1
|
Guo Z, Wu J, Hu Y, Zhou J, Li Q, Zhang Y, Zhang J, Yang L, Wang S, Zhang H, Yang J. Exogenous iron caused osteocyte apoptosis, increased RANKL production, and stimulated bone resorption through oxidative stress in a murine model. Chem Biol Interact 2024; 399:111135. [PMID: 38971422 DOI: 10.1016/j.cbi.2024.111135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/23/2024] [Accepted: 06/24/2024] [Indexed: 07/08/2024]
Abstract
Iron overload is a risk factor for osteoporosis due to its oxidative toxicity. Previous studies have demonstrated that an excessive amount of iron increases osteocyte apoptosis and receptor activator of nuclear factor κ-B ligand (RANKL) production, which stimulates osteoclast differentiation in vitro. However, the effects of exogenous iron supplementation-induced iron overload on osteocytes in vivo and its role in iron overload-induced bone loss are unknown. This work aimed to develop an iron overloaded murine model of C57BL/6 mice by intraperitoneal administration of iron dextran for two months. The iron levels in various organs, bone, and serum, as well as the microstructure and strength of bone, apoptosis of osteocytes, oxidative stress in bone tissue, and bone formation and resorption, were assessed. The results showed that 2 months of exogenous iron supplementation significantly increased iron levels in the liver, spleen, kidney, bone tissue, and serum. Iron overload negatively affected bone microstructure and strength. Osteocyte apoptosis and empty lacunae rate were elevated by exogenous iron. Iron overload upregulated RANKL expression but had no significant impact on osteoprotegerin (OPG) and sclerostin levels. Static and dynamic histologic analyses and serum biochemical assay showed that iron overload increased bone resorption without significantly affecting bone formation. Exogenous iron promoted oxidative stress in osteocytes in vivo and in vitro. Additional supplementation of iron chelator (deferoxamine) or N-acetyl-l-cysteine (NAC) partially alleviated bone loss, osteocyte apoptosis, osteoclast formation, and oxidative stress due to iron overload. These findings, in line with prior in vitro studies, suggest that exogenous iron supplementation induces osteoclastogenesis and osteoporosis by promoting osteocyte apoptosis and RANKL production via oxidative stress.
Collapse
Affiliation(s)
- Zengfeng Guo
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China; Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiawen Wu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Yawei Hu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Jianhua Zhou
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Qingmei Li
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yandong Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Junde Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Linbo Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Shenghang Wang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China; Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Guangdong Medical University, Shenzhen, China
| | - Jiancheng Yang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China; Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
2
|
Ríos-Silva M, Cárdenas Y, Ortega-Macías AG, Trujillo X, Murillo-Zamora E, Mendoza-Cano O, Bricio-Barrios JA, Ibarra I, Huerta M. Animal models of kidney iron overload and ferroptosis: a review of the literature. Biometals 2023; 36:1173-1187. [PMID: 37356039 DOI: 10.1007/s10534-023-00518-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
In recent years, it has been identified that excess iron contributes to the development of various pathologies and their complications. Kidney diseases do not escape the toxic effects of iron, and ferroptosis is identified as a pathophysiological mechanism that could be a therapeutic target to avoid damage or progression of kidney disease. Ferroptosis is cell death associated with iron-dependent oxidative stress. To study the effects of iron overload (IOL) in the kidney, numerous animal models have been developed. The methodological differences between these models should reflect the IOL-generating mechanisms associated with human IOL diseases. A careful choice of animal model should be considered for translational purposes.
Collapse
Affiliation(s)
- Mónica Ríos-Silva
- Consejo Nacional de Humanidades, Ciencia y Tecnología, Mexico City, Mexico City, Mexico
| | - Yolitzy Cárdenas
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | | | - Xóchitl Trujillo
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico
| | - Efrén Murillo-Zamora
- Unidad de Investigación en Epidemiología Clínica, Instituto Mexicano del Seguro Social, Villa de Álvarez, Colima, Mexico
| | - Oliver Mendoza-Cano
- Facultad de Ingeniería Civil, Universidad de Colima, Coquimatlán, Colima, Mexico
| | | | - Isabel Ibarra
- Facultad de Medicina, Universidad de Colima, Colima, Colima, Mexico
| | - Miguel Huerta
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Colima, Mexico.
| |
Collapse
|
3
|
Feng Y, Jia L, Ma W, Tian C, Du H. Iron Chelator Deferoxamine Alleviates Progression of Diabetic Nephropathy by Relieving Inflammation and Fibrosis in Rats. Biomolecules 2023; 13:1266. [PMID: 37627331 PMCID: PMC10452339 DOI: 10.3390/biom13081266] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most devastating diabetic microvascular complications. It has previously been observed that iron metabolism levels are abnormal in diabetic patients. However, the mechanism by which iron metabolism levels affect DN is poorly understood. This study was designed to evaluate the role of iron-chelator deferoxamine (DFO) in the improvement of DN. Here, we established a DN rat model induced by diets high in carbohydrates and fat and streptozotocin (STZ) injection. Our data demonstrated that DFO treatment for three weeks greatly attenuated renal dysfunction as evidenced by decreased levels of urinary albumin, blood urea nitrogen, and serum creatinine, which were elevated in DN rats. Histopathological observations showed that DFO treatment improved the renal structures of DN rats and preserved podocyte integrity by preventing the decrease of transcripts of nephrin and podocin. In addition, DFO treatment reduced the overexpression of fibronectin 1, collagen I, IL-1β, NF-κB, and MCP-1 in DN rats, as well as inflammatory cell infiltrates and collagenous fibrosis. Taken together, our findings unveiled that iron chelation via DFO injection had a protective impact on DN by alleviating inflammation and fibrosis, and that it could be a potential therapeutic strategy for DN.
Collapse
Affiliation(s)
- Yunfei Feng
- Department of Endocrinology and Metabolism, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Li Jia
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan Ma
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chenying Tian
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huahua Du
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Hydroxyurea as a promising ADAM17 inhibitor. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
5
|
Abbasi U, Abbina S, Gill A, Takuechi LE, Kizhakkedathu JN. Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chem Biol 2021; 16:945-972. [PMID: 34102834 DOI: 10.1021/acschembio.1c00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Iron is an essential mineral that serves as a prosthetic group for a variety of proteins involved in vital cellular processes. The iron economy within humans is highly conserved in that there is no proper iron excretion pathway. Therefore, iron homeostasis is highly evolved to coordinate iron acquisition, storage, transport, and recycling efficiently. A disturbance in this state can result in excess iron burden in which an ensuing iron-mediated generation of reactive oxygen species imparts widespread oxidative damage to proteins, lipids, and DNA. On the contrary, problems in iron deficiency either due to genetic or nutritional causes can lead to a number of iron deficiency disorders. Iron chelation strategies have been in the works since the early 1900s, and they still remain the most viable therapeutic approach to mitigate the toxic side effects of excess iron. Intense investigations on improving the efficacy of chelation strategies while being well tolerated and accepted by patients have been a particular focus for many researchers over the past 30 years. Moreover, recent advances in our understanding on the role of iron in the pathogenesis of different diseases (both in iron overload and iron deficiency conditions) motivate the need to develop new therapeutics. We summarized recent investigations into the role of iron in health and disease conditions, iron chelation, and iron delivery strategies. Information regarding small molecule as well as macromolecular approaches and how they are employed within different disease pathogenesis such as primary and secondary iron overload diseases, cancer, diabetes, neurodegenerative diseases, infections, and in iron deficiency is provided.
Collapse
Affiliation(s)
- Usama Abbasi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Srinivas Abbina
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Arshdeep Gill
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Lily E. Takuechi
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
- Department of Pathology and Laboratory Medicine, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z7
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
- The School of Biomedical Engineering, The University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3
| |
Collapse
|
6
|
Zhang J, Zhao H, Yao G, Qiao P, Li L, Wu S. Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother 2021; 137:111380. [PMID: 33601146 DOI: 10.1016/j.biopha.2021.111380] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Longfei Li
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
7
|
RESTREPO-GALLEGO M, DÍAZ LE, OSPINA-VILLA JD, CHINCHILLA-CÁRDENAS D. Vitamin A deficiency regulates the expression of ferritin in young male Wistar rats. REV NUTR 2021. [DOI: 10.1590/1678-9865202134e200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Objective Iron deficiency and vitamin A deficiency are two of the main micronutrient deficiencies. Both micronutrients are essential for human life and children's development. This study aimed to investigate the effects of vitamin A deficiency on ferritin and transferrin receptors' expression and its relationship with iron deficiency. Methods Five diets with different vitamin A-to-iron ratios were given to thirty five 21-day-old male Wistar rats (separated in groups of seven animals each). The animals received the diet for six weeks before being euthanized. Serum iron and retinol levels were measured as biochemical parameters. Their duodenums, spleens, and livers were analyzed for the expression of ferritin and transferrin receptors by Western Blotting. Results Regarding biochemical parameters, the results show that when both vitamin A and iron are insufficient, the serum iron content (74.74µg/dL) is significantly lower than the control group (255.86µg/dL). The results also show that vitamin A deficiency does not influence the expression of the transferrin receptor, but only of the ferritin one. Conclusion Vitamin A deficiency regulates the expression of ferritin in young male Wistar rats.
Collapse
|
8
|
Inai Y, Izawa T, Mori M, Atarashi M, Tsuchiya S, Kuwamura M, Yamate J. Analyses of hemorrhagic diathesis in high-iron diet-fed rats. J Toxicol Pathol 2021; 34:33-41. [PMID: 33627943 PMCID: PMC7890162 DOI: 10.1293/tox.2020-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 09/29/2020] [Indexed: 11/19/2022] Open
Abstract
Iron overload has been well recognized to cause oxidant-mediated cellular/tissue injury; however, little is known about the effects of iron overload on the blood coagulation system. We encountered an unexpected bleeding tendency in rats fed a high-iron diet in a set of studies using iron-modified diets. In this study, we investigated the mechanism of hemorrhagic diathesis induced by dietary iron overload in rats. Six-week-old F344/DuCrlCrlj male rats were fed a standard (containing 0.02% iron) or a high-iron diet (containing 1% iron) for 6 weeks and were then sampled for hematological, blood biochemical, coagulation, and pathological examinations. Serum and liver iron levels increased in rats fed the high-iron diet (Fe group) and serum transferrin was almost saturated with iron. However, serum transaminase levels did not increase. Moreover, plasma prothrombin time and activated partial thromboplastin time were significantly prolonged, regardless of the presence of hemorrhage. The activity of clotting factors II and VII (vitamin K-dependent coagulation factors) decreased significantly, whereas that of factor VIII was unaltered. Blood platelet levels were not influenced by dietary iron overload, suggesting that the bleeding tendency in iron-overloaded rats is caused by secondary hemostasis impairment. In addition, hemorrhage was observed in multiple organs in rats fed diets containing more than 0.8% iron. Our results suggest that iron overload can increase the susceptibility of coagulation abnormalities caused by latent vitamin K insufficiency.
Collapse
Affiliation(s)
- Yohei Inai
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Mutsuki Mori
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Machi Atarashi
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Seiichirou Tsuchiya
- Sysmex Corporation, 4-4-4 Takatsukadai, Nishiku, Kobe, Hyogo
651-2271, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Osaka Prefecture
University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
9
|
Kumar R, Uppal S, Kaur K, Mehta S. Curcumin nanoemulsion as a biocompatible medium to study the metal ion imbalance in a biological system. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Jahng JWS, Alsaadi RM, Palanivel R, Song E, Hipolito VEB, Sung HK, Botelho RJ, Russell RC, Sweeney G. Iron overload inhibits late stage autophagic flux leading to insulin resistance. EMBO Rep 2019; 20:e47911. [PMID: 31441223 PMCID: PMC6776927 DOI: 10.15252/embr.201947911] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/18/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Iron overload, a common clinical occurrence, is implicated in the metabolic syndrome although the contributing pathophysiological mechanisms are not fully defined. We show that prolonged iron overload results in an autophagy defect associated with accumulation of dysfunctional autolysosomes and loss of free lysosomes in skeletal muscle. These autophagy defects contribute to impaired insulin-stimulated glucose uptake and insulin signaling. Mechanistically, we show that iron overload leads to a decrease in Akt-mediated repression of tuberous sclerosis complex (TSC2) and Rheb-mediated mTORC1 activation on autolysosomes, thereby inhibiting autophagic-lysosome regeneration. Constitutive activation of mTORC1 or iron withdrawal replenishes lysosomal pools via increased mTORC1-UVRAG signaling, which restores insulin sensitivity. Induction of iron overload via intravenous iron-dextran delivery in mice also results in insulin resistance accompanied by abnormal autophagosome accumulation, lysosomal loss, and decreased mTORC1-UVRAG signaling in muscle. Collectively, our results show that chronic iron overload leads to a profound autophagy defect through mTORC1-UVRAG inhibition and provides new mechanistic insight into metabolic syndrome-associated insulin resistance.
Collapse
Affiliation(s)
| | | | | | - Erfei Song
- Department of BiologyYork UniversityTorontoONCanada
| | | | | | - Roberto Jorge Botelho
- Department of Chemistry and Biology and the Molecular Science Graduate ProgramRyerson UniversityTorontoONCanada
| | | | - Gary Sweeney
- Department of BiologyYork UniversityTorontoONCanada
| |
Collapse
|
11
|
Rostoker G, Vaziri ND. Risk of iron overload with chronic indiscriminate use of intravenous iron products in ESRD and IBD populations. Heliyon 2019; 5:e02045. [PMID: 31338466 PMCID: PMC6627982 DOI: 10.1016/j.heliyon.2019.e02045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 03/14/2019] [Accepted: 07/03/2019] [Indexed: 01/19/2023] Open
Abstract
The routine use of recombinant erythropoiesis-stimulating agents (ESA) over the past three decades has enabled the partial correction of anaemia in most patients with end-stage renal disease (ESRD). Since ESA use frequently leads to iron deficiency, almost all ESA-treated haemodialysis patients worldwide receive intravenous iron (IV) to ensure sufficient available iron during ESA therapy. Patients with inflammatory bowel disease (IBD) are also often treated with IV iron preparations, as anaemia is common in IBD. Over the past few years, liver magnetic resonance imaging (MRI) has become the gold standard method for non-invasive diagnosis and follow-up of iron overload diseases. Studies using MRI to quantify liver iron concentration in ESRD have shown a link between high infused iron dose and risk of haemosiderosis in dialysis patients. In September 2017, the Pharmacovigilance Committee (PRAC) of the European Medicines Agency (EMA) considered convergent publications over the last few years on iatrogenic haemosiderosis in dialysis patients and requested that companies holding marketing authorization for iron products should investigate the risk of iron overload, particularly in patients with end-stage renal disease on dialysis and, by analogy, patients with IBD. We present a narrative review of data supporting the views and decision of the EMA, and then give our expert opinion on this controversial field of anaemia therapeutics.
Collapse
Affiliation(s)
- Guy Rostoker
- Division of Nephrology and Dialysis, Hôpital Privé Claude Galien, Ramsay-Générale de Santé, Quincy-sous-Sénart, France
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, University of California, Irvine, USA
| |
Collapse
|
12
|
Abstract
Iron overload cardiomyopathy (IOC) is a major cause of death in patients with diseases associated with chronic anemia such as thalassemia or sickle cell disease after chronic blood transfusions. Associated with iron overload conditions, there is excess free iron that enters cardiomyocytes through both L- and T-type calcium channels thereby resulting in increased reactive oxygen species being generated via Haber-Weiss and Fenton reactions. It is thought that an increase in reactive oxygen species contributes to high morbidity and mortality rates. Recent studies have, however, suggested that it is iron overload in mitochondria that contributes to cellular oxidative stress, mitochondrial damage, cardiac arrhythmias, as well as the development of cardiomyopathy. Iron chelators, antioxidants, and/or calcium channel blockers have been demonstrated to prevent and ameliorate cardiac dysfunction in animal models as well as in patients suffering from cardiac iron overload. Hence, either a mono-therapy or combination therapies with any of the aforementioned agents may serve as a novel treatment in iron-overload patients in the near future. In the present article, we review the mechanisms of cytosolic and/or mitochondrial iron load in the heart which may contribute synergistically or independently to the development of iron-associated cardiomyopathy. We also review available as well as potential future novel treatments.
Collapse
|
13
|
Chupakhin E, Bakulina O, Dar'in D, Krasavin M. Facile Access to Fe(III)-Complexing Cyclic Hydroxamic Acids in a Three-Component Format. Molecules 2019; 24:molecules24050864. [PMID: 30823493 PMCID: PMC6429155 DOI: 10.3390/molecules24050864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 02/23/2019] [Accepted: 02/25/2019] [Indexed: 11/21/2022] Open
Abstract
Cyclic hydroxamic acids can be viewed as effective binders of soluble iron and can therefore be useful moieties for employing in compounds to treat iron overload disease. Alternatively, they are analogs of bacterial siderophores (iron-scavenging metabolites) and can find utility in designing antibiotic constructs for targeted delivery. An earlier described three-component variant of the Castagnoli—Cushman reaction of homophthalic acid (via in situ cyclodehydration to the respective anhydride) was extended to involve hydroxylamine in lieu of the amine component of the reaction. Using hydroxylamine acetate and O-benzylhydroxylamine was key to the success of this transformation due to greater solubility of the reagents in refluxing toluene (compared to hydrochloride salt). The developed protocol was found suitable for multigram-scale syntheses of N-hydroxy- and N-(benzyloxy)tetrahydroisoquinolonic acids. The cyclic hydroxamic acids synthesized in the newly developed format have been tested and shown to be efficient ligands for Fe3+, which makes them suitable candidates for the above-mentioned applications.
Collapse
Affiliation(s)
- Evgeny Chupakhin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia.
- Institute of Living Systems, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia.
| |
Collapse
|
14
|
Ghosh K, Ghosh K. Iron chelators or therapeutic modulators of iron overload: Are we anywhere near ideal one? Indian J Med Res 2019; 148:369-372. [PMID: 30665999 PMCID: PMC6362722 DOI: 10.4103/ijmr.ijmr_2001_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Kanjaksha Ghosh
- Surat Raktadan Kendra & Research Centre, Surat 395 002, Gujarat, India
| | - Kinjalka Ghosh
- Department of Biochemistry, Tata Memorial Hospital, Mumbai 400 012, Maharashtra, India
| |
Collapse
|
15
|
Wojtunik-Kulesza K, Oniszczuk A, Waksmundzka-Hajnos M. An attempt to elucidate the role of iron and zinc ions in development of Alzheimer's and Parkinson's diseases. Biomed Pharmacother 2019; 111:1277-1289. [PMID: 30841441 DOI: 10.1016/j.biopha.2018.12.140] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/20/2018] [Accepted: 12/30/2018] [Indexed: 12/31/2022] Open
Abstract
Neurodegenerative disorders are among the most studied issues both in medicine and pharmacy. Despite long and extensive research, there is no effective treatment prescribed for such diseases, including Alzheimer's or Parkinson's. Available data exposes their multi-faceted character that requires a complex and multidirectional approach to treatment. In this case, the most important challenge is to understand the neurodegenerative mechanisms, which should permit the development of more elaborate and effective therapies. In the submitted review, iron and zinc are discussed as important and perfectly possible neurodegenerative factors behind Alzheimer's and Parkinson's diseases. It is commonly known that these elements are present in living organisms and are essential for the proper operation of the body. Still, their influence is positive only when their proper balance is maintained. Otherwise, when any imbalance occurs, this can eventuate in numerous disturbances, among them oxidative stress, accumulation of amyloid β and the formation of neurofibrillary tangles, let alone the increase in α-synuclein concentration. At the same time, available research data reveals certain discrepancies in approaching metal ions as either impassive, helpful, or negative factors influencing the development of neurodegenerative changes. This review outlines selected neurodegenerative disorders, highlights the role of iron and zinc in the human body and discusses cases of their imbalance leading to neurodegenerative changes as shown in vitro and in vivo studies as well as through relevant mechanisms.
Collapse
Affiliation(s)
- Karolina Wojtunik-Kulesza
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Anna Oniszczuk
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Monika Waksmundzka-Hajnos
- Department of Inorganic Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| |
Collapse
|
16
|
Zhang H, Zhabyeyev P, Wang S, Oudit GY. Role of iron metabolism in heart failure: From iron deficiency to iron overload. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1925-1937. [PMID: 31109456 DOI: 10.1016/j.bbadis.2018.08.030] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/25/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022]
Abstract
Iron metabolism is a balancing act, and biological systems have evolved exquisite regulatory mechanisms to maintain iron homeostasis. Iron metabolism disorders are widespread health problems on a global scale and range from iron deficiency to iron-overload. Both types of iron disorders are linked to heart failure. Iron play a fundamental role in mitochondrial function and various enzyme functions and iron deficiency has a particular negative impact on mitochondria function. Given the high-energy demand of the heart, iron deficiency has a particularly negative impact on heart function and exacerbates heart failure. Iron-overload can result from excessive gut absorption of iron or frequent use of blood transfusions and is typically seen in patients with congenital anemias, sickle cell anemia and beta-thalassemia major, or in patients with primary hemochromatosis. This review provides an overview of normal iron metabolism, mechanisms underlying development of iron disorders in relation to heart failure, including iron-overload cardiomyopathy, and clinical perspective on the treatment options for iron metabolism disorders.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Pavel Zhabyeyev
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada
| | - Shaohua Wang
- Mazankowski Alberta Heart Institute, Canada; Division of Cardiac Surgery, Department of Surgery, University of Alberta, Edmonton, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, Canada; Mazankowski Alberta Heart Institute, Canada.
| |
Collapse
|
17
|
Iron overload in patients with myelodysplastic syndromes: An updated overview. Cancer 2018; 124:3979-3989. [DOI: 10.1002/cncr.31550] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/07/2018] [Accepted: 03/22/2018] [Indexed: 01/19/2023]
|
18
|
Yu ZY, Ma D, He ZC, Liu P, Huang J, Fang Q, Zhao JY, Wang JS. Heme oxygenase-1 protects bone marrow mesenchymal stem cells from iron overload through decreasing reactive oxygen species and promoting IL-10 generation. Exp Cell Res 2018; 362:28-42. [DOI: 10.1016/j.yexcr.2017.10.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023]
|
19
|
Bakulina O, Bannykh A, Dar'in D, Krasavin M. Cyclic Hydroxamic Acid Analogues of Bacterial Siderophores as Iron-Complexing Agents prepared through the Castagnoli-Cushman Reaction of Unprotected Oximes. Chemistry 2017; 23:17667-17673. [PMID: 29072340 DOI: 10.1002/chem.201704389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/13/2022]
Abstract
The first application of multicomponent chemistry (the Castagnoli-Cushman reaction) toward the convenient one-step preparation of cyclic hydroxamic acids is described. Cyclic hydroxamic acids are close analogues of bacterial siderophores (iron-binding compounds) and form stable complexes with Fe3+ ions as confirmed by spectrophotometric measurements. These compounds are potential components for the design of chelating agents for iron overload disease therapy, as well as siderophore-based carrier systems for antibiotic delivery across the bacterial cell wall.
Collapse
Affiliation(s)
- Olga Bakulina
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Anton Bannykh
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Dmitry Dar'in
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| | - Mikhail Krasavin
- Laboratory of Chemical Pharmacology, Saint Petersburg State University, Saint-Petersburg, 199034, Russian Federation
| |
Collapse
|
20
|
Wu D, Wen X, Liu W, Xu L, Ye B, Zhou Y. A composite mouse model of aplastic anemia complicated with iron overload. Exp Ther Med 2017; 15:1449-1455. [PMID: 29434729 PMCID: PMC5776174 DOI: 10.3892/etm.2017.5523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
Iron overload is commonly encountered during the course of aplastic anemia (AA), but no composite animal model has been developed yet, which hinders drug research. In the present study, the optimal dosage and duration of intraperitoneal iron dextran injection for the development of an iron overload model in mice were explored. A composite model of AA was successfully established on the principle of immune-mediated bone marrow failure. Liver volume, peripheral hemogram, bone marrow pathology, serum iron, serum ferritin, pathological iron deposition in multiple organs (liver, bone marrow, spleen), liver hepcidin, and bone morphogenetic protein 6 (BMP6), SMAD family member 4 (SMAD4) and transferrin receptor 2 (TfR2) mRNA expression levels were compared among the normal control, AA, iron overload and composite model groups to validate the composite model, and explore the pathogenesis and features of iron overload in this model. The results indicated marked increases in iron deposits, with significantly increased liver/body weight ratios as well as serum iron and ferritin in the iron overload and composite model groups as compared with the normal control and AA groups (P<0.05). There were marked abnormalities in iron regulation gene expression between the AA and composite model groups, as seen by the significant decrease of hepcidin expression in the liver (P<0.01) that paralleled the changes in BMP6, SMAD4, and TfR2. In summary, a composite mouse model with iron overload and AA was successfully established, and AA was indicated to possibly have a critical role in abnormal iron metabolism, which promoted the development of iron deposits.
Collapse
Affiliation(s)
- Dijiong Wu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaowen Wen
- Department of Internal Medicine, Central Hospital of Jinhua Affiliated to Zhejiang University, Jinhua, Zhejiang 321001, P.R. China
| | - Wenbin Liu
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Linlong Xu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Baodong Ye
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Yuhong Zhou
- Department of Hematology, First Affiliated Hospital of Zhejiang Chinese Medical University, National Clinical Research Base of Traditional Chinese Medicine, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
21
|
Gerić M, Gajski G, Oreščanin V, Domijan AM, Kollar R, Garaj-Vrhovac V. Environmental risk assessment of wastewaters from printed circuit board production: A multibiomarker approach using human cells. CHEMOSPHERE 2017; 168:1075-1081. [PMID: 27829507 DOI: 10.1016/j.chemosphere.2016.10.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/21/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Since the production of printed circuit boards (PCBs) generates wastewater contaminated with heavy metals and organic matter, PCB factories represent potential pollution sites. The wastewater toxicologically tested in this study contained several metals and the most abundant were copper and iron. At two exposure times tested (4 and 24 h) PCB wastewater (PCBW) proved to be cytotoxic (decreased cell viability) and genotoxic (increased comet assay tail intensity and tail moment) to human blood peripheral lymphocytes in vitro, and the oxidative stress parameter (malondialdehyde concentration) was also found to be higher. After application of combined treatment by waste base, ozone and waste sludge methods, concentrations of metals in purified PCBW were below the upper permitted levels and all tested toxicological parameters did not differ compared to the negative control. Taken together, similar methods could be implemented in PCB factories before discharging potentially toxic wastewater into the environment because purified PCBW does not represent a threat from the aspect of cytotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Marko Gerić
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia
| | - Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia
| | | | - Ana-Marija Domijan
- University of Zagreb, Faculty of Pharmacy and Biochemistry, 10000, Zagreb, Croatia
| | | | - Vera Garaj-Vrhovac
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000, Zagreb, Croatia.
| |
Collapse
|
22
|
Gómez-Oliván LM, Mendoza-Zenil YP, SanJuan-Reyes N, Galar-Martínez M, Ramírez-Durán N, Rodríguez Martín-Doimeadios RDC, Rodríguez-Fariñas N, Islas-Flores H, Elizalde-Velázquez A, García-Medina S, Pérez-Pastén Borja R. Geno- and cytotoxicity induced on Cyprinus carpio by aluminum, iron, mercury and mixture thereof. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 135:98-105. [PMID: 27721126 DOI: 10.1016/j.ecoenv.2016.09.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
Metals such as Al, Fe and Hg are used in diverse anthropogenic activities. Their presence in water bodies is due mainly to domestic, agricultural and industrial wastewater discharges and constitutes a hazard for the organisms inhabiting these environments. The present study aimed to evaluate geno- and cytotoxicity induced by Al, Fe, Hg and the mixture of these metals on blood of the common carp Cyprinus carpio. Specimens were exposed to the permissible limits in water for human use and consumption according to the pertinent official Mexican norm [official Mexican norm NOM-127-SSA1-1994] Al (0.2mgL-1), Fe (0.3mgL-1), Hg (0.001mgL-1) and their mixture for 12, 24, 48, 72 and 96h. Biomarkers of genotoxicity (comet assay and micronucleus test) and cytotoxicity (caspase-3 activity and TUNEL assay) were evaluated. Significant increases relative to the control group (p<0.05) were observed in all biomarkers at all exposure times in all test systems; however, damage was greater when the metals were present as a mixture. Furthermore, correlations between metal concentrations and biomarkers of geno- and cytotoxicity were found only at certain exposure times. In conclusion, Al, Fe, Hg and the mixture of these metals induce geno- and cytotoxicity on blood of C. carpio.
Collapse
Affiliation(s)
- Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Youssef Paolo Mendoza-Zenil
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Nely SanJuan-Reyes
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700 México, D.F., Mexico.
| | - Ninfa Ramírez-Durán
- Laboratorio de Microbiología Médica y Ambiental de la Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Venustiano Carranza s/n. Col. Universidad, 50180 Toluca, Estado de México, Mexico
| | - Rosa Del Carmen Rodríguez Martín-Doimeadios
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida Carlos III s/n, E-45071 Toledo, Spain
| | - Nuria Rodríguez-Fariñas
- Departamento de Química Analítica y Tecnología de los Alimentos, Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Avenida Carlos III s/n, E-45071 Toledo, Spain
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Armando Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700 México, D.F., Mexico
| | - Ricardo Pérez-Pastén Borja
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700 México, D.F., Mexico
| |
Collapse
|
23
|
Eid R, Arab NTT, Greenwood MT. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:399-430. [PMID: 27939167 DOI: 10.1016/j.bbamcr.2016.12.002] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/08/2016] [Accepted: 12/04/2016] [Indexed: 12/11/2022]
Abstract
Iron is an essential micronutrient that is problematic for biological systems since it is toxic as it generates free radicals by interconverting between ferrous (Fe2+) and ferric (Fe3+) forms. Additionally, even though iron is abundant, it is largely insoluble so cells must treat biologically available iron as a valuable commodity. Thus elaborate mechanisms have evolved to absorb, re-cycle and store iron while minimizing toxicity. Focusing on rarely encountered situations, most of the existing literature suggests that iron toxicity is common. A more nuanced examination clearly demonstrates that existing regulatory processes are more than adequate to limit the toxicity of iron even in response to iron overload. Only under pathological or artificially harsh situations of exposure to excess iron does it become problematic. Here we review iron metabolism and its toxicity as well as the literature demonstrating that intracellular iron is not toxic but a stress responsive programmed cell death-inducing second messenger.
Collapse
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Nagla T T Arab
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada
| | - Michael T Greenwood
- Department of Chemistry and Chemical Engineering, Royal Military College of Canada, Kingston, Ontario, Canada.
| |
Collapse
|