics (Basel) 2021; 6:biomimetics6040062. [PMID: 34698078 PMCID: PMC8544204 DOI: 10.3390/biomimetics6040062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 12/16/2022] Open
Abstract
Liver tissue engineering is a rapidly developing field which combines the novel use of liver cells, appropriate biochemical factors, and engineering principles, in order to replace or regenerate damaged liver tissue or the organ. The aim of this review paper is to critically investigate different possible methods to tackle issues related with liver diseases/disorders mainly using regenerative medicine. In this work the various regenerative treatment options are discussed, for improving the prognosis of chronic liver disorders. By reviewing existing literature, it is apparent that the current popular treatment option is liver transplantation, although the breakthroughs of stem cell-based therapy and bioartificial liver technology make them a promising alternative.
Collapse
Affiliation(s)
- Saiful Ali
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Nasira Haque
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Zohya Azhar
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
| | - Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran;
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK; (S.A.); (N.H.); (Z.A.)
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Correspondence: ; Tel.: +44-(0)-1274-233679 or +44-(0)-781-381-7460
| |
Collapse
|
16
|
Campana L, Esser H, Huch M, Forbes S. Liver regeneration and inflammation: from fundamental science to clinical applications. Nat Rev Mol Cell Biol 2021; 22:608-624. [PMID: 34079104 DOI: 10.1038/s41580-021-00373-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
Liver regeneration is a complex process involving the crosstalk of multiple cell types, including hepatocytes, hepatic stellate cells, endothelial cells and inflammatory cells. The healthy liver is mitotically quiescent, but following toxic damage or resection the cells can rapidly enter the cell cycle to restore liver mass and function. During this process of regeneration, epithelial and non-parenchymal cells respond in a tightly coordinated fashion. Recent studies have described the interaction between inflammatory cells and a number of other cell types in the liver. In particular, macrophages can support biliary regeneration, contribute to fibrosis remodelling by repressing hepatic stellate cell activation and improve liver regeneration by scavenging dead or dying cells in situ. In this Review, we describe the mechanisms of tissue repair following damage, highlighting the close relationship between inflammation and liver regeneration, and discuss how recent findings can help design novel therapeutic approaches.
Collapse
Affiliation(s)
- Lara Campana
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Hannah Esser
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK
| | - Meritxell Huch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stuart Forbes
- Centre for Regenerative Medicine, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
17
|
Engelmann C, Martino VD, Kerbert AJC, Weil-Verhoeven D, Aehling NF, Herber A, Thévenot T, Berg T. The Current Status of Granulocyte-Colony Stimulating Factor to Treat Acute-on-Chronic Liver Failure. Semin Liver Dis 2021; 41:298-307. [PMID: 33992029 DOI: 10.1055/s-0041-1723034] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Patients with acute-on-chronic liver failure (ACLF) have a devastating prognosis and therapeutic options are limited. Granulocyte-colony stimulating factor (G-CSF) mobilizes immune and stem cells and possess immune-modulatory and proregenerative capacities. In this review, we aim to define the current evidence for the treatment with G-CSF in end-stage liver disease. Several smaller clinical trials in patients with different severity grades of end-stage liver disease have shown that G-CSF improves survival and reduces the rate of complications. Adequately powered multicenter European trials could not confirm these beneficial effects. In mouse models of ACLF, G-CSF increased the toll-like receptor (TLR)-mediated inflammatory response which led to an increase in mortality. Adding a TLR4 signaling inhibitor allowed G-CSF to unfold its proregenerative properties in these ACLF models. These data suggest that G-CSF requires a noninflammatory environment to exert its protective properties.
Collapse
Affiliation(s)
- Cornelius Engelmann
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom.,Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany.,Division of Hepatology and Gastroenterology, Department of Medical, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vincent Di Martino
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, 25000 Besançon, France
| | - Annarein J C Kerbert
- Liver Failure Group, Institute for Liver and Digestive Health, University College London, Royal Free Campus, London, United Kingdom
| | - Delphine Weil-Verhoeven
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, 25000 Besançon, France
| | - Niklas Friedemann Aehling
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Adam Herber
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Thierry Thévenot
- Service d'Hépatologie et de Soins Intensifs Digestifs, Hôpital Jean Minjoz, 25000 Besançon, France
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
18
|
De A, Kumari S, Singh A, Kaur A, Sharma R, Bhalla A, Sharma N, Kalra N, Singh V. Multiple Cycles of Granulocyte Colony-Stimulating Factor Increase Survival Times of Patients With Decompensated Cirrhosis in a Randomized Trial. Clin Gastroenterol Hepatol 2021; 19:375-383.e5. [PMID: 32088302 DOI: 10.1016/j.cgh.2020.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS There is controversy regarding the inclusion of granulocyte colony stimulating factor (G-CSF) in the treatment of decompensated cirrhosis. Previous studies tested only a single cycle of G-CSF administration or were underpowered to detect changes in survival time. We performed an adequately powered study to determine whether multiple cycles of G-CSF increased the survival of patients 1 year after the start of therapy. METHODS We conducted an open-label trial of 100 patients with decompensated cirrhosis without acute-on-chronic liver failure at a tertiary center from July 2016 through June 2018. The patients were assigned randomly to a group given 5 days of G-CSF every 3 months, with standard medical therapy, in 4 cycles (group A, n = 50), or standard medical therapy alone (group B, n = 50). The primary outcome was survival for 12 months after treatment began. Secondary outcomes were an increase in the number of CD34+ cells at day 6 compared with day 0, along with reductions in Child-Turcotte-Pugh and model for end-stage liver disease scores, increased control of ascites, reduced decompensation and episodes of infection, fewer hospitalizations, lower liver stiffness measurements, increased quality of life and nutrition, fulfilment of liver transplant criteria, and fewer adverse events at 12 months after the start of treatment. RESULTS Groups A and B were comparable at baseline. Survival at 12 months after initiation of treatment was significantly higher in group A (74%) than in group B (42%) (P < .001). Blood samples from patients in group A had significantly more CD34+ cells on day 6 than on day 0 (P < .001); there was no significant change in group B. Compared with patients in group B, patients in group A had significant reductions in Child-Turcotte-Pugh and model for end-stage liver disease scores, increased ascites control, fewer infections and hospitalizations, lower liver stiffness measurements, an increased quality of life, and a lower number fulfilled the liver transplant criteria (P < .05). There was no improvement in nutrition in either group compared with baseline. G-CSF was safe and well tolerated. CONCLUSIONS Administration of multiple cycles of G-CSF increases the numbers of hematopoietic stem cells and survival of patients with decompensated cirrhosis receiving standard medical treatment. The addition of G-CSF to medical treatment might provide a bridge to liver transplantation for these patients. ClincialTrials.gov no: NCT03415698.
Collapse
Affiliation(s)
- Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Sunita Kumari
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akash Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amritjyot Kaur
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Rattiram Sharma
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Bhalla
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Naveen Kalra
- Department of Radiodiagnosis and Imaging, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
19
|
Ullah A, Chen G, Hussain A, Khan H, Abbas A, Zhou Z, Shafiq M, Ahmad S, Ali U, Usman M, Raza F, Ahmed A, Qiu Z, Zheng M, Liu D. Cyclam-Modified Polyethyleneimine for Simultaneous TGFβ siRNA Delivery and CXCR4 Inhibition for the Treatment of CCl 4-Induced Liver Fibrosis. Int J Nanomedicine 2021; 16:4451-4470. [PMID: 34234436 PMCID: PMC8257077 DOI: 10.2147/ijn.s314367] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Liver fibrosis is a chronic liver disease with excessive production of extracellular matrix proteins, leading to cirrhosis, hepatocellular carcinoma, and death. PURPOSE This study aimed at the development of a novel derivative of polyethyleneimine (PEI) that can effectively deliver transforming growth factor β (TGFβ) siRNA and inhibit chemokine receptor 4 (CXCR4) for TGFβ silencing and CXCR4 Inhibition, respectively, to treat CCl4-induced liver fibrosis in a mouse model. METHODS Cyclam-modified PEI (PEI-Cyclam) was synthesized by incorporating cyclam moiety into PEI by nucleophilic substitution reaction. Gel electrophoresis confirmed the PEI-Cyclam polyplex formation and stability against RNAase and serum degradation. Transmission electron microscopy and zeta sizer were employed for the morphology, particle size, and zeta potential, respectively. The gene silencing and CXCR4 targeting abilities of PEI-Cyclam polyplex were evaluated by luciferase and CXCR4 redistribution assays, respectively. The histological and immunohistochemical staining determined the anti-fibrotic activity of PEI-Cyclam polyplex. The TGFβ silencing of PEI-Cyclam polyplex was authenticated by Western blotting. RESULTS The 1H NMR of PEI-Cyclam exhibited successful incorporation of cyclam content onto PEI. The PEI-Cyclam polyplex displayed spherical morphology, positive surface charge, and stability against RNAse and serum degradation. Cyclam modification decreased the cytotoxicity and demonstrated CXCR4 antagonistic and luciferase gene silencing efficiency. PEI-Cyclam/siTGFβ polyplexes decreased inflammation, collagen deposition, apoptosis, and cell proliferation, thus ameliorating liver fibrosis. Also, PEI-Cyclam/siTGFβ polyplex significantly downregulated α-smooth muscle actin, TGFβ, and collagen type III. CONCLUSION Our findings validate the feasibility of using PEI-Cyclam as a siRNA delivery vector for simultaneous TGFβ siRNA delivery and CXCR4 inhibition for the combined anti-fibrotic effects in a setting of CCl4-induced liver fibrosis.
Collapse
Affiliation(s)
- Aftab Ullah
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
- Correspondence: Aftab Ullah; Daojun Liu Email ;
| | - Gang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People’s Republic of China
| | - Abid Hussain
- School of Life Science, Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing, 100081, People’s Republic of China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, People's Republic of China
| | - Hanif Khan
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| | - Azar Abbas
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Zhanwei Zhou
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, people's Republic of China
| | - Saleem Ahmad
- Department of Medicine, Shantou University Medical College Cancer Hospital, Shantou, People’s Republic of China
| | - Usman Ali
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Muhammad Usman
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, 515041, people's Republic of China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Abrar Ahmed
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, 200240, Shanghai, People’s Republic of China
| | - Zijie Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210028, Jiangsu, People’s Republic of China
| | - Maochao Zheng
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| | - Daojun Liu
- Department of Pharmacy, Shantou University Medical College, Shantou, 515041, Guangdong, People’s Republic of China
| |
Collapse
|
20
|
Zhu B, You S, Rong Y, Yu Q, Lv S, Song F, Liu H, Wang H, Zhao J, Li D, Liu W, Xin S. A novel stem cell therapy for hepatitis B virus-related acute-on-chronic liver failure. ACTA ACUST UNITED AC 2020; 53:e9728. [PMID: 33053116 PMCID: PMC7552894 DOI: 10.1590/1414-431x20209728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to propose a stem cell therapy for hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF) based on plasma exchange (PE) for peripheral blood stem cell (PBSC) collection and examine its safety and efficacy. Sixty patients (n=20 in each group) were randomized to PE (PE alone), granulocyte colony-stimulating factor (G-CSF) (PE after G-CSF treatment), and PBSC transplantation (PBSCT) (G-CSF, PE, PBSC collection and hepatic artery injection) groups. Patients were followed-up for 24 weeks. Liver function and adverse events were recorded. Survival analysis was performed. PBSCT improved blood ammonia levels at 1 week (P<0.05). The level of total bilirubin, international normalized ratio, and creatinine showed significant differences in the 4th week of treatment (P<0.05). The survival rates of the PE, G-CSF, and PBSCT groups were 50, 65, and 85% at 90 days (P=0.034). There was a significant difference in 90-day survival between the PE and PBSCT groups (P=0.021). The preliminary results suggested that PBSCT was safe, with a possibility of improved 90-day survival in patients with HBV-ACLF.
Collapse
Affiliation(s)
- Bing Zhu
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaoli You
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yihui Rong
- Department of Infection and Liver Diseases, Peking University International Hospital, Beijing, China
| | - Qiang Yu
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sa Lv
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fangjiao Song
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongling Liu
- Liver Transplantation Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Huaming Wang
- Department of Interventional Therapy, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jun Zhao
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dongze Li
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wanshu Liu
- Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shaojie Xin
- Medical School of Chinese PLA, Beijing, China.,Liver Failure Treatment and Research Center, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Advantages of adipose tissue stem cells over CD34 + mobilization to decrease hepatic fibrosis in Wistar rats. Ann Hepatol 2020; 18:620-626. [PMID: 31147180 DOI: 10.1016/j.aohep.2018.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 12/04/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023]
Abstract
INTRODUCTION AND OBJECTIVES Chronic liver inflammation may lead to hepatic cirrhosis, limiting its regenerative capacity. The clinical standard of care is transplantation, although stem cell therapy may be an alternative option. The study aim was to induce endogenous hematopoietic stem cells (HSCs) with granulocyte colony stimulating factor (G-CSF) and/or intravenous administration of adipose tissue-derived mesenchymal stem cells (MSCs) to decrease hepatic fibrosis in an experimental model. MATERIAL AND METHODS A liver fibrosis model was developed with female Wistar rats via multiple intraperitoneal doses of carbon tetrachloride. Three rats were selected to confirm cirrhosis, and the rest were set into experimental groups to evaluate single and combined therapies of G-CSF-stimulated HSC mobilization and intravenous MSC administration. RESULTS Treatment with MSCs and G-CSF significantly improved alanine amino transferase levels, while treatment with G-CSF, MSCs, and G-CSF+MSCs decreased aspartate amino transferase levels. Hepatocyte growth factor (HGF) and interleukin 10 levels increased with MSC treatment. Transforming growth factor β levels were lower with MSC treatment. Interleukin 1β and tumor necrosis factor alpha levels decreased in all treated groups. Histopathology showed that MSCs and G-CSF reduced liver fibrosis from F4 to F2. CONCLUSIONS MSC treatment improves liver function, decreases hepatic fibrosis, and plays an anti-inflammatory role; it promotes HGF levels and increased proliferating cell nuclear antigen when followed by MSC treatment mobilization using G-CSF. When these therapies were combined, however, fibrosis improvement was less evident.
Collapse
|
22
|
Tian F, Liu Y, Gao J, Yang N, Shang X, Lv J, Ba D, Zhou X, Zhang C, Ma X. Study on the association between TGF-β1 and liver fibrosis in patients with hepatic cystic echinococcosis. Exp Ther Med 2019; 19:1275-1280. [PMID: 32010299 PMCID: PMC6966196 DOI: 10.3892/etm.2019.8355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to determine the role of the cytokine transforming growth factor-β1 (TGF-β1) in liver fibrosis among patients with hepatic cystic echinococcosis (hepatic CE). Hepatic tissue specimens and serum samples from 30 patients with hepatic CE were collected and TGF-β1 levels were compared between the two groups. The degree of liver fibrosis was assessed by Masson staining. The expression levels of cytokine TGF-β1 in liver tissue and serum were detected by immunohistochemistry and ELISA, respectively. Masson staining of liver lesion tissue in patients with hepatic CE indicated different degrees of fibrosis in the liver and the World Health Organization classification was positively correlated with the severity of liver fibrosis (P<0.05). In addition, the expression of cytokine TGF-β1 was higher in liver lesion tissue specimens compared with that in the adjacent control samples (P<0.05). At the same time, cytokine TGF-β1 in serum specimens of patients was higher than that in the healthy control group (P<0.05). In conclusion, the expression of TGF-β1 is upregulated in patients with hepatic CE, which was closely associated to liver fibrosis.
Collapse
Affiliation(s)
- Fengming Tian
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Yumei Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jian Gao
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xiaoqian Shang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Jie Lv
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Derong Ba
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xuan Zhou
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Chuntao Zhang
- College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| | - Xiumin Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute of First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China.,College of Basic Medicine of Xinjiang Medical University, Urumqi, Xinjiang 830011, P.R. China
| |
Collapse
|
23
|
Pinheiro D, Dias I, Ribeiro Silva K, Stumbo AC, Thole A, Cortez E, de Carvalho L, Weiskirchen R, Carvalho S. Mechanisms Underlying Cell Therapy in Liver Fibrosis: An Overview. Cells 2019; 8:cells8111339. [PMID: 31671842 PMCID: PMC6912561 DOI: 10.3390/cells8111339] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a common feature in most pathogenetic processes in the liver, and usually results from a chronic insult that depletes the regenerative capacity of hepatocytes and activates multiple inflammatory pathways, recruiting resident and circulating immune cells, endothelial cells, non-parenchymal hepatic stellate cells, and fibroblasts, which become activated and lead to excessive extracellular matrix accumulation. The ongoing development of liver fibrosis results in a clinically silent and progressive loss of hepatocyte function, demanding the constant need for liver transplantation in clinical practice, and motivating the search for other treatments as the chances of obtaining compatible viable livers become scarcer. Although initially cell therapy has emerged as a plausible alternative to organ transplantation, many factors still challenge the establishment of this technique as a main or even additional therapeutic tool. Herein, the authors discuss the most recent advances and point out the corners and some controversies over several protocols and models that have shown promising results as potential candidates for cell therapy for liver fibrosis, presenting the respective mechanisms proposed for liver regeneration in each case.
Collapse
Affiliation(s)
- Daphne Pinheiro
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Isabelle Dias
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Karina Ribeiro Silva
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ana Carolina Stumbo
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Alessandra Thole
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Erika Cortez
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Lais de Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, D-52074 Aachen, Germany.
| | - Simone Carvalho
- Laboratory of Stem Cell Research, Histology and Embryology Department, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro 20550-170, Brazil.
| |
Collapse
|
24
|
Verma N, Kaur A, Sharma R, Bhalla A, Sharma N, De A, Singh V. Outcomes after multiple courses of granulocyte colony-stimulating factor and growth hormone in decompensated cirrhosis: A randomized trial. Hepatology 2018; 68:1559-1573. [PMID: 29278428 DOI: 10.1002/hep.29763] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/27/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
Abstract
UNLABELLED Decompensated cirrhosis (DC) carries a high mortality. Liver transplantation (LT) is the treatment of choice; however, the limited availability of donor organs has resulted in high waitlist mortality. The present study investigated the impact of multiple courses of granulocyte-colony stimulating factor (G-CSF) with or without growth hormone (GH) in these patients. Sixty-five patients with DC were randomized to standard medical therapy (SMT) plus G-CSF 3 monthly plus GH daily (group A; n = 23) or SMT plus G-CSF (group B; n = 21) or SMT alone (group C; n = 21). The primary outcome was transplant-free survival (TFS) at 12 months. Secondary outcomes were mobilization of CD34+ cells at day 6 and improvement in clinical scores, liver stiffness, nutrition, episodes of infection, and quality of life (QOL) at 12 months. There was significantly better 12-month TFS in groups A and B than in group C (P = 0.001). At day 6 of therapy, CD34+ cells increased in groups A and B compared to baseline (P < 0.001). There was a significant decrease in clinical scores, improvement in nutrition, better control of ascites, reduction in liver stiffness, lesser infection episodes, and improvement in QOL scores in groups A and B at 12 months as compared to baseline (P < 0.05). The therapies were well tolerated. CONCLUSION Multiple courses of G-CSF improved 12-month TFS, mobilized hematopoietic stem cells, improved disease severity scores, nutrition, fibrosis, QOL scores, ascites control, reduced infections, and the need for LT in patients with DC. However, the use of GH was not found to have any additional benefit. (Hepatology 2017).
Collapse
Affiliation(s)
- Nipun Verma
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amritjyot Kaur
- Department of Nuclear Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ratiram Sharma
- Department of Transfusion Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Bhalla
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Arka De
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
25
|
Mikula M. Regeneration of injured tissue: stem cell dynamics at interplay with mTORC1. Stem Cell Investig 2018; 5:27. [PMID: 30221172 DOI: 10.21037/sci.2018.08.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Mario Mikula
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
26
|
Verma N, Singh A, Singh V. Reply. Hepatology 2018; 68:388. [PMID: 29500901 DOI: 10.1002/hep.29864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/07/2022]
Affiliation(s)
- Nipun Verma
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Akash Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Virendra Singh
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
27
|
Current Perspectives Regarding Stem Cell-Based Therapy for Liver Cirrhosis. Can J Gastroenterol Hepatol 2018; 2018:4197857. [PMID: 29670867 PMCID: PMC5833156 DOI: 10.1155/2018/4197857] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a major cause of mortality and a common end of various progressive liver diseases. Since the effective treatment is currently limited to liver transplantation, stem cell-based therapy as an alternative has attracted interest due to promising results from preclinical and clinical studies. However, there is still much to be understood regarding the precise mechanisms of action. A number of stem cells from different origins have been employed for hepatic regeneration with different degrees of success. The present review presents a synopsis of stem cell research for the treatment of patients with liver cirrhosis according to the stem cell type. Clinical trials to date are summarized briefly. Finally, issues to be resolved and future perspectives are discussed with regard to clinical applications.
Collapse
|
28
|
The effect of G-CSF and AMD3100 on mice treated with streptozotocin: Expansion of alpha-cells and partial islet protection. Cytokine 2017; 96:123-131. [DOI: 10.1016/j.cyto.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 03/15/2017] [Accepted: 04/03/2017] [Indexed: 01/09/2023]
|
29
|
Tg737 regulates epithelial-mesenchymal transition and cancer stem cell properties via a negative feedback circuit between Snail and HNF4α during liver stem cell malignant transformation. Cancer Lett 2017; 402:52-60. [PMID: 28536011 DOI: 10.1016/j.canlet.2017.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/04/2017] [Accepted: 05/04/2017] [Indexed: 12/24/2022]
Abstract
Determining the origin of liver cancer stem cells is important for treating hepatocellular carcinoma. Tg737 deficiency plays an important role in the malignant transformation of liver stem cells, but the underlying mechanism remains unclear. Here we established a chemical-induced mouse hepatoma model and found that Tg737 and hepatocyte nuclear factor 4-alpha (HNF4α) expression decreased and epithelial-mesenchymal transition (EMT)-related marker expression increased during liver cancer development. To investigate the underlying mechanism, we knocked down Tg737 in WB-F344 (WB) rat hepatic oval cells. Loss of Tg737 resulted in nuclear β-catenin accumulation and activation of the Wnt/β-catenin pathway, which further promoted EMT and the malignant phenotype. XAV939, a β-catenin inhibitor, attenuated WB cell malignant transformation due to Tg737 knockdown. To clarify the relationships of Tg737, the β-catenin pathway, and HNF4α, we inhibited Snail and overexpressed HNF4α after Tg737 knockdown in WB cells and found that Snail and HNF4α comprise a negative feedback circuit. Taken together, the results showed that Tg737 regulates a Wnt/β-catenin/Snail-HNF4α negative feedback circuit, thereby blocking EMT and the malignant transformation of liver stem cells to liver cancer stem cells.
Collapse
|
30
|
Liu Y, Abudounnasier G, Zhang T, Liu X, Wang Q, Yan Y, Ding J, Wen H, Yimiti D, Ma X. Increased Expression of TGF-β1 in Correlation with Liver Fibrosis during Echinococcus granulosus Infection in Mice. THE KOREAN JOURNAL OF PARASITOLOGY 2016; 54:519-25. [PMID: 27658605 PMCID: PMC5040079 DOI: 10.3347/kjp.2016.54.4.519] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 11/23/2022]
Abstract
To investigate the potential role of transforming growth factor (TGF)-β1 in liver fibrosis during Echinococcus granulosus infection, 96 BALB/c mice were randomly divided into 2 groups, experimental group infected by intraperitoneal injection with a metacestode suspension and control group given sterile physiological saline. The liver and blood samples were collected at days 2, 8, 30, 90, 180, and 270 post infection (PI), and the expression of TGF-β1 mRNA and protein was determined by real-time quantitative RT-PCR and ELISA, respectively. We also evaluated the pathological changes in the liver during the infection using hematoxylin and eosin (H-E) and Masson staining of the liver sections. Pathological analysis of H-E stained infected liver sections revealed liver cell edema, bile duct proliferation, and structural damages of the liver as evidenced by not clearly visible lobular architecture of the infected liver, degeneration of liver cell vacuoles, and infiltration of lymphocytes at late stages of infection. The liver tissue sections from control mice remained normal. Masson staining showed worsening of liver fibrosis at the end stages of the infection. The levels of TGF-β1 did not show significant changes at the early stages of infection, but there were significant increases in the levels of TGF-β1 at the middle and late stages of infection (P<0.05). RT-PCR results showed that, when compared with the control group, TGF-β1 mRNA was low and comparable with that in control mice at the early stages of infection, and that it was significantly increased at day 30 PI and remained at high levels until day 270 PI (P<0.05). The results of this study suggested that increased expression of TGF-β1 during E. granulosus infection may play a significant role in liver fibrosis associated with E. granulosus infection.
Collapse
Affiliation(s)
- Yumei Liu
- State Key Laboratory of Xinjiang Major Diseases Research Incubation Base (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China.,College of Basic Medical Sciences of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Gulizhaer Abudounnasier
- State Key Laboratory of Xinjiang Major Diseases Research Incubation Base (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Taochun Zhang
- College of Basic Medical Sciences of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Xuelei Liu
- College of Basic Medical Sciences of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Qian Wang
- State Key Laboratory of Xinjiang Major Diseases Research Incubation Base (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Yi Yan
- College of Basic Medical Sciences of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Jianbing Ding
- College of Basic Medical Sciences of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Hao Wen
- State Key Laboratory of Xinjiang Major Diseases Research Incubation Base (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Delixiati Yimiti
- College of Basic Medical Sciences of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| | - Xiumin Ma
- State Key Laboratory of Xinjiang Major Diseases Research Incubation Base (2010DS890294) and Xinjiang Key Laboratory of Echinococcosis, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China.,College of Basic Medical Sciences of Xinjiang Medical University, Urumqi, Xinjiang 830011, P. R. China
| |
Collapse
|
31
|
Liu WH, Ren LN, Wang T, Navarro-Alvarez N, Tang LJ. The Involving Roles of Intrahepatic and Extrahepatic Stem/Progenitor Cells (SPCs) to Liver Regeneration. Int J Biol Sci 2016; 12:954-963. [PMID: 27489499 PMCID: PMC4971734 DOI: 10.7150/ijbs.15715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Liver regeneration is usually attributed to mature hepatocytes, which possess a remarkable potential to proliferate under mild to moderate injury. However, when the liver is severely damaged or hepatocyte proliferation is greatly inhibited, liver stem/progenitor cells (LSPCs) will contribute to the liver regeneration process. LSPCs in the developing liver have been extensively characterized, however, their contributing role to liver regeneration has not been completely understood. In addition to the restoration of the liver parenchymal tissue by hepatocytes or/and LSPCs, or in some cases bone marrow (BM) derived cells, such as hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs), the wound healing after injury in terms of angiopoiesis by liver sinusoidal endothelial cells (LSECs) or/and sinusoidal endothelial progenitor cells (SEPCs) is another important aspect taking place during regeneration. To conclude, liver regeneration can be mainly divided into three distinct restoring levels according to the cause and severity of injury: hepatocyte dominant regeneration, LSPCs mediated regeneration, extrahepatic stem cells participative regeneration. In this review, we focus on the recent findings of liver regeneration, especially on those related to stem/progenitor cells (SPCs)-mediated regeneration and their potential clinical applications and challenges.
Collapse
Affiliation(s)
- Wei-hui Liu
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Li-na Ren
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Tao Wang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| | - Nalu Navarro-Alvarez
- 2. Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Li-jun Tang
- 1. General Surgery Center, Chengdu Military General Hospital; Chengdu, Sichuan Province, 610083
| |
Collapse
|
32
|
Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, Naso A, Grande R, Serra R, Nardo B. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg 2016; 33 Suppl 1:S57-70. [PMID: 27255130 DOI: 10.1016/j.ijsu.2016.05.050] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatic ischemia reperfusion injury (IRI) is not only a pathophysiological process involving the liver, but also a complex systemic process affecting multiple tissues and organs. Hepatic IRI can seriously impair liver function, even producing irreversible damage, which causes a cascade of multiple organ dysfunction. Many factors, including anaerobic metabolism, mitochondrial damage, oxidative stress and secretion of ROS, intracellular Ca(2+) overload, cytokines and chemokines produced by KCs and neutrophils, and NO, are involved in the regulation of hepatic IRI processes. Matrix Metalloproteinases (MMPs) can be an important mediator of early leukocyte recruitment and target in acute and chronic liver injury associated to ischemia. MMPs and neutrophil gelatinase-associated lipocalin (NGAL) could be used as markers of I-R injury severity stages. This review explores the relationship between factors and inflammatory pathways that characterize hepatic IRI, MMPs and current pharmacological approaches to this disease.
Collapse
Affiliation(s)
- Marco Cannistrà
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Michele Ruggiero
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Alessandra Zullo
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Giuseppe Gallelli
- Department of Emergency, Pugliese-Ciaccio Hospital, Catanzaro, Italy.
| | - Simone Serafini
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy.
| | - Mazzitelli Maria
- Department of Primary Care, Provincial Health Authority of Vibo Valentia, 89900 Vibo Valentia, Italy.
| | - Agostino Naso
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Grande
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, University of Catanzaro, Italy.
| | - Bruno Nardo
- Department of Surgery, Annunziata Hospital of Cosenza, Cosenza, Italy; Department of Medical and Surgical Sciences, S. Orsola-Malpighi Hospital, University of Bologna, Italy.
| |
Collapse
|
33
|
Tsolaki E, Yannaki E. Stem cell-based regenerative opportunities for the liver: State of the art and beyond. World J Gastroenterol 2015; 21:12334-12350. [PMID: 26604641 PMCID: PMC4649117 DOI: 10.3748/wjg.v21.i43.12334] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/16/2015] [Accepted: 10/20/2015] [Indexed: 02/06/2023] Open
Abstract
The existing mismatch between the great demand for liver transplants and the number of available donor organs highlights the urgent need for alternative therapeutic strategies in patients with acute or chronic liver failure. The rapidly growing knowledge on stem cell biology and the intrinsic repair processes of the liver has opened new avenues for using stem cells as a cell therapy platform in regenerative medicine for hepatic diseases. An impressive number of cell types have been investigated as sources of liver regeneration: adult and fetal liver hepatocytes, intrahepatic stem cell populations, annex stem cells, adult bone marrow-derived hematopoietic stem cells, endothelial progenitor cells, mesenchymal stromal cells, embryonic stem cells, and induced pluripotent stem cells. All these highly different cell types, used either as cell suspensions or, in combination with biomaterials as implantable liver tissue constructs, have generated great promise for liver regeneration. However, fundamental questions still need to be addressed and critical hurdles to be overcome before liver cell therapy emerges. In this review, we summarize the state-of-the-art in the field of stem cell-based therapies for the liver along with existing challenges and future perspectives towards a successful liver cell therapy that will ultimately deliver its demanding goals.
Collapse
|
34
|
Abstract
In recent years, hepatic oval cells (HOC) have gradually become a research hotspot, and their participation in the reconstruction of liver structure and function has been preliminarily confirmed. This provides a new direction for the study of the pathogenesis and treatment of liver injury, hepatitis, liver fibrosis, cirrhosis, liver neoplasms and other liver diseases. This paper will discuss the relationship between hepatic oval cells and liver diseases.
Collapse
|
35
|
Piscaglia AC, Arena V, Passalacqua S, Gasbarrini A. A case of granulocyte-colony stimulating factor/plasmapheresis-induced activation of granulocyte-colony stimulating factor-positive hepatic progenitors in acute-on-chronic liver failure. Hepatology 2015; 62:649-52. [PMID: 25644621 DOI: 10.1002/hep.27708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 01/11/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Anna Chiara Piscaglia
- Endoscopy and Gastroenterology Unit, State Hospital, Republic of San Marino.,School of Gastroenterology, Gemelli Hospital, Catholic University of Rome, Rome, Italy
| | - Vincenzo Arena
- Department of Pathology, Gemelli Hospital, Catholic University of Rome, Rome, Italy
| | | | - Antonio Gasbarrini
- School of Gastroenterology, Gemelli Hospital, Catholic University of Rome, Rome, Italy.,Department of Internal Medicine and Gastroenterology, Gemelli Hospital, Catholic University of Rome, Rome, Italy
| |
Collapse
|
36
|
Alejandra MR, Juan AB, Ana SR. Cell therapy for liver diseases: current medicine and future promises. Expert Rev Gastroenterol Hepatol 2015; 9:837-50. [PMID: 25747732 DOI: 10.1586/17474124.2015.1016913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Liver diseases are a major health problem worldwide since they usually represent the main causes of death in most countries, causing excessive costs to public health systems. Nowadays, there are no efficient current therapies for most hepatic diseases and liver transplant is infrequent due to the availability of organs, cost and risk of transplant rejection. Therefore, alternative therapies for liver diseases have been developed, including cell-based therapies. Stem cells (SCs) are characterized by their self-renewing capacity, unlimited proliferation and differentiation under certain conditions into tissue- or organ-specific cells with special functions. Cell-based therapies for liver diseases have been successful in experimental models, showing anti-inflammatory, antifibrogenic and regenerative effects. Nowadays, clinical trials using SCs for liver pathologies are increasing in number, and those that have reached publication have achieved favorable effects, encouraging us to think that SCs will have a potential clinical use in a short time.
Collapse
Affiliation(s)
- Meza-Ríos Alejandra
- Department of Molecular Biology and Genomics, Health Sciences University Center, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, Sierra Mojada 950, Colonia Independencia, Guadalajara, Jalisco 44340, México
| | | | | |
Collapse
|
37
|
El-Akabawy G, El-Mehi A. Mobilization of endogenous bone marrow-derived stem cells in a thioacetamide-induced mouse model of liver fibrosis. Tissue Cell 2015; 47:257-65. [PMID: 25857836 DOI: 10.1016/j.tice.2015.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 02/07/2023]
Abstract
The clinical significance of enhancing endogenous circulating haematopoietic stem cells is becoming increasingly recognized, and the augmentation of circulating stem cells using granulocyte-colony stimulating factor (G-CSF) has led to promising preclinical and clinical results for several liver fibrotic conditions. However, this approach is largely limited by cost and the infeasibility of maintaining long-term administration. Preclinical studies have reported that StemEnhance, a mild haematopoietic stem cell mobilizer, promotes cardiac muscle regeneration and remedies the manifestation of diabetes. However, the effectiveness of StemEnhance in ameliorating liver cirrhosis has not been studied. This study is the first to evaluate the beneficial effect of StemEnhance administration in a thioacetamide-induced mouse model of liver fibrosis. StemEnhance augmented the number of peripheral CD34-positive cells, reduced hepatic fibrosis, improved histopathological changes, and induced endogenous liver proliferation. In addition, VEGF expression was up-regulated, while TNF-α expression was down-regulated in thioacetamide-induced fibrotic livers after StemEnhance intake. These data suggest that StemEnhance may be useful as a potential therapeutic candidate for liver fibrosis by inducing reparative effects via mobilization of haematopoietic stem cells.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt.
| | - Abeer El-Mehi
- Menoufia University, Department of Anatomy and Embryology, Faculty of Medicine, Egypt
| |
Collapse
|
38
|
Zhang Z, Zhang F, Lu Y, Zheng S. Update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res 2015; 45:162-78. [PMID: 25196587 DOI: 10.1111/hepr.12415] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/15/2014] [Accepted: 08/31/2014] [Indexed: 02/06/2023]
Abstract
Liver fibrosis occurs as a compensatory response to the process of tissue repair in a wide range of chronic liver injures. It is characterized by excessive deposition of extracellular matrix in liver tissues. As the pathogenesis progresses without effective management, it will lead to formation of liver fiber nodules and disruption of normal liver structure and function, finally culminating in cirrhosis and hepatocellular carcinoma. A new discovery shows that liver angiogenesis is strictly associated with, and may even favor fibrogenic progression of chronic liver diseases. Recent basic and clinical investigations also demonstrate that liver fibrogenesis is accompanied by pathological angiogenesis and sinusoidal remodeling, which critically determine the pathogenesis and prognosis of liver fibrosis. Inhibition of pathological angiogenesis is considered to be a new strategy for the treatment of liver fibrosis. This review summarizes current knowledge on the process of angiogenesis, the relationships between angiogenesis and liver fibrosis, and on the molecular mechanisms of liver angiogenesis. On the other hand, it also presents the different strategies that have been used in experimental models to counteract excessive angiogenesis and the role of angiogenesis in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zili Zhang
- Department of Pharmacology, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | | | | | | |
Collapse
|
39
|
Huang W, Li L, Tian X, Yan J, Yang X, Wang X, Liao G, Qiu G. Astragalus and Paeoniae Radix Rubra extract (APE) inhibits hepatic stellate cell activation by modulating transforming growth factor-β/Smad pathway. Mol Med Rep 2014; 11:2569-77. [PMID: 25435153 PMCID: PMC4337737 DOI: 10.3892/mmr.2014.3026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
Previous studies have shown that Astragalus and Paeoniae Radix Rubra extract (APE) is capable of protecting against liver fibrosis in rats. The hypothesis of the present study was that APE exerts its anti‑fibrotic effect by mediating the transforming growth factor β (TGF‑β)/Smad signaling pathway. In order to investigate this hypothesis, a series of assays were designed to detect the effects of APE on cell proliferation, cell invasion and the activation of hepatic stellate cells (HSCs). In addition, the effects of APE on the TGF‑β/Smad signaling pathway were explored, with the aim of elucidating the underlying mechanisms. HSCs were initially isolated from normal rat liver. A number of assays were then employed in order to evaluate the effects of APE on the function of these cells. Cell proliferation was investigated using an MTT assay and cell invasion was observed with the use of transwell invasion chambers. Collagen synthesis was measured with a 3H‑proline incorporation assay and expression of α‑smooth muscle actin was used to determine the extent of HSC activation. Protein expression induced by TGF‑β1 in HSCs was investigated by western blot and immunofluorescence analyses. Plasminogen activator inhibitor type1 (PAI‑1) and urokinase‑type plasminogen activator (uPA) transcriptional activity was measured using reverse transcription polymerase chain reaction. The results demonstrated that APE (5‑80 µg/ml) significantly inhibited fetal bovine serum‑induced cell proliferation in a dose‑dependent manner. Cell invasion and activation of HSCs induced by TGF‑β1 were disrupted by treatment with APE in a dose‑dependent manner. TGF‑β1 was observed to increase the phosphorylation of Smad2/3, while APE administered at higher doses produced inhibitory effects on Smad2/3 phosphorylation. In addition, administration of APE abrogated the TGF‑β1‑induced reduction in Smad‑7 expression in a dose‑dependent manner. The results further indicated that APE treatment not only reduced PAI‑1 expression, but also increased uPA expression in a dose‑dependent manner. In conclusion, APE exerted inhibitory effects on cell proliferation, invasion and activation of HSCs, and the mechanisms underlying these effects may involve the TGF‑β1/Smad pathway.
Collapse
Affiliation(s)
- Weijuan Huang
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Li
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaopeng Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jinjin Yan
- Department of Pharmacology, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Xinzheng Yang
- Department of Pharmacology, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Xinlong Wang
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Guozhen Liao
- Department of Scientific Research, Xi'an Medical College, Xi'an, Shaanxi 710061, P.R. China
| | - Genquan Qiu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|